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Abstract: This paper compares three real-time 3D reconstruction methods based on single-photon LiDAR technology 

in underwater environments. Methods include the traditional cross-correlation method, the RT3D method 

combining highly scalable computational techniques from the computer graphics field with statistical models, 

and the ensemble method which combines surface detection and distance estimation are all explored. The 

target was placed around three meters away from the transceiver system, and both were submerged in a 1.8-

meter-deep water tank as part of the experimental setup. The transceiver used a picosecond pulse laser source 

that emitted light at a frequency of 20 MHz with a center wavelength of 532 nm. The results indicate that in 

static scenarios, as the turbidity of the medium increases, the cross-correlation method exhibited the most 

significant increase in noise and loss of surface detail; the RT3D method showed less noise increase but more 

pronounced surface loss; the Ensemble Method overall performed the best. The cross-correlation approach 

was found to be much faster than the other two ways in dynamic scenes, with the Ensemble approach being 

marginally slower than the RT3D method, all three methods' processing times reduced as the attenuation 

length rose. When the attenuation length exceeded 5.5AL, none of the methods could perform 3D 

reconstruction, but both RT3D and Ensemble Methods could still produce clusters of points. 

1 INTRODUCTION 

Real-time 3D reconstruction is a popular area of study 

within the domains computer vision that is used in 

robot and other automated equipments. 3D 

reconstruction is known as the process of recreating 

different aspects of the natural world we are living in 

into a virtual environment (Ingale 2021). Essentially, 

it involves capturing the three-dimensional spatial 

coordinates of every point on the surfaces of objects 

in real-world scenes. These captured points, 

embedded with spatial coordinate information, are 

then depicted within a unified 3D coordinate system 

using computer simulation software. This process 

accurately restores the surface contours of all objects 

within the target environment. When we raise our 

requirements for 3D reconstruction to achieve real-

time processing, it allows users to interact in real-time 

within the 3D scene, which opens up possibilities for 

various real-time applications such as real-time 

medical imaging, critical parameter measurement of 

high-temperature metal components, AR real-time 

interaction and mobile robot mapping and navigation 

(Wollborn et al 2023, Wen et al 2021 & Wang et al 

2023). Depending on the method of depth 

information acquisition, real-time 3D reconstruction 

techniques could be categorized into the following 

main types: the active reconstruction and the passive 

reconstruction. Active 3D reconstruction uses LiDAR 

such as TOF depth cameras or structured light 

methods like Microsoft's Kinect camera which sends 

a predefined signal to the target object and then 

receives and processes the returned signal to obtain 

the object's depth information. Passive real-time 3D 

reconstruction typically requires multiple image 

captures using cameras. The images are then 

processed to extract object feature information, which 

is used to compute the object's three-dimensional 

coordinates. 

In the process of exploration and utilization of 

marine resources, real-time 3D reconstruction offers 

profound insights into comprehending and 

capitalizing in underwater environment. Underwater 

3D maps can help monitor coral reefs, record the 

shapes of Cenotes, and support underwater rescue 

operations (Williams and Mahon 2004 & Gary et al 

2008). However, while  real-time 3D reconstruction 

technology is rapidly advancing due to the influence 
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of autonomous driving and mobile robot research, 

underwater 3D reconstruction remains a challenging 

research problem. This is because water, unlike air, 

has high electrical conductivity and dielectric 

constants. Thus, it is not easy to receive GPS signals 

underwater. Additionally, the scattering and 

absorption properties of light in water differ from 

those in air. The presence of suspended particles in 

water, originating from human or natural phenomena, 

further attenuates light. (Menna et al 2018). 

Therefore, it is challenging for cameras to extract 

sufficient information for subsequent feature point 

detection, matching, camera motion recovery, and 

depth and disparity estimation of the 3D scene. The 

unique physical properties of water also limit the use 

of light detection and ranging system (LiDAR), a fast 

and reliable 3D reconstruction method on land, 

significantly reducing the effective detection range of 

targets. In order to minimize the interference of the 

underwater environment, to enhance the real-time 

accuracy and robustness of underwater 3D 

reconstruction, more effective sensors and data 

processing methods are required. 

In order to perform 3D reconstruction in water and 

other complex media, researchers have developed 

single-photon LiDAR imaging sensors in recent 

years. Single-photon LiDAR imaging sensor has high 

surface delineation capabilities and optical 

sensitivity. The systems are typically based on the 

Time-of-Flight (ToF) method and Time-Correlated 

Single Photon Counting (TCSPC) technology. 

