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Abstract: As science and technology have advanced over the past few years, numerous astronomical measurement 
technique projects—like the Sloan Digital Sky Survey (SDSS)—have been built and implemented. Many 
astronomical data has been collected, including the characteristic data of galaxies, stars, and other celestial 
bodies. The classification of a large amount of astronomical data requires an efficient algorithm. In this paper, 
a galaxy (GALAXY), star (STAR), Quasi-Stellar Object (QSO) classification model was constructed using 
machine learning techniques and the Sloan Digital Sky Survey - DR18 dataset. Different algorithms, including 
K-Nearest Neighbors (KNN) and Principal Component Analysis (PCA), were used to build this model. The 
obtained model in this paper exhibits good performance indicators, with accuracy rates of 96%, 98%, 96%, 
and 98%, respectively. To decrease the dimensionality of the data, the author employed PCA and discovered 
that certain information in the data was irrelevant to the classification. Discarding these irrelevant features 
can speed up the training process. The importance of classifying celestial bodies based on astronomical data 
is evident, as it helps people better understand the composition and evolution of the universe and has 
significant implications for predicting and explaining astronomical phenomena. However, the same type of 
celestial body may have significant differences in certain features and practical scenarios, so a more extensive 
and higher-quality training set is needed to train better-performing models. These models can help people 
classify celestial bodies more quickly and accurately 

1 INTRODUCTION  

Under the ongoing advancements in technological and 
scientific fields, many astronomical surveying 
techniques projects have been constructed and used, 
such as the Sloan Digital Sky Survey (SDSS) (York et 
al 2000). A vast amount of astronomical data has been 
collected. The importance of classifying celestial 
bodies based on these astronomical data is evident, as 
it helps people better understand the composition and 
evolution of the universe and holds significant 
significance for predicting and explaining 
astronomical phenomena. However, celestial body 
classification is also filled with challenges. The same 
type of celestial body may vary significantly in certain 
characteristics, and the vast amount of 
multidimensional astronomical data and observational 
results place considerable demands on the algorithms 
and computational capabilities used to process and 
analyze this data. Therefore, it is necessary to 
determine the most suitable machine-learning 
techniques for classifying celestial bodies. For 
example, studies based on stacking ensemble studying 

for celestial body classification have established basic 
classifier models using algorithms like Random 
Forests and Support Vector Machines (Luqman et al 
2022). In their paper, using Multi-label K-Nearest 
Neighbors (ML-KNN), a KNN algorithm-based 
approach, Zhang and Zhou experiment with multi-
class studying issues. And ML-KNN performs better 
than several well-known multi-class learning 
techniques (Zhang and Zhou 2007). The performance 
suggests that KNN has certain advantages in handling 
large multi-label problems. The paper by  Logan and 
Fotopoulou employed PCA for data preprocessing in 
the categorization of three celestial bodies. The PCA 
performed in this paper reduced the input attributes to 
approximately 2-5 dimensions (Logan and 
Fotopoulou 2020). 

PCA, or principal component analysis, is a method 
for extracting the most essential information from a 
data table and simplify the description of the dataset 
(Abdi and Williams 2010). It is a powerful data 
analysis tool that can help detect patterns, reduce data 
dimensions, and identify outliers. One of its 
fundamental applications is reducing the number of 
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features in a dataset to alleviate the computational 
burden of machine learning algorithms. 

The Standard Scaler feature scaling technique 
normalizes each feature by narrowing the variance to 
one and subtracting its mean. which effectively 
prevents the significant differences in magnitudes 
among various features from causing certain features 
to dominate the model training, thereby preventing a 
decrease in the accuracy of the model training. 
However, there are also some drawbacks to the 
Standard Scaler, including its vulnerability to values 
that deviate from the normal range and preference for 
normally distributed data (Ferreira et al 2019). 

In this paper, the authors employ various methods, 
including KNN, PCA-KNN, and Standard Scaler, to 
classify GALAXY, QSO, and STAR, three types of 
celestial bodies. 

2 METHOD 

2.1 Dataset 

The dataset is called Sloan Digital Sky Survey - DR18. 
It comprises 100,000 observations from the Data 
Release (DR) 18 of the Sloan Digital Sky Survey 
(SDSS). Each observation data consists of 42 different 
features. Based on these 42 feature values, the 
observation data is classified into a GALAXY, a 
STAR, or a QSO. Among them, 52343 rows are 
GALAXY, 37232 are STAR, and 10425 are QSO. 
Table 1 shows some examples of the dataset. 

