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Abstract: Over the last few years, Artificial Intelligence Generated Content (AIGC) technology has rapidly matured 

and garnered public attention due to its ease of use and quality of results. However, due to these characteristics, 

forged images generated by AIGC technology have a high potential of being misused and causing negative 

social consequences. While AI-based tools can identify AI-generated images with reasonable accuracy, these 

models did not consider the factor of adversarial robustness or resistance against intentional attacks. This 

paper empirically evaluated several existing AIGC detection models’ adversarial robustness under select at-

tack setups. Overall, it is discovered that even naked-eye unnoticeable perturbation of source images can 

consistently cause sharp drops in performance in all the models in question. This study proposes constructing 

a Convolutional Neural Network (CNN) based AIGC classifier model with additional adversarial training 

using a combination of transformation-based and l-based adversarial examples constructed with existing 

AIGC data. This paper uses clean and adversarial data sets to test the performance of the resulting model. The 

results show the model's remarkable robustness to the adversarial attack techniques described above while 

maintaining relative accuracy on clean datasets. 

1 INTRODUCTION 

Artificial Intelligence Generated Content (AIGC) is 

creating content via artificial intelligence-based 

systems. The topic of AIGC has garnered enormous 

public and academic attention for the past few years 

due to its rapid improvement, proliferation, and 

commercial adoption. AIGC systems can produce 

various content types from different inputs. However, 

text-to-image generation models have also been a 

particular focus of controversy due to their ample 

potential for misuse. Some worried they were 

threatening the art industry and stifling creativity in 

the visual arts. 

In contrast, others pointed out that they could be 

used to disseminate misinformation by generating 

photorealistic scenes of non-existent events (Z. Sha et 

al., 2022). Moreover, text-to-image AIGC has been, 

and is still, improving at an impressive pace, to the 

point that some are worried that it will soon reach the 

point where it becomes altogether impossible for 

human eyes to distinguish between AI-generated 

images and natural photographs. This uncertain future 

necessitates the development of tools that can reliably 

discern AI-generated images.  

There have been several works that focused on 

AIGC image classification. Bird & Lotfi used a 

customized Convolutional Neural Network (CNN) 

with a Gradient class activation map (Grad-CAM) to 

offer a more explainable approach to classify AI-

generated images and generalize AIGC artifacts (J. 

Bird Jordan, and L. Ahmad, 2023). Xi developed a 

novel dual-stream network for pure image 

classification that synthesizes AIGC artifacts in high 

and low-frequency regions of a given image with a 

cross-attention module (Z. Xi et al., 2023). All the 

models achieved impressive classification accuracy 

that far exceeds regular forensic models. However, no 

studies have focused on AIGC classifiers’ adversarial 

robustness – or how well they perform with inputs 

intentionally engineered to misguide or otherwise 

disrupt their classification (A. Madry et al., 2017).  

All the methods above utilize Convolutional 

Neural Network (CNN) architectures, which have 

been proven to be especially susceptible to 

adversarial attacks such as projected gradient descent 

(PGD) in previous studies (A. Madry et al., 2017), (L. 

Engstrom et al., 2019).  

This paper aims to address these issues by (1) 

assessing the adversarial robustness of existing 

models and (2) creating a model that can achieve a 
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higher degree of robustness against both adversarial 

attacks and naturally occurring transformations. The 

first goal is achieved using a combination of the 

CIFAKE database developed by Bird & Lotfi (J. Bird 

Jordan, and L. Ahmad, 2023), adversarial 

perturbation methods utilizing the Adversarial 

Robustness Toolbox, and input transformation 

methodology inspired by Engstrom et al. to generate 

an adversarial dataset based on the CIFAKE database 

and then testing the performance of existing models 

on the dataset (L. Engstrom et al., 2019), (M. I. 

Nicolae, and M. Sinn, 2018). The second goal is 

constructing a CNN-based model that achieves 

adversarial robustness utilizing data augmentation 

and adversarial training. To ascertain that goal (2) is 

fulfilled, this study comprehensively evaluates the 

resulting model’s performance with the clean 

CIFAKE database and those above adversarially 

perturbed datasets, including comparative and 

ablation studies. In summary, the contributions that 

this paper have made include:  

• Constructed an adversarial dataset of real 

and T2I (Text-to-image) AI-generated 

images using different adversarial 

perturbation techniques, totaling a 120,000-

image count with two 60,000-image groups 

corresponding to clean and attacked input 

data.  

• Evaluated the adversarial robustness of 

existing models using adversarial databases 

and preprocessing scripts that perform 

rotations and translations. This evaluation 

shows that existing models are vulnerable to 

adversarial perturbation and preprocessing. 