Single-photon LiDAR utilizes short pulse widths and 

high repetition rate lasers, combined with highly 

sensitive detectors, to detect and count returned single 

photons. Using TCSPC technology, single-photon 

LiDAR is capable of high-resolution 3D single-

photon imaging in scattering underwater 

environments (Maccarone et al 2015). Although there 

are many advantages using single-photon LiDAR 

imaging, capturing enough photon events to establish 

accurate parameter estimates may require a long 

acquisition time. To further increase the speed of 

acquiring scene depth data and simplify the optical 

configuration, researchers have developed the Single-

photon avalanche diode (SPAD) for active imaging. 

A study by A. Maccarone et al. utilized a 

Complementary Metal Oxide Semiconductor 

(CMOS) SPAD detector array combined with TCSPC 

timing electronic components, reaching visualization 

frame rates of 10Hz in scattering environments with 

distances up to 6.7AL between the moving target and 

the systems (Maccarone et al 2019). However, these 

studies did not achieve real-time imaging systems. 

One of the main limitations comes from the data 

processing segment. The SPAD array's high data rate 

had a significant impact on data processing since 

larger data volumes require longer processing times 

to estimate the intensity and distance data distribution 

of targets, which reduces the potential for real-time 

reconstruction. 

To further enhance the real-time capabilities of 

single-photon 3D reconstruction technology, 

researchers have developed custom computational 

models implemented on Graphics Processing Units 

(GPUs). J. Tachella et al. introduced a Real-time 3D 

algorithm (RT3D) that uses point cloud denoising 

tools presented priviously in a plug-and-play 

framework. The RT3D method build fast and robust 

distance estimation for single-photon LiDAR 

(Tachella et al 2019). RT3D achieved video rates of 

50 Hz with processing times as low as 20 ms. K. 

Drummond et al. studied the joint surface detection 

problem of single-photon LiDAR data, with the and 

depth estimation problem, proposing a 3D 

reconstruction algorithm based on combined surface 

detection and distance estimation (Drummond et al 

2021). S. Plosz et al. introduced a highly robust, fast 

single-photon LiDAR 3D reconstruction algorithm 

and applied it to a pre-collected underwater dataset, 

and in the environment up to 4.6AL, they achieved 10 

milliseconds processing times (Plosz et al 2023). 

However, these studies did not produce a combined 

acquisition device and GPU into a comprehensive 

underwater 3D reconstruction imaging system. 

This paper presents the comprehensive 

underwater 3D reconstruction system proposed by A. 

Maccarone et al., which is based on the Si-CMOS 

SPAD detector array and incorporates real-time 

imaging capabilities with a workstation that is GPU-

equipped (Maccarone et al 2023). The discourse 

further contrasts the performance of the RT3D 

algorithm with the traditional cross-correlation 

method and a recently developed method that 

amalgamates surface detection and distance 

estimation by Drummond et al. within this 

experimental framework.  

2 METHODS 

This section elucidates the fundamental principles of 

single-photon LiDAR, accompanied by a concise 

overview of traditional cross-correlation method, the 

RT3D algorithm and the recently developed 

algorithms that amalgamate surface detection with 

distance estimation (Ensemble Method). The RT3D 

method is restricted to reconstructing one surface per 

pixel at most to ensure fairness in comparison. This 
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section will first introduce fundamental principles of 

single-photon LiDAR, then observation model for the 

three methods, finally principles of each method. 

2.1 Fundamental Principles of  
Single-Photon Lidar 

The detection of a single photon by a single-photon 

detector is not a deterministic event, but rather a 

probabilistic one. This probabilistic event is termed 

PDE, defined as the likelihood of triggering the 

detector once a photon enters it. In practical 

engineering applications, for photons of a fixed 

wavelength, PDE is commonly denoted as 𝜂𝐷. 

According to the research on laser echo 

characteristics by Goodman et al., from the 

perspective of regular distribution, for specular 

targets, the number of echo photons reflected by the 

laser pulse statistically follows a Poisson distribution 

(Goodman 1965). For rough targets, however, the 

echo photon events statistically adhere to a negative 

binomial distribution. That is, for specular targets, 

within the sampling time, 
 

𝑓(𝑘|𝐸) =
(

𝜂𝐷𝐸

ℎ𝜈
)

𝑘

𝑘!
𝑒𝑥 𝑝 (

𝜂𝐷𝐸

ℎ𝜈
) ,         (1) 

 

where 𝐸  represents the energy carried by the echo 

light signal reflected from the specular target, k 

denotes the number of timing events triggered when 

the external signal is input to TCSPC, and 𝑓 signifies 

the probability density function of the detector 

receiving the energy of the echo light signal, 𝜈 is the 

frequency of the echo light signal, and ℎ is the Planck 

constant. 