Table 1: Some examples in the dataset. 

class 
features 

redshift expAB_u petroFlux_z field 

GALAXY 0.04169106 0.04169106 207.0273 462 

STAR 0.000814368 0.04169106 4.824737 467 

GALAXY 0.1130687 0.7016655 278.0211 467 

STAR 8.72E-05 0.9998176 134.6233 467 

STAR 1.81E-05 0.9997948 388.3203 467 

STAR -8.72E-05 0.8620063 185.476 467 

2.2 Plitting the Dataset 

In this research, the author randomly divided the 
dataset into 80% training and 20% testing sets. 
Stratified sampling was conducted based on the class 
proportions to ensure that the proportions of each class 
in the training and testing sets were similar. 

2.3 Dataset Visualization 

Each distinct feature is different in GALAXY, STAR, 
and QSO. The following pictures show some 
visualized results. 0, 2, and 3 illustrate three different 
features among these three celestial bodies. 

 
Figure 1: Different characteristics of the 'redshift' in 
GALAXY, STAR, QSO (Picture credit: Original). 

 

Figure 2: Different characteristics of the 'expAB_u' in 
GALAXY, STAR, QSO (Picture credit: Original). 

 

Figure 3: Different characteristics of the 'r' in GALAXY, 
STAR, QSO (Picture credit: Original). 

The author used box plots to visualize the 
distribution of data. As shown in Figure 4, if the upper 
and lower whiskers are relatively long, it indicates a 
significant variation in the data beyond the upper and 
lower quartiles, suggesting a larger overall variance 
and standard deviation, which can significantly impact 
model training. 
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Figure 4: Box plot of 6 features (Picture credit: Original). 

Each different feature is unique for the three types of 
celestial bodies. There are a total of 42 features. 
However, not all features strongly correlate with the 
classes of celestial bodies, so the author has created a 
correlation heatmap of all the features. After being 
selected by the author, the correlation between the 14 
features and the categories of celestial bodies is shown 
in Figure 5. These 14 features exhibit a strong 
correlation with the classes of celestial bodies. 
 

 
Figure 5:Part of the Correlation Heatmap (Picture credit: 
Original). 

Meanwhile, the author also calculated the 
correlation between each class and all the features. 
Meanwhile, the author also calculated the correlation 
between each class and all the features.  

A significant positive correlation (n >= 0.7) has 
been found for one feature with "class_GALAXY"; 
six features have a moderate positive correlation (n < 
0.7 && n >= 0.5); six feature have a weak positive 
correlation (n < 0.5 && n > 0); and 29 features have a 
negative or zero correlation (n <= 0).  

One feature with "class_QSO" has a strong 
positive correlation (n >= 0.7); one feature has a 
moderately positive correlation (n < 0.7 && n >= 0.5); 
four features have a weak positive correlation (n < 0.5 
&& n > 0); and thirty-six features have a 0 or negative 
correlation (n <= 0). 

The data indicates that there are 34 features with 0 
or negative correlation (n <=0), 3 features with 
moderately positive correlation (n < 0.7 && n >= 0.5), 

5 features with weakly positive correlation (n < 0.5 
&& n > 0), and no features with substantially positive 
correlation (n>=0.7) with "class_STAR". 

2.4 Algorithm 

The author first uses Standard Scaler to normalize the 
data in this project. Then, the author uses PCA to 
decrease the data dimensionality. Then, the author 
trains a KNN model based on these reduced-
dimensional datasets for classifying GALXY, STAR, 
and QSO. 

Standard Scaler:Normalization of data. One 
feature scaling technique is Standard Scaler. By 
deducting the mean from each feature and scaling the 
variance to one, it can be made normal. It can scale 
features with different scales to the same range, 
avoiding the excessive influence of certain features on 
the model, which is crucial for the KNN model in this 
experiment, as the distance calculation of KNN will 
be dominated by features with larger scales if there are 
significant differences in feature scales. Scaling the 
dataset will lead to more accurate results than not 
scaling it. The box plot illustrates that the dataset for 
this experiment has different value ranges for different 
features. Therefore, normalization is required for this 
dataset (Raju et al 2020). For each feature, including 
S observed value, calculate its mean 𝑋ത, where each 
observation in the feature is 𝑋௜, and use equation 1 to 
determine the normalized 𝑋ప෡ . Xన෡ ൌ ଡ଼౟ିଡ଼ഥ஢  (1) 

where 𝜎ଶ ൌ ∑ሺ௑೔ି௑തሻమௌ    (2) 

PCA: Dimensionality reduction of data. One 
popular method for reducing dimensionality is 
Principal Component Analysis, or PCA. It is applied 
to convert high-dimensional data into a space with 
fewer dimensions. It reduces dimensionality by 
identifying the primary directions of variance in the 
original data and projecting the data onto these 
directions. Principal Component Analysis first 
calculates the covariance matrix to describe the linear 
relationship between each feature, given data with s 
number of samples, where the covariance matrix is 
obtained by: ∑ ൌ ଵ௦ ∑ ሺ𝑥௜ − 𝑥̅௦௜ୀଵ ሻሺ𝑥௜ − 𝑥̅ሻ்     (3) 

