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Abstract: The research delves into the domain of image inpainting, an essential task in image processing with 

widespread applications. Image inpainting holds immense importance in restoring damaged or incomplete 

images, finding utility in photography, video processing, and other fields. The study aims to introduce an 

innovative approach that combines the Contextual Attention Layer, Gated Convolution and SN-PatchGAN 

(GC-PatchGAN) to enhance inpainting outcomes. The methodology incorporates the Contextual Attention 

Layer for strategic borrowing of feature information from known background patches. Gated Convolution 

dynamically selects and highlights pertinent features, leading to a substantial improvement in inpainting 

quality. Extensive experiments were conducted to assess the proposed method, utilizing the Kaggle dataset. 

The results consistently demonstrate exceptional performance across various scenarios, including those 

involving Free-Form masks and user-guided input. Gated Convolution plays a pivotal role in generating high-

quality results consistently. In practical terms, this research contributes significantly to image restoration, 

facilitating the removal of distractions, layout modifications, watermark elimination, and facial editing within 

images. Additionally, it addresses the challenge of irregular objects obstructing landscapes in photographs. In 

conclusion, this study advances the field of image inpainting, holding considerable promise for enhancing 

image quality and editing capabilities across diverse industries reliant on image processing and restoration. 

1 INTRODUCTION 

Natural scenery images possess captivating beauty, 

but images may suffer from many imperfections such 

as object occlusions when people take photos by 

smartphone or professional camera or noise and stains 

on the photo. Aiming to recover damaged images or 

fill missing pixels of a picture, image inpainting, a 

rough task in computer vision, is immensely crucial 

and valuable to restore its unity and make it clear. It 

can be also used to process video streams. Addressing 

the challenge of free-form masks in restoration, 

utilizing the Spectral-Normalized Generative 

adversarial network (GAN) and Patch GAN (SN-

PatchGAN) excels in image generation task, 

requiring the restoration of missing content from 

partially corrupted images rather than simple copy-

paste operations. 

The field of image impaiting has seen major 

breakthroughs over the past decade or so. The 

evolution of techniques has witnessed a blend of 

traditional and deep learning methods. Early 

approaches primarily relied on handcrafted features 

and graphical model, with a focal point on pixel-wise 

classification (Felzenszwalb and Huttenlocher 2008). 

Subsequently, Convolutional Neural Networks 

(CNN) emerged, capitalizing on their ability to 

capture hierarchical features (Krizhevsky et al 2012). 

Fully connected layers have been a pivotal 

component in traditional CNNs for classification 

tasks. Significantly, the work, Context Encoders, 

delved into the notion of feature acquisition via 

inpainting (Pathak et al 2016). This endeavor 

substantially enhanced the comprehension of 

semantics by embracing inpainting as a means of 

feature learning. Recent advancements have veered 

toward fully convolutional networks (FCNs), tailored 

for spatially dense predictions (Long et al 2015). 

Semantic segmentation techniques, such as DeepLab 

and U-Net, have harnessed dilated convolutions and 

skip connections for improved context integration 

and fine-grained boundary delineation (Chen et al 

2018 & Ronneberger et al 2015). While initial 

methods leveraged limited contextual information, 

current state-of-the-art models emphasize contextual 

aggregation through aurous spatial pyramid pooling 
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and non-local blocks (Chen et al 2017 & Wang et al 

2018). These techniques exploit long-range 

dependencies for more precise predictions. However, 

addressing the computational intensity of deep 

architectures remains a challenge. Some approaches 

propose lightweight architectures like mobile 

networks (MobileNets)  to balance performance and 

efficiency (Howard et al 2017). 

The main objective of this study is to tackle the 

issue of traditional convolutions treating missing and 

intact pixels equally, resulting in artifacts around 

edges for arbitrary-shaped missing regions, and to 

improve upon the non-learnable hard gating mask 

characteristic of partial convolutions, so the proposed 

Gated Convolution and SN-PatchGAN (GC-

PatchGAN) is GAN-based model for image 

inpainting. Specifically, first, the contextual attention 

layer has the capability to generate missing sections 

by inferring information from known background 

patches or by replicating feature data from specific 

locations. This layer is suitable for testing the effect 

of generation at different resolutions in deep learning 

due to its differentiability and fully convolutional 

nature. Second, Gated convolution is a study of each 

channel's spatial position, allowing the dynamic 

characteristic option mechanism to intelligently 

highlight crucial features, providing a more precise 

solution for image restoration and processing. 