For rough targets, within the sampling time， 

(𝑘) =
Γ(𝑘+𝑀)

Γ(1+𝑘)Γ(𝑀)
(

𝑀

𝑁+𝑀
)

𝑀

(
𝑁

𝑀+𝑁
)

𝑘

 ,      (2) 

 

where 𝑓(𝑘) represents the conditional probability of 

generating 𝑘 timing events, 𝛤 is the gamma function, 

𝑀  denotes the degrees of freedom of speckle 

presented in the echo light signal space, 𝑁 signifies 

the average number of photoelectrons within the 

sampling time. For photon counting lidar employing 

TCSPC counting, 𝑀 ≫ 𝑁 , the expression for non-

specular targets will also converge to the form of a 

Poisson distribution. 

In summary, the Poisson response model of the 

single-photon detector to photons within the time 

interval (𝑡1, 𝑡2) is 

 

𝑓(𝑡1, 𝑘, 𝑡2) =
1

𝑘!
[𝑀(𝑡2, 𝑡1)]𝑘𝑒𝑥 𝑝[−𝑀(𝑡2, 𝑡1)] , (3) 

𝑀(𝑡2, 𝑡1) = ∫
𝑃𝑟

𝐽𝑝
(𝑡 − 𝜏)𝑑𝜏

𝑡2

𝑡1
 ,           (4) 

 

where 𝑃𝑟  represents the energy of the echo signal, 𝐽𝑝 

denotes a single photon’s energy. 

2.2 Observation Model 

This paper establishes the observation model which is 

based on the research of Legros et al. Think of a series 

of 𝐾  temporal frames with 𝑃  pixels each, with the 

data linked to every pixel in a frame made up of a 

collection of reflected photon arrival timings (ToF). 

It is assumed that in each frame things happen in static 

scene, and the detection events caused by dark counts 

and other sources are uniformly distributed. For a 

known pixel, within a temporal window of width 𝑇, 

the photon ToFs are 𝑦 = {𝑦𝑘}𝑘=1
𝐾  , where 𝑦𝑘 ∈ (0, 𝑇). 

At this point, the probability density can be written 

down function as 
 

𝑓(𝑦𝑘|𝑑, 𝜔) = 𝑤ℎ0 (𝑦𝑘 −
2𝑑

𝑐
) + (1 − 𝜔)𝑈(0,𝑇)(𝑦𝑘),       (5) 

 

where 𝑑 is the separation between the surface being 

viewed and the reconstruction imaging system, 𝑐 

represents the median of the speed of light, 𝜔 denotes 

the likelihood that the photons that were released 

from the laser source, reflected off the target, and then 

returned to the photon detector are related to the 

recorded ToF values. It can alternatively be 

understood as the pixel's signal-to-background ratio 

(SBR), which is influenced by the background level 

and target reflectance. ℎ0  is the normalized 

instrumental response function (IRF). The 

background distribution is noted as  𝑈(0,𝑇). The joint 

probability distribution would be 
 

 𝑓(𝑦|𝑑, 𝜔) = ∏ 𝑓(𝑦𝑘|𝑑, 𝜔)𝑘          (6) 

2.3 Cross-Correlation 

Cross-correlation is a common method used in 

LIDAR ranging. The normalized waveform template 

is denoted as 𝑁𝑝(𝑡𝑘), and the measured waveform 

signal is 𝑁0(𝑡𝑘) . The cross-correlation value of 

𝑁𝑝(𝑡𝑘)  and 𝑁0(𝑡𝑘)  at the time slot k is 𝐶𝑜𝑟(𝑡𝑘) . 