• Introduced an adversarially robust model for 

T2I AIGC detection using a combination of 

preprocessors and adversarial training. 

Using the aforementioned adversarial 

datasets, this model is verified to have 

superior adversarial and spatial robustness 

than existing models while maintaining 

comparable accuracy on clean datasets. 

2 METHOD 

This section can be divided into three sections. The 

first section (II. A, II. B, II. C) describes the source of 

the data, the 𝑙 − 𝑝 bounded adversarial perturbation 

methods to generate the adversarial datasets, and the 

adversarial spatial transformation procedures. The 

second section (II. D) briefly describes the models 

used in the robustness evaluation and the methods and 

metrics used. The third section (II. E) describes, in 

detail, the overall architecture of an adversarially 

robust AIGC detection model, including 

preprocessors, the classifier proper, the adversarial 

training procedures, and the loss function. 

2.1 Base Dataset 

This paper utilizes the CIFAKE database which 

consists of 120,000 images as the base dataset. 60,000 

of these are photographic images taken from the 

CIFAR-10 dataset, a database widely used for image 

classification tasks (J. Bird Jordan, and L. Ahmad, 

2023). These are 32 × 32 resolution images of real 

subjects divided into ten classes, in RGB channels. 

The other 60,000 are RGB images generated by 

Stable Diffusion v1.4, a popular, public T2I model 

that utilizes the principle of latent diffusion to 

generate synthetic images. The AIGC dataset is 

formatted the same as the CIFAR data: ten classes of 

32 x 32 images of objects in RGB channels. For this 

study, the dataset is divided into two equal-sized 

subsets each consisting of 30,000 pairs of natural and 

AIGC images. For each of the subsets, 83.3% (25,000 

pairs) are used for training and 16.7% (5,000 pairs) 

are used for testing. 

2.2 Gradient-Based Adversarial  
Methods 

Adversarial attacks on classifiers are considered 

optimization problems that maximize the given 

classification’s loss while minimizing the 

perturbation to the input. Formally, given any 

classifier 𝑓(𝑥): 𝑥 → 𝑦that maps input x to label y, an 

adversarial attack seeks out an adversarial 

perturbation δ such that: 

 𝐿(𝑓(𝑥 + 𝛿; 𝜃), 𝑦), ‖𝛿‖𝑝 ≤ 𝜖 (1) 

Where ‖ ∙ ‖𝑝 is a 𝑙𝑝  norm and 𝜖  is the given 

perturbation budget. 

Many state-of-the-art adversarial attacks are 

based on the method of Fast Gradient-Sign Method 

(FGSM) first proposed by Goodfellow, Shlens and 

Szegedy. in 2014 where the perturbed input 𝑥′  is 

given by (I. J. Goodfellow et al., 2014): 

            𝑥′ = 𝑥 + 𝜀 ∙ 𝑠𝑔𝑛(▽𝑥 𝐿(𝜃, 𝑥, 𝑦)) (2) 

Such that ▽𝑥 𝐿 is the gradient of the original 

model’s loss function with respect to the model 

parameters, input x and output y. An improved and 

much more powerful derivative of the FGSM is an 

iterative version that breaks the problem down into 
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several smaller maximization problems of step size α 

and step count 𝑥 + 𝑆 . This variation, known as 

Projected Gradient Descent (PGD), is formalized by 

the expression: 

𝑥′𝑡+1 = ∏ [𝑥′ + 𝑠𝑔𝑛(▽𝑥 𝐿(𝜃, 𝑥, 𝑦))]𝑥+𝑆    (3) 

Where denotes the projection operator that 

projects the finished iterations back to the constraint 

space ‖𝛿‖𝑝 ≤ 𝜖   and therefore clipping δ to the 

interval [𝜖, −𝜖]. 
For this study’s purpose, the Auto-PGD attack 

first introduced by Croce et al. implemented by the 

Adversarial Robustness Toolbox (ART) (M. I. 

Nicolae, and M. Sinn, 2018), (F. Croce, and M. Hein, 

2022) is chosen. Its key improvement over the base 

PGD attack is the ability to dynamically adapt its step 

size based on the rate of learning, allowing it to use 

larger step sizes to find good starting points over the 

whole attack space and smaller step sizes for more 

aggressive search of local maxima (F. Croce, and M. 

Hein, 2022). It achieves this by setting N checkpoints 

to decide if the step size should be halved from the 

initial size, and whenever the step size is halved, it 

starts from the best previously found parameters. An 

iteration count of 500 is used for the attack on the 

adversarial dataset. 