Interestingly, the visualization of intermediate gating 

values demonstrates its capability to choose features 

based not only on background, masks, and sketches 

but also considering semantic segmentation of certain 

channels. It learns to emphasize mask regions and 

sketch information across various channels in deep 

layer, contributing to improved generation of 

inpainting results. Third, the predictive performance 

of the different models is analyzed and compared. In 

addition, the discriminator in SN-PatchGAN, 

characterized by discrete values aligned with feature 

map dimensions, effectively focuses on image details, 

mitigating noise occurrences in varied shapes across 

the image. This approach offers a solution to the 

problem of noise appearing arbitrarily within the 

image. The experimental findings substantiate the 

paramount importance of gated convolutions, 

revealing its pivotal role in achieving notable 

enhancements in inpainting outcomes. Notably, 

under diverse settings, incorporating user-guided 

input scenarios involving masks of arbitrary shapes, 

gated convolutions consistently excel, showcasing 

their effectiveness in generating high-quality 

inpainting results. The relevance of the research in 

this paper is to be able to solve the problem of 

irregular objects obscuring the landscape in landscape 

photographs. 

2 METHODOLOGY 

2.1 Dataset Description and 
Preprocessing 

The dataset used in this study, called archive, is 

sourced from Kaggle (Dataset). Comprised of a 

diverse collection of high-resolution natural scenery 

images, each image is 720x960 or 960x720 pixels in 

size. It encompasses various landscapes, including 

forests, mountains, lakes, and urban environments. 

This dataset serves as a valuable resource for 

evaluating image inpainting algorithms, allowing for 

the removal of undesirable objects or elements from 

scenic images. To prepare the data for 

experimentation, standard preprocessing techniques 

were applied, including resizing to a uniform 

resolution, noise reduction, and color correction, 

ensuring consistent and high-quality input for the 

inpainting process. 

2.2 Proposed Approach 

The paper introduces GC-PatchGAN for image 

inpainting is to revolves around the innovative 

integration of contextual attention layer, Gated 

Convolution and SN-PatchGAN, with a specific 

emphasis on addressing scenarios involving free-

form masks and user guidance.  This method 

synergistically combines the spatial and contextual 

information enhancement of the Contextual Attention 

Layer, the dynamic feature selection capabilities of 

Gated Convolution, and the effective discrimination 

in inpainting tasks provided by SN-PatchGAN. 

Furthermore, an interactive component allows users 

to incorporate sketches as a form of guidance for the 

inpainting process. These technologies, when 

combined, effectively extract and utilize spatial, 

contextual, and detailed information from images, 

enhancing the overall inpainting performance. Figure 

1 below illustrates the structure of the system. 

 

 

Figure 1: The pipeline of the model (Original). 
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2.2.1 Contextual Attention Layer 

The Contextual Attention Layer is a critical 

component of the model and plays a pivotal role in 

image inpainting. This layer is responsible for 

enhancing spatial and contextual understanding, 

ultimately improving the inpainting process by 

considering spatial relationships and context within 

the image. The layer begins by dividing the 

background region into patches and using them as 

convolution kernels on the foreground area. It then 

calculates cosine distances between foreground 

positions and background patches. Softmax function 

is applied along the channel dimension to compute 

attention values, which weigh the significance of 

various background patches for specific foreground 

positions. Finally, through a deconvolution operation, 

weighted sums of features are computed based on 

attention values, enriching the features for foreground 

positions. This process allows the model to better 

understand the spatial relationships and context 

within the image, resulting in more accurate and 

realistic inpainting results. Overall, the Contextual 

Attention Layer is a crucial module in the model, and 

its ability to enhance spatial and contextual 

understanding is essential for achieving high-quality 

inpainting results. 

2.2.2 Gated Convolution 

The Gated Convolution module is a pivotal 

component in our model, dynamically selecting and 

enhancing relevant features to improve inpainting. It 

introduces gating mechanisms within convolutional 

layers to assess feature importance at each spatial 

location. This adaptability allows it to emphasize 

pertinent information while suppressing less crucial 

details, thereby elevating the overall inpainting 

quality. Integrated into the model's architecture, 

Gated Convolution applies gating functions during 

implementation, dynamically adjusting feature 

contributions based on computed gating values. This 

significantly bolsters the model's ability to improve 

inpainting quality by adaptively highlighting 

contextually relevant features. Additionally, the 

module excels in learning dynamic feature selection, 

even considering semantic segmentation in specific 

channels, enhancing inpainting across various layers. 

Figure 2 below showing the whole structure of Gated 

Convolution described above. 

 

 

Figure 2: The pipeline of Gated Convolution (Original). 