Initially, the shorter sequence 𝑁𝑝(𝑡𝑘) is zero-padded 

on the left starting point to make the new sequence 

𝑁𝑝𝑒(𝑡𝑘) have the same length as BB. The expression 

for cross-correlation then becomes  
 

𝐶𝑜𝑟(𝑡𝑘) = ∑ 𝑁𝑝𝑒(𝑡𝑖)𝑁0(𝑡𝑖)
𝑀
𝑖=1  ,         (7) 

 

where 𝑀  represents the number of time slots 

occupied by the measured waveform signal 𝑁0(𝑡𝑘). 
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The time slot position corresponding to the 

maximum value of the cross-correlation 𝐶𝑜𝑟𝑇(𝑡𝑘) is 

the approximate location 𝐷𝑖  of the target flight time 𝐷, 
 

𝐷𝑖 = argmax
𝑡𝑘

[𝐶𝑜𝑟𝑇(𝑡𝑘)]               (8) 

 

To obtain a more refined distance 𝐷, this paper 

calculates the difference between the centroid 𝑃1 of 

the waveform 𝑁0(𝑡𝑘)  in the interval [𝐷𝑖 −
𝑃𝑤

𝜏
, 𝐷𝑖 +

𝑃𝑤

𝜏
]  and the centroid 𝑃2  of the normalized pulse 

template 𝑁𝑝(𝑡𝑘)  in the interval [0 −
𝑃𝑤

𝜏
, 0 +

𝑃𝑤

𝜏
] for 

the flight time values, 
 

𝐷0 =
𝜏

2𝑃𝑊
 ∑ 𝑖𝑁0(𝑡𝑖) −

 𝐷𝑖+
𝑃𝑤

𝜏

𝑖=𝐷𝑖−
𝑃𝑤

𝜏

𝜏

2𝑃𝑊

∑ 𝑖𝑁0(𝑡𝑖 − 0)
 
𝑃𝑤

𝜏

𝑖=−
𝑃𝑤

𝜏

   (9) 

 

where 𝑃𝑊  is the Full Width at Half Maximum 

(FWHM) pulse width of the echo pulse. 

The final distance estimation for the target, 

denoted as 𝑑, can be given by: 
 

 𝑑 =
𝐷0𝑐

2
 ,                           (10) 

 

where 𝑐 represents the speed of light. 

3 RT3D 

J. Tachella et al. introduced a computational 

framework, referred to as the RT3D algorithm, which 

is accomplished by combining highly scalable 

computational techniques from the computer 

graphics field with statistical models. The algorithm 

uses photoactivated localization microscopy (PALM) 

as the general structure while calculating steps for the 

proximal gradient on background variables 𝑏 , blocks 

of depth variables 𝑡, and intensity variables 𝑟. Every 

update starts with a gradient step that looks like 

equation (6) and is based on the log-likelihood term 

𝑔(𝑏, 𝑡, 𝑟) . After that, there is a denoising step. 

Precisely, using spheres as local primitives, the 

algebraic point set surfaces (APSS) algorithm fits a 

smooth continuous surface to the point set described 

by the depth variable t in real-world coordinates. The 

intensity variable 𝑟 in real-world coordinates uses a 

manifold metric defined by the point cloud. All points 

are processed in parallel, considering local 

correlations only, and removing points with 

intensities below a given threshold after the denoising 

step. The proximal operator for the background 

variable 𝑏 is replaced by a denoising technique based 

on the fast Fourier transform.  

3.1 Ensemble Method 

The Ensemble Method, as described by Drummond et 

al., is a Bayesian approach that allows for 

simultaneous relative distance measurement and 

surface recognition, quickly delivering conservative 

prior uncertainty. The method depends on the 

discretization of 𝜔, which has a limited capacity to 

accept values. It is possible to reframe the surface 

detection problem, thanks to this discretization, as a 

hypothesis testing problem. At the same time, the 

method redefines the distance estimate problem as a 

set estimation problem. As a result, this approach is 

called the Ensemble Method. This approach yields 

not only a 3D map and a detection map that shows the 

presence or absence of a surface, but also an 

uncertainty map that offers confidence indications for 

the accuracy of the estimated distance, intensity, and 

background profiles. Here, this paper uses the 

algorithm with default parameters, such as a value of 

𝑀 =  30  for 𝜔  and an existence measurement 

probability of 𝜔0  =  0.05.  

4 RESULTS 

The detection objects used for the experiment are 

illustrated in the figures. Figure 1(a) displays a brass 

tube connector, while Fig. 1(b) and (c) showcase 3D 

printed cylindrical objects mounted on a black 

anodized aluminum breadboard, utilized for the three-

dimensional reconstruction experiments of stationary 

targets (Maccarone et al 2023). The brass connector 

has an inner diameter of 15mm and exhibits intricate 

three-dimensional features. In contrast, the 3D-

printed rectangular objects have heights of 10mm, 

20mm, and 30mm, respectively, and possess simpler 

three-dimensional characteristics. Figure 1(d) and (e) 

depict objects used for the three-dimensional 

reconstruction experiments of moving targets. This 

object is attached to a 2-meter-long rail via a 

connector, enabling it to move within a three-

dimensional space. The experiment involved 

submerging the transceiver system and the target 

object in a 1.8-meter-deep water tank. The target was 

placed at a distance of about 3 meters. In the 

experiment, picosecond pulse laser source was used. 

The central wavelength of the laser source is 532 nm, 

great and the operating frequency is 20 MHz. The 

measurements were conducted using the same 

average optical power as specified in Table 1 

(Maccarone et al 2023).  
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Figure 1: Detection objects.  

Table 1: Average optical power.  

Attenuation lengths Concentration of scattering agent Average optical power 

7.5 ± 0.4 0.0046% 52mW 

7.1 ± 0.4 0.004% 47mW 

5.5 ± 0.4 0.003% 32mW 

3.6 ± 0.4 0.002% 22mW 

<0.5 0% 0.96 mW 

   
4.1 Static Scenes 

Three-dimensional reconstruction of the brass pipe 

connector was conducted in a static scene. When 

employing the Ensemble Method, the threshold for 

the surface detection existence probability is set at 

𝑤0  =  0.05 . Points that have a probability of 

posterior existence less than 0.5 are excluded, with 

discarded points being treated as black pixels, setting 

the pixel value to 0. As illustrated in Fig. 2, during the 

three-dimensional reconstruction process  

(Maccarone et al 2023), we aggregated 5000 binary 

frames. All three 3D reconstruction methods 

performed well when the attenuation length was less 

than 0.5AL. However, as the attenuation length 

increased, images obtained from all three methods 

exhibited increased noise and surface loss. Among 

them, the RT3D method showed less noise increment 

but had more pronounced surface loss. This might be 

attributed to the smoothing applied to the depth 

variable 𝑡 and intensity variable 𝑟 during point cloud 

denoising in the RT3D method. The Ensemble 

Method exhibited a more significant increase in noise 

compared to RT3D, as there is no denoising step in 

the Ensemble Method. Overall, the Ensemble Method 

showed fewer point losses at an attenuation length of 

5.5AL and still maintained some denoising effect at 

7.1AL. Hence, in static scenes, the Ensemble Method 

offers superior overall performance in three-

dimensional reconstruction. 

The Ensemble Method is also employed to 

perform three-dimensional reconstruction on 

cylindrical 3D printed objects. Histograms were gated 

in time, focusing the target within a time window of 

400 bins. The finished picture had a gate set between 

0 and 50 mm. There are differences in how many 

binary frames are used to aggregate the histograms. 

The reconstruction results are shown in Fig. 3 

(Maccarone et al 2023). Along the axis, the color 

represents how far away it is from the transceiver. An 

arbitrary origin close to the reference target position 

was used. From the reconstruction results, it is 

evident that when using the Ensemble Method, the 

three-dimensional reconstruction's visual quality 

declines with increasing attenuation length or 

decreasing aggregated binary frame count, making 

the identification of target features more challenging. 

 

Figure 2: 3D profiles at different attenuation lengths using 

different methods. 
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Figure 3: Brass pipe connector 3D profiles with different 

numbers of binary frames using the ensemble method. 

4.2 Dynamic Scenes 

Table 2: Parallel orientation’s average processing time to 

obtain a single image frame (ms) and standard deviation (in 

brackets). 

Attenuation 

lengths 

Cross-

Correlation 
RT3D 

Ensemble 

Method 

<0.5 1.15(0.11) 34.53(1.25) 32.76(1.21) 
0.6 1.42(0.16) 35.34(1.20) 35.78(2.37) 

1.4 1.27(0.19) 32.95(1.53) 33.72(1.92) 

2.5 1.49(0.24) 34.53(1.38) 37.08(2.58) 

3.6 1.20(0.20) 31.34(1.39) 33.05(1.77) 

4.8 0.97(0.18) 28.95(1.18) 29.51(1.32) 

5.5 0.97(0.13) 29.53(1.38) 30.92(0.91) 

6.0 0.93(0.12) 28.54(2.28) 30.12(0.88) 

6.6 0.93(0.12) 28.14(1.44) 29.47(0.81) 

Table 3: Perpendicular orientation’s average processing 

time to obtain a single image frame (ms) and standard 

deviation (in brackets). 

Attenuation 

lengths 

Cross-

Correlation 
RT3D 

Ensemble 

Method 

<0.5 1.27(0.19) 34.67(1.98) 35.23(2.44) 

0.6 1.54(0.19) 36.17(2.80) 37.19(3.11) 

1.4 1.35(0.20) 34.83(1.23) 34.51(3.15) 

2.5 1.65(0.27) 34.86(1.39) 38.56(2.98) 

3.6 1.30(0.15) 32.36(1.74) 34.22(2.28) 

4.8 1.02(0.11) 30.74(1.28) 30.07(1.19) 

5.5 0.96(0.09) 29.55(1.12) 30.7(0.98) 

6.0 0.94(0.09) 28.30(2.77) 20.54(0.9) 

6.6 0.91(0.09) 29.46(4.34) 29.7(0.9) 

 

To investigate the characteristics of real-time online 

three-dimensional reconstruction in dynamic scenes, 

The T-shaped metal connection made of aluminum is 

depicted in Fig. 1(d)(e), and it is chosen as the subject 

of study. The term "parallel direction" refers to the 

axial direction of the connector's connection hole, 

which is parallel to the line of sight of the system. 

Displaying the connector's entire length when 

oriented perpendicular to the parallel direction, which 

is called the vertical direction. In the dynamic scene, 

the experiment aggregated 50 binary frames to 

generate histograms. Gates were used to control the 

histograms, focusing the target within a time window 

of 400 bins. Each pixel was processed in parallel 

using a GPU to ensure the real-time nature of the 3D 

reconstruction. 

Experiments were conducted using the Cross-

Correlation, Ensemble Method, and RT3D methods, 

with the results presented in Tables 2 and 3 

(Maccarone et al 2023). When employing the 

Ensemble Method, a discrete set of w values, 𝑀 = 10, 

was chosen. The code was constructed in a modular 

fashion and delegated to three separate GPU cores for 

processing. The first step involved obtaining the 

posterior probability distribution values, followed by 

normalization, and finally, the results were derived. 

The processing time average for a single image 

frame obtained in the parallel orientation is shown in 

Table 2, and the processing time average for a single 

image frame obtained in the vertical orientation is 

shown in Table 3. The standard deviations for 

different attenuation lengths are provided in 

parentheses. As evident from the tables, the 

processing time for each method decreases with the 

increase in attenuation length. The cross-correlation 

method has a significantly greater processing speed 

than the other two methods. The ensemble method's 

processing time is slightly slower than that of the 

RT3D method. Thus, when the attenuation length 

grows, photons are scattered more widely, which 

leads to a decrease in the number of returned photons. 

Consequently, the generated histograms are sparser, 

leading to reduced processing times. 

The results of three-dimensional reconstruction in 

clear water and target systems with different 

attenuation lengths are presented in Fig. 4 

(Maccarone et al 2023). When the attenuation length 

exceeds 5.5AL, the target becomes unrecognizable, 

but clusters of points can still be obtained. This 

indicates that these methods cannot perform three-

dimensional reconstruction in environments with 

high scattering levels, but they can still track targets. 

On the other hand, as is shown in Fig. 5 (Maccarone 

et al 2023), the Cross-Correlation method can be used 

in low-scattering environments, but it is unable to 

recognize or detect targets in high-scattering 

environments. 

 

a 
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Figure 4: 3D real-time profiles at different attenuation 

lengths using ensemble method. 

 

 

Figure 5: 3D real-time profiles at different attenuation 

lengths using cross-correlation method. 

5 CONCLUSION 

The article presents real-time 3D reconstruction 

technology underwater based on single-photon 

LiDAR, comparing the performance of the Ensemble 

Method, RT3D, and the traditional cross-correlation 

method in waters of varying turbidity, as proposed by 

A. Maccarone et al. The experimental results show 

that in static scenes, all three 3D reconstruction 

methods perform well in water with low attenuation 

lengths, but as attenuation increases, they all exhibit 

more noise and surface loss. Among them, the cross-

correlation method performs the worst; the RT3D 

method has less noise increase but more obvious 

surface loss; the Ensemble Method loses fewer points 

at 5.5AL and still has some noise reduction effect at 

7.1AL, making it the best performer among the three 

methods. The cross-correlation approach was found 

to be much faster than the other two ways in dynamic 

circumstances, with the Ensemble approach being 

marginally slower than the RT3D method. All three 

methods' processing times reduced as the attenuation 

length rose. When the attenuation length exceeds 

5.5AL, none of the methods can perform 3D 

reconstruction, but the RT3D method and the 

Ensemble Method can still obtain clusters of points. 
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