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Abstract: In recent years, cloud-native applications have been widely hosted and managed in containerized environments
due to their unique benefits, such as being lightweight, portable, and cost-efficient. Their growing popular-
ity makes them a common subject of cyberthreats, as evidenced by recent attacks. Many of those attacks
take place due to malicious code injection to breach systems and steal sensitive data from a containerized
environment. However, existing solutions fail to classify malicious code injection attacks that impact mul-
tiple levels (e.g., application and orchestrator). In this paper, we fill in this gap and propose a multi-level
monitoring-based approach where we monitor container activities at both the system call level and the con-
tainer orchestrator (e.g., Kubernetes) level. Specifically, our approach can distinguish between the expected
and unexpected behavior of a container from various system call characteristics (e.g., sequence, frequency,
etc.) along with the activities through event logs at the orchestrator level to detect malicious code injection
attacks. We implement our approach for Kubernetes, a major container orchestrator, and evaluate it against
various attack paths outlined by the Cloud Native Computing Foundation (CNCF), an open-source foundation
for cloud native computing.

1 INTRODUCTION

The use of containers has substantially increased over
the past several years along with their popularity.
According to RedHat’s 2023 report (Redhat, 2023),
97% of IT leaders report seeing business benefits of
cloud containerization technologies, such as Kuber-
netes, Docker, etc. As container technology prolifer-
ates, so does its susceptibility to security threats (Song
et al., 2023; Lee et al., 2023a; Jang et al., 2022). Re-
cent discovery of active campaigns deploying back-
doors/malware in Kubernetes clusters have impacted
over 350 companies, including Fortune 500 firms,
which highlights significant risks of this technology
(Aqua, 2023). Docker containers, a frequent target
for code injection, e.g., crypto mining exploits (Cuen,
2018), and compromises in Docker Hub (Docker-
Hub, 2022) further emphasize the gravity of security
breaches in container technology.

Malicious code injection poses a severe threat to
containerized environments (VS et al., 2023; Wong
et al., 2023), enabling attackers to compromise data

privacy, disrupt operations, or exploit containers for
additional attacks. Attackers exploit application code
vulnerabilities to introduce malicious code, exem-
plified by our simulated research scenarios in sec-
tion 3.3. To make things worse, the dynamic and elu-
sive nature of containers complicates detecting and
preventing such injections, impeding timely detec-
tion, especially when attackers gain access to the host
system. Moreover, the diverse access routes provided
by containers challenge conventional detection sys-
tems, hindering swift response.

The existing works (e.g., (Abed et al., 2015; Cas-
tanhel et al., 2021; Cavalcanti et al., 2021; Brown
et al., 2022; Lee et al., 2023b)) on detection of ma-
licious code injection faces the following challenges:

• Containers offer a broad attack surface, presenting
ample opportunities for malicious code injection
at various levels (e.g., application, orchestrator).
Existing works lack comprehensive monitoring of
these container levels (Fig. 1).

• To counteract malicious code injection, leverag-
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ing system call analysis proves to be promis-
ing(Abed et al., 2015; Castanhel et al., 2021;
Cavalcanti et al., 2021). Current solutions use a
generic syscall-based approach to tackle myriads
of attack pathways. However, because each attack
is unique, each of these require a specialized de-
tection mechanism. Thus, existing solutions fall
short (in trying to effectively counter all the at-
tacks with one generic syscall-based approach).

• During malicious code injection, not all system
calls are equally important for analyzing anoma-
lous behavior, and many of these can be identified
harmless (Castanhel et al., 2021). If we filter out
these unnecessary system calls, attack detection
will be more effective.

Figure 1: Proposed method to monitor different levels of
container through different monitoring tools.

In this paper, we propose a synergistic blend
of varying methods for monitoring containers in a
multi-level fashion, considering both container level
logs (syscalls), as well as orchestrator-level event
logs to counteract the multi-path nature of these at-
tacks, as seen in Figure 1. Focusing on various con-
tainer levels, our work provides multiple detection
mechanisms since malicious code injection can take
place at different levels of container for distinct at-
tack pathways. We propose deploying a specialized
container within the Kubernetes environment dedi-
cated to implementing our approach for detecting ma-
licious code injections. This complements existing
ML-based approaches by adding new methods (like
using frequency and orchestrator-level monitoring) to
detect malicious code injection, enhancing the ca-
pability to identify attacks occurring along various
paths. Leveraging attack paths outlined by the Cloud
Native Computing Foundation (CNCF) Finance User
Group (Lancini, 2020), we employ scenarios relevant
to container deployment with Kubernetes orchestra-
tion, encompassing numerous potential routes for ma-

licious code injection. Our main contributions are:
• We are the first to propose a multi-level (e.g.,

application, operating system and orchestrator)
monitoring approach which enables more robust
detection of malicious code injection where the at-
tacks can only be identified by checking container