2.2.3 SN-PatchGAN 

The purpose function of vanilla GAN is aim to make 

the generated data distribution as close as possible to 

the real data distribution, contributing to optimize the 

Jensen-Shannon divergence. However, a problem 

arises whereas the discriminator becomes better 

trained, the generator gradients tend to vanish. The 

Spectral Normalization technique introduces 

Lipschitz continuity constraints from the perspective 

of the spectral norm of the parameter matrices in each 

layer of the neural network. This imparts better 

robustness to input perturbations, making the neural 

network less sensitive, thus ensuring a more stable 

and convergent training process. 

PatchGAN is a specific type of discriminator used 

in GAN, which stands for Generative Adversarial 

Network. Unlike a traditional GAN discriminator, 

which produces a single output representing the 

probability that the input is real, PatchGAN produces 

an N×N matrix of probabilities. In this matrix, each 

element corresponds to a small segment of the input 

picture. The final discriminator output is obtained by 

averaging these patch probabilities. This approach 

allows the model to consider the influence of different 

parts of the image, making it particularly useful for 

tasks that require high-resolution and fine-detail 

image generation. PatchGAN's smaller receptive field 

focuses on local image regions, making it more 

suitable for certain image-related tasks. The 

PatchGAN discriminator is trained to distinguish 

between real and fake images. During training, the 

generator produces fake images, and the 

discriminator evaluates them and provides feedback 

to the generator. The generator then adjusts its 

parameters to produce more realistic images, and the 

process continues until the generator produces images 

that are indistinguishable from real ones. PatchGAN 

has been used in a variety of image-related tasks, such 

as image-to-image translation, super-resolution, and 

image inpainting. In image-to-image translation, the 

generator takes an input image and produces an 

output image in a different style or with different 

attributes. In super-resolution, the generator produces 

high-resolution images from low-resolution ones. In 
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image inpainting, the generator fills in missing parts 

of an image. In conclusion, PatchGAN is a powerful 

tool for image-related tasks that require high-

resolution and fine-detail image generation. Its ability 

to consider the influence of different parts of the 

image makes it particularly useful for these tasks, and 

its smaller receptive field makes it more suitable for 

certain image-related tasks. 

2.2.4 Loss Function 

Selecting the appropriate loss function is of 

paramount importance in the training of deep learning 

models. The GC-Patch GAN loss function is a crucial 

optimization function in deep learning. It is defined 

by the provided mathematical expressions for the 

generator loss (𝐿𝐺 ) and discriminator loss (𝐿𝐷𝑆𝑁
). 

L_G focuses on minimizing the discrepancy between 

the generated data and the real data distribution, while 

𝐿𝐷𝑆𝑁
 evaluates how well the discriminator 

distinguishes between real and generated data. These 

loss functions are fundamental in the training process, 

guiding the model towards convergence by adjusting 

the model parameters. 

 

                       𝐿𝐺 = −𝐸𝑧~𝑃𝑧(𝑧)[𝐷𝑆𝑁(𝐺(𝑧))]           (1)                

 

𝐿𝐷𝑆𝑁
= 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑅𝑒𝐿𝑈(1 − 𝐷𝑆𝑁(𝑥))] 

          +𝐸𝑧~𝑃𝑧(𝑧) [𝑅𝑒𝐿𝑈 (1 + 𝐷𝑆𝑁(𝐺(𝑧)))]        (2)                 

 

The above formula denotes the GC-Patch GAN 

loss, where 𝐺 takes incomplete image z with image 

inpainting network, 𝐷𝑆𝑁  represents spectral-

normalized discriminator. Generator 𝐺  and 

discriminator 𝐷𝑆𝑁  are trained simultaneously by 

solving  𝑎𝑟𝑔𝑚𝑖𝑛𝐺𝐿𝐺  and 𝑎𝑟𝑔𝑚𝑎𝑥𝐷𝑆𝑁
𝐿𝐷𝑆𝑁

. 𝐺(𝑧) 

symbolizes the image produced by the generator 

using noise z, while 𝐷𝑆𝑁(𝑥)  signifies the 

discriminator's output when assessing a real image x. 

In formula (1), 𝐸𝑧~𝑃𝑧(𝑧)  denotes the expectation 

taken over the random noise input z to the generator. 

𝑃𝑧(𝑧) represents the probability distribution of the 

noise z, typically a standard normal distribution or 

another predefined distribution.  