2.3 Adversarial Spatial  
Transformations 

Apart from the gradient-based methods, Engstrom et 

al. proposed an alternative view on adversarial 

perturbations, specifically, they questioned the 

concept of “perturbation budget” defined based on 

using 𝑙𝑝  norms as the sole metric of image similarity 

(L. Engstrom et al., 2019). They argue that human 

perception often defines images with large 𝑙𝑝  norm 

variations as visually similar, specifically, images 

that have undergone small rotation or translation 

operations. The optimization view of this spatial 

translation based adversarial perturbation is given by: 

𝐿(𝑇(𝑥; 𝛿𝑢, 𝛿𝑣, 𝜃𝑝), 𝑦)           (4) 

Where each pixel at position (u, v) in the given 

image undergoes the spatial operation T:  

[𝑐𝑜𝑠𝑐𝑜𝑠𝜃𝑝𝜃𝑝𝑠𝑖𝑛𝑠𝑖𝑛𝜃𝑝𝑐𝑜𝑠𝑐𝑜𝑠𝜃𝑝] ∙ [𝑢𝑣] + [𝛿𝑢𝛿𝑣]   (5) 

The author had proposed several methods of 

solving the maximization problem. These include (1) 

first order minimization towards the gradient of the 

loss function from a random choice, (2) grid search 

over all the possible combinations over the attack 

parameter space, and (3) generating k different 

random choices of attack parameters and searching 

among these. Engstrom et al. had concluded that the 

third method, dubbed the worst-of-k method, achieves 

a balance between computational performance and 

loss maximization, while having the advantage of not 

requiring full knowledge of the target model’s loss 

function, unlike gradient-based attacks (L. Engstrom 

et al., 2019). 

2.4 Target Models of Robustness 
Evaluation 

Four models that can be considered state-of-the-art in 

AIGC detection are evaluated. These include the 

ResNet-18 image classification residual neural 

network, the customized light CNN architecture by 

Bird et al., the cross-attention enhanced dual-stream 

network proposed by Xi et al., and an ensemble-based 

CG detection network developed by Quan et al. that 

employs a modified FGSM adversarial training 

method similar to the ones described here (Z. Sha et 

al., 2022), (J. Bird Jordan, and L. Ahmad, 2023), (Z. 

Xi et al., 2023), (W. Quan et al., 2020). All these 

models use cross-entropy loss as their loss functions. 

2.5 Adversarial Training 

This section introduces the author’s attempt at 

training an adversarially robust AI generated image 

detection model. The ResNet-18 architecture is used 

as a base classifier for this task (Z. Sha et al., 2022). 

The core of the training stage is the technique of Fast 

Adversarial Training introduced by Wong, Rice, and 

Kolter (E. Wong et al., 2020). Theoretically, 

adversarial training is a minimax or saddle point 

problem such that:  

𝜌(𝜃)𝑤ℎ𝑒𝑟𝑒𝜌(𝜃) = 𝐿(𝑓(𝑥 + 𝛿; 𝜃), 𝑦) (6) 

The training technique of Wong, Rice, and Kolter 

is based on an FGSM adversary (E. Wong et al., 

2020). While the base FGSM adversarial technique 

had been described as not empirically robust against 

PGD attacks, Fast Adversarial Training utilizes 

random non-zero initialization of the FGSM 

perturbations to achieve robustness on par with PGD 

adversarial training while being computationally 

much less costly due to removing the iterative factor 

(E. Wong et al., 2020). 

Besides the gradient-based adversarial technique, 

the aforementioned adversarial spatial 

transformations are then introduced into the 

adversary image generation process, since the two 

types of attacks had been proven to be orthogonal to 

each other and their effects are simply additive. 
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Engstrom et al. proposed using the same worst-of-k 

method as described above to generate adversarial 

samples and adding extra degrees of translation and 

rotation (𝛿𝑢, 𝛿𝑣, 𝑝)  had been proven to help with 

generalizing across different attack landscapes while 

not affecting the clean accuracy by much (L. 

Engstrom et al., 2019). Hence, the choice parameter k 

is set as 10, and the maximum rotation and translation 

are set to 30° and 5 pixels.  

Finally, inspired by Wang et al., all training data 

are augmented with a 20% probability of either 

Gaussian blur with σ ∼ Uniform [0, 3] and JPEG 

compression with quality ∼ 

Uniform{30,31, . . . ,100} (R. Wang et al., 2019). 

3 RESULTS 

This section presents the results of the robustness 

evaluation of the aforementioned models as well as 

the evaluation of the performance of the paper’s 

proposed model. 

3.1 Robustness Evaluation of Existing 
Models 

The adversarial datasets are attacked using a white-

box attack scheme, as the target model gradients are 

input into the AutoPGD procedure to generate the 

adversarial datasets. For this purpose, the adversarial 

dataset is copied for each target model, and each copy 

is attacked individually using the gradient 

information from the target.  

A toggleable preprocessing script is used to 

perform a worst-of-k attack on input images prior to 

classification tasks. The choice parameter k is fixed 

to 10, and the maximum rotation and translation 

parameters are set to 15° and 20% (3 pixels) in any 

given direction, respectively.  

According to Engstrom et al., spatial translations 

and gradient based attacks occupy orthogonal attack 

spaces and reduce classification accuracy in an 

additive manner (L. Engstrom et al., 2019). Therefore, 

this paper attempts both attack models individually 

and then combined. The results are then compared to 

the accuracy obtained from the clean CIFAKE dataset. 

The results of the evaluation are presented in Table 1.  

As shown in the table, the classifiers universally 

experienced significant accuracy degradation with 

any form of adversarial attack. Gradient-based 

AutoPGD significantly outperforms Worst-of-10 in 

reducing classification accuracy, and the degradation 

effects are indeed roughly additive to each other. The 

cross-attention-based networks by Xi and Quan show 

higher natural accuracy as well as higher robustness 

spatial transformation-based adversarial attacks. The 

ENet model in particular shows significantly higher 

robustness against AutoPGD attacks than the model 

by Xi et al. due to incorporating gradient-based 

adversarial training. Though, the model by Xi et al. 

still displays a higher degree of resistance to PGD 

attack than “simple” CNN models. 

3.2 Robustness Evaluation of the 
Proposed Model 

This section employs the same methodology 

described in the above sector to evaluate the model 

constructed with the forms of adversarial training 

proposed by this paper. Table 2 displays the accuracy 

of the proposed model, along with ablation 

experiments performed with each individual 

adversarial training method as well as disabling the 

Gaussian-based and JPEG artifact-based data 

augmentation by Wang et al. (R. Wang et al., 2019). 

The proposed model showed significantly 

improved adversarial robustness against both PGD 

attacks and adversarial spatial transformations than 

any of the existing models described above. The 

natural accuracy is comparable to the unmodified 

ResNet-18 model but worse than the cross-attention-

based models described above. 

The ablation study of removing either adversarial 

training components clearly highlights the orthogonal 

nature of the spatial transformation attacks and the 

gradient based perturbations. The absence of either 

training modules completely nullify the resistance to 

the corresponding attacks and degrade the combined 

adversarial robustness accordingly. Though, 

removing the additional augmentation step did not 

significantly affect the adversarial robustness of the 

complete model but slightly increased the model’s 

natural accuracy. This result goes against the 

common understanding that harder training data 

typically generate better classifier accuracies. 

4 DISCUSSION 

Rodriguez et al. proposed that more complex deep 

learning models are more susceptible to adversarial 

perturbation attacks. However, the results shown in 

Table 1 suggest otherwise. While Model-Centric 

ENet showed a higher degree of robustness due to 

incorporating adversarial training, even the non-

adversarially trained dual-stream network by Xi et al. 

is surprisingly more robust against the AutoPGD  

Towards Adversarially Robust AI-Generated Image Detection

383



Table 1: Comparative Accuracy of Evaluated Models Under Different Adversarial Attacks. 

Defense Model Attack Type Accuracy 

ResNet-18 

Natural 84.40% 
Auto-PGD 𝑙∞ε=0.033 4.10% 

Worst-of-10 transformation 31.10% 
APGD + W-10 2.20% 

Bird & Lotfi (J. Bird Jordan, and L. Ahmad, 2023) 

Natural 83.30% 
Auto-PGD 𝑙∞ε=0.033 3.70% 

Worst-of-10 transformation 28.20% 
APGD + W-10 2.80% 

Model-Centric ENet (W. Quan et al., 2020) 

Natural 92.70% 
Auto-PGD 𝑙∞ε=0.033 39.30% 

Worst-of-10 transformation 43.10% 
APGD + W-10 31.50% 

Xi et al. (Z. Xi et al., 2023) 

Natural 93.30% 
Auto-PGD 𝑙∞ε=0.033 18.00% 

Worst-of-10 transformation 45.40% 
APGD + W-10 13.10%4 

Table 2: Proposed Model’s Accuracy Under Different Adversarial Attacks. 

Training Mode Attack Type Accuracy 

Fast Adversarial Training + W-10 

Natural 82.40% 
Auto-PGD 𝑙∞ε=0.033 56.10% 

Worst-of-10 transformation 79.80% 
APGD + W-10 55.20% 

Worst-of-10 augmentation only 

Natural 86.00% 
Auto-PGD 𝑙∞ε=0.033 5.90% 

Worst-of-10 transformation 85.50% 
APGD + W-10 7.10% 

Fast Adversarial Training 

Natural 82.90% 
Auto-PGD 𝑙∞ε=0.033 58.50% 

Worst-of-10 transformation 25.10% 
APGD + W-10 41.20% 

Fast Adversarial Training + W-10 (No Aug) 

Natural 82.80% 
Auto-PGD 𝑙∞ε=0.033 55.50% 

Worst-of-10 transformation 81.00% 
APGD + W-10 53.90% 

attack than either plain ResNet-18 or even Bird & 

Lotfi’s network that only has 6 convolutional layers in 

total (J. Bird Jordan, and L. Ahmad, 2023), (Z. Xi et 

al., 2023), (W. Quan et al., 2020). This discrepancy 

might have stemmed from the difference in the nature 

of the tasks. The study by Rodriguez et al. focused on 

medical image detection where the features are more 

concentrated and aligned to human perception. 

Therefore, deeper neural networks might create 

unnecessarily complex decision boundaries that are 

more sensitive to adversarial perturbations – in other 

words, close to overfitting. However, unlike 

traditional image forgery techniques or shape 

classification tasks, artifacts of AI-generated images 

are not limited to high-frequency areas or primary 

features, and there is in fact evidence of major 

differences in the overall statistical distribution of the 

image (J. Bird Jordan, and L. Ahmad, 2023), (Z. Xi et 

al., 2023). These two factors might mean that AIGC 

detection tasks necessitate deeper networks for better 

extraction of latent features since it is harder to 

determine whether a given feature is robust or strongly 

relevant to the prediction outcome. Consequently, 

higher complexity models learned for AIGC detection 

might be less susceptible to adversarial perturbations 

of small magnitude/budget. However, the accuracy 
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drop caused by adversarial examples is still severe on 

the more complex models and warrants actual robust 

training techniques. 

Time and computational constraints are the main 

limitations of this study. This study is performed by 

an individual researcher utilizing Google Colab 

instances with Tesla T4 GPUs, which necessitated 

choices such as utilizing 32x32 color images from 

CIFAR-10 and the ResNet-18 architecture, which 

ensures training performance but might cause the 

resulting model to have difficulties with generalizing 

across different AIGC models. In particular, 32x32 

pixels is a significantly lower resolution than the 

majority of natural and T2I AI-generated images 

currently available on the internet. This may be the 

cause of the lower prediction accuracy as there is less 

space for AI generation artifacts, like the ones 

hypothesized by Sha et al. to manifest (Z. Sha et al., 

2022). However, increasing the resolution of the 

training samples or model depth would cause a 

multiplicative increase in all training costs, including 

T2I image generation, adversarial attacks, and general 

model training. If there are fewer resource constraints, 

investigating the interplay of adversarial training, 

cross-attention-based ensemble models, and higher 

resolution samples is a promising future area, as both 

latter factors are shown to improve the natural 

accuracy of models (J. Bird Jordan, and L. Ahmad, 

2023), (W. Quan et al., 2020). 

5 CONCLUSION 

This study focuses on the problem of the adversarial 

robustness of models that detect AI-generated images. 

It aims to (1) evaluate the adversarial robustness of 

existing models and (2) construct a model that can 

achieve a higher degree of robustness against 

adversarial attacks that are either gradient or spatial 

transformation-based. For purpose (1), several state-

of-the-art AIGC detection models are evaluated 

against both PGD attacks and adversarial translations 

and rotations. Both attacks are proven to be highly 

effective at reducing the classification accuracy of all 

models. For purpose (2), adversarial training and data 

is utilized along with a convolutional image classifier 

model, which has an improved degree of robustness 

against both kinds of adversarial attacks while 

preserving the accuracy of the base classifier. 

In conclusion, this study proves the susceptibility 

of CNN-based AIGC detection models to adversarial 

attacks and the possibility of enhancing these models’ 

robustness with adversarial training. As AIGC 

technology continues to improve and proliferate at an 

unprecedented pace, AI-based classification 

technology might be the best solution for combating 

their abuse. Based on this paper’s results, future 

models that detect AIGC should also take the issue of 

adversarial robustness in consideration, especially 

when it comes to distinguishing between what is real 

and what is fake. 
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