Where 

 𝑥̅ ൌ ଵ௦ ∑ 𝑥௜௦௜ୀଵ                     (4) 
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PCA performs eigenvalue decomposition on the 
covariance matrix to obtain their corresponding 
eigenvectors. Then, it selects the top N principal 
components based on the magnitude of the 
eigenvalues, where N is the desired dimensionality 
after dimension reduction and defined by the author. 
After calculating the quantities of different PCs, sort 
the retained data information and select the top 25 PCs 
to train the KNN model. 

KNN: Prediction. K-Nearest Neighbors represents 
one of the machine learning techniques used for 
classification as well as regression. It is used to 
classify three types of celestial bodies. The KNN 
algorithm stores each feature data in the training set. 
In this research, for one sample data in the test set, the 
KNN algorithm calculates the k points with the 
smallest Euclidean distance to this sample point. It 
classifies this sample data into the category of the 
nearest neighbors. The accuracy generally changes 
with the variation of the k value. Because K-NN 
merely stores the training dataset at first and only uses 
it to figure out how to categorize or predict new 
datasets as necessary, it is sometimes referred to as a 
lazy learning algorithm (Bansal et al 2022). In their 
paper, Niu and Lu et al0 noted that various distance 
metrics are crucial and significantly impact nearest-
neighbor-based algorithms (Niu et al 2013). In this 
paper, the author uses Euclidean distance. KNN 
Euclidean distance formula: 

d=ඥ∑ (𝑥௜ − 𝑦௜)ଶ௦௜ୀଵ        (5) 

2.5 Evaluation Criteria 

Confusion matrix: The confusion matrix counts the 
number of samples in the incorrect category and the 
right group. The forecast outcomes are displayed in 
the confusion matrix. It displays conflicted forecast 
outcomes. It can not only assist in mistake detection 
but also error type display. At the same time, the 
confusion matrix makes it simple to compute other 
high-level classification indicators. 

Accuracy: Percentage of accurate predictions. It is 
one of the most commonly used metrics in multi-class 
classification, and its formula considers the sum of 
correctly predicted examples as the numerator and the 
sum of the confusion matrix's total entries as the 
denominator (Grandini et al 2020). It represents 
accurately predicted test samples’ percentage out of all 
the test samples in this study. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ்ேା்௉்ேା்௉ାிேାி௉              (6) 
 

Macro Average Precision (MAP): Average of each 
category's precision, which is the proportion of 

accurate predictions among the anticipated positive 
instances. In the STAR devision, the denominator is 
the number of correctly identified examples in the 
STAR category divided by the number of examples 
identified as the STAR category in non-STAR 
examples. The numerator is the number of correctly 
identified examples in the STAR category in the true 
situation. 𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ଵ௦ ∑ ்௉೔்௉೔ାி௉೔௦௜ୀଵ (7)
  

Macro Average Recall (MAR): It is the average 
value of the recall rate for each category. In this 
research, The recall rate represents the percentage of 
samples that the model correctly predicts as belonging 
to a certain class out of all the actual samples 
belonging to that class. 𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑒𝑐𝑎𝑙𝑙 = ଵ௦ ∑ ்௉೔்௉೔ାிே೔௦௜ୀଵ      (8) 

Macro F1-Score: Macro F1-Score is the name 
given to the harmonic mean of Precision and Recall. 
Because MAR or MAP cannot be used independently 
to assess a model, the Macro F1-score balances the 
two indicators and makes them compatible. The 
algorithms that perform well across all categories 
exhibit a high Macro F1-score, while the algorithms 
with inaccurate predictions demonstrate a low Macro 
F1-score (Grandini et al 2020). 
      𝑀𝑎𝑐𝑟𝑜𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = ெ஺௉ ∗ ெ஺ோெ஺௉షభାெ஺ோషభ             (9) 

3 RESULT 

3.1 Data Dimensionality Reduction 

The author compared the explained variance, 
accuracy, and training time in the experiment when 
using from 1 to 25 principal components 
(PCA(n_components=i)) and KNN. The metrics can 
be seen in 0, 0, and 0. 

The explained variance, in 0, increases with the 
number of PCs. However, the rate of its increase 
gradually slows down. After the number of PCs 
reaches 23, there is no significant increase, indicating 
that the maximum amount of information has been 
retained when the number of PCs reaches 23. 

In Fig. 7, the more PCs there are, the higher the 
accuracy rate. But after there are five PCs, the pace of 
increase slows down. The accuracy increases slightly 
when the number of PCs is between 5 and 20. 
However, the accuracy no longer improves when the 
number of PCs exceeds 20. 
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Figure 6: Explained Variance and Number of PCs (Picture 
credit: Original). 

 
Figure 7: Accuracy and Number of PCs (Picture credit: 
Original). 

 
Figure 8: Training Time and Number of PCs (Picture credit: 
Original). 

0 demonstrates a continuous increase in training 
time between 1PCs and 15 PCs. However, at 16 PCs, 
the training time suddenly decreases and remains 
stable between 16 PCs and 23 PCs. 

When PC is set to 23, it retains the main variance, 
achieves relatively high accuracy, and significantly 
reduces training time. Therefore, the author decided 
to use 23 PCs for the subsequent analysis. 

3.2 Predict Result 

Table 2: Predict results of KNN. 

MAP MAR Macro 
F1-score Accuracy training 

time 
0.96 0.94 0.95 0.96 0.0065s 

Table 3: Predict results of normalized KNN. 

MAP MAR Macro 
F1-score Accuracy training 

time 
0.99 0.97 0.98 0.98 0.0072s 

Table 4: Predict results of PCA-KNN. 

MAP MAR Macro 
F1-score Accuracy training 

time 
0.96 0.94 0.95 0.96 0.0044s 

Table 5: Predict results of normalized PCA-KNN 

MAP MAR Macro 
F1-score Accuracy training 

time 
0.98 0.97 0.98 0.98 0.0046s 

From 0, 0, 0, 0,  it can be observed that KNN, 
normalized KNN, PCA-KNN, and normalized PCA-
KNN all exhibit high accuracy, high MAP, and high 
MAR while requiring relatively short training time. 

 
Figure 9: Accuracy of different models (Original). 

 
Figure 10: Training Time of different models (Original). 
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In Figure 9 and 10, the KNN model trained on the 
data set normalized by Standard Scaler shows 
improved accuracy compared to the original KNN 
algorithm. However, the training time has also 
increased accordingly. Therefore, when evaluating 
the advantages and disadvantages of different 
algorithms, it is crucial to consider the specific usage 
scenario and the clients' customized requirements. 

3.3 Evaluation 

The confusion matrix is used to count the amount of 
specimens that are classified correctly or incorrectly. 
The y label represents the true label, while the x label 
represents the predicted label by the model. For 
example, the number in the square corresponding to 
the first galaxy class on the x-labels and the second 
QSO class on the y-labels is the proportion of the 
model predicting the QSO class as galaxy class.   

These confusion matrices, displayed in 0, 12, 13, 
and 14, demonstrate excellent accuracy. However, it 
can be observed from the figures that the model tends 
to classify QSO as GALAXY in the test set. The 
author believes this is the model's primary source of 
error. 

4 DISCUSSION 

The training time of the model is short, allowing for 
multiple training sessions in a short period. In addition, 
the precision, recall, and accuracy are all very high. 
The charts in the results show that the accuracy of the 
normalized KNN model reaches 98.5%, which is an 
improvement compared to KNN's 96.3%. Furthermore, 
all performance metrics have improved, indicating that 
Standard Scaler significantly enhances the reliability of 
the data. Compared to KNN, PCA-KNN has the same 
performance metrics and reduces data dimensionality, 
resulting in a noticeable reduction in training time. This 
suggests that some feature information is irrelevant 
when classifying these three types of celestial bodies. 
Normalized PCA-KNN incorporates data 
normalization and dimensionality reduction steps, 
achieving the same performance metrics as normalized 
KNN while only taking 2/3 of the training time. 

Moreover, it outperforms PCA-KNN in 
performance metrics while maintaining a similar 
training time. Normalized PCA-KNN trains faster 
than normalized KNN, significantly reducing training 
time while improving accuracy, Macro Average 
Precision, and other metrics. In the future, the 
normalized PCA-KNN model can be used in many 

other regression and classification tasks involving 
many features, some of which may be irrelevant. 

 
Figure 11: KNN (Picture credit: Original). 

 
Figure 12: normalized KNN (Picture credit: Original). 

 
Figure 13: PCA-KNN (Picture credit: Original). 

 
Figure 14: normalized PCA-KNN (Picture credit: Original). 
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5 CONCLUSION 

The GALAXY, STAR, and QSO classification model 
has been successfully implemented using four 
different techniques. Among them, normalized 
PCA+KNN is more suitable for this small-scale 
classification problem in terms of performance, 
computation time, and cost. This research aims to 
provide new insights into celestial object 
classification to help people classify celestial objects 
more practically. However, due to the limited dataset, 
the model's current performance may only partially 
be satisfactory. The author must add more extensive 
and more diverse datasets to future research to 
improve the model's effectiveness. 
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