In formula (2), 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)  denotes the 

expectation taken over the real data distribution 

𝑃𝑑𝑎𝑡𝑎(𝑥),standing for the probability distribution of 

real images. 𝐸𝑧~𝑃𝑧(𝑧)  denotes the expectation taken 

over the noise distribution 𝑃𝑧(𝑧) , representing the 

probability distribution of the noise input z to the 

generator. [𝑅𝑒𝐿𝑈(1 − 𝐷𝑆𝑁(𝑥))]  : The ReLU 

(Rectified Linear Unit) function ensures that this term 

is zero when 𝐷𝑆𝑁(𝑥) is greater than or equal to 1 (the 

discriminator correctly identifies a real image) and is 

positive when 𝐷𝑆𝑁(𝑥) is less than 1 (the discriminator 

misclassifies a real image). [𝑅𝑒𝐿𝑈(1 + 𝐷𝑆𝑁(𝐺(𝑧)))] 
: the ReLU function ensures that this term is zero 

when 𝐷𝑆𝑁(𝐺(𝑧))  is less than or equal to -1 (the 

discriminator correctly identifies a fake image) and is 

positive when 𝐷𝑆𝑁(𝐺(𝑧))  is greater than -1 (the 

discriminator misclassifies a fake image). 

2.3 Implementation Details 

In the implementation of this project, several key 

aspects were considered. First, in the background, the 

system was developed to address specific challenges 

related to image generation and manipulation. In order 

to enhance the diversity of the training dataset, Data 

modification techniques were applied, including 

operations like rotation, scaling, and brightness 

adjustments. Additionally, hyperparameters, such as 

learning rates and batch sizes, were carefully tuned to 

optimize training performance. These implementation 

details collectively contributed to the success of the 

system in generating high-quality images and 

achieving the project's objectives. 

3 RESULTS AND DISCUSSION 

In the conducted study, a hybrid model consisting of 

GC-Patch GAN is employed to repair high-resolution 

image inpainting tasks from a collection of over 1000 

images with natural scenery. 

Table 1: Comparison of Loss Among Contextual Attention, 

Gated Convolution and GC-Path GAN. 

 Free-Form mask 

Method L1 Loss L2 Loss 

Contextual 

Attention 
0.1821 0.0486 

Gated 

Convolution 
0.1132 0.0197 

GC-Patch GAN 0.0932 0.0145 

 

As can be seen from the Table I, a comparative 

analysis reveals the performance of three distinct 

methods in Free-Form mask image restoration. The 

assessment employs both L1 Loss and L2 Loss 

metrics to gauge result quality. Notably, the 

Contextual Attention method exhibits relatively 

higher values in both L1 Loss (0.1821) and L2 Loss 
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(0.0486). This outcome suggests potential limitations 

in capturing fine-grained details when dealing with 

Free-Form masks, resulting in larger reconstruction 

errors. Consequently, in this specific task, Contextual 

Attention may not be the optimal choice. In contrast, 

both Gated Convolution and GC-Patch GAN methods 

demonstrate lower L1 Loss and L2 Loss values. 

Particularly, Gated Convolution stands out with 

impressive scores, recording 0.1132 for L1 Loss and 

0.0197 for L2 Loss, while GC-Patch GAN exhibits 

even superior performance, with values of 0.0932 for 

L1 Loss and 0.0145 for L2 Loss. 

These findings underscore the enhanced efficacy 

of GC-Patch GAN method in Free-Form mask image 

restoration tasks, as they excel in accurately 

reconstructing missing content. This advantage can 

be attributed to their ability to effectively handle 

Free-Form masks, enabling feature selection and 

highlighting, thus mitigating reconstruction errors. 

Consequently, opting for either of GC-Patch GAN 

can lead to superior restoration outcomes in practical 

applications. 

4 CONCLUSION 

This study has delved into the intricate domain of 

image inpainting, with a specific emphasis on 

tackling the complexities associated with Free-Form 

masks. The proposed methodology, which combines 

the Contextual Attention Layer, Gated Convolution, 

and SN-PatchGAN, offers a comprehensive 

framework to address these challenges effectively. 

The GC-PatchGAN shows impressive improvements 

by allowing to both capture strategic feature 

information borrowing from known background 

patches and selects and highlights relevant features 

which lead to notable enhancements in inpainting 

outcomes. Because of obtaining the continuity of 

image texture, the GC-PatchGAN network can be 

consistent with the overall chararteristics of the 

images. Moreover, the discriminator is enhanced by a 

refined focus on image details, successfully 

mitigating noise irregularities across varying shapes 

within the image. The generator ensures stability 

when training a large number of images, and therefore 

in conjunction with the discriminator can greatly 

reduce the rate of loss. Extensive experiments are 

meticulously conducted to evaluate the proposed 

method, consistently demonstrating its exceptional 

performance in diverse scenarios, including those 

involving Free-Form masks and user-guided input. 

These findings underscore the pivotal role of Gated 

Convolution in advancing inpainting outcomes, 

showcasing its effectiveness in generating high-

quality results. The future research in image 

restoration will further explore the effectiveness of 

image restoration for complex objects in images from 

different scenarios and its applicability to high-

resolution images before super resolution, aiming to 

refine and extend the model's capabilities to address 

an array of challenges within the realm of image 

restoration. 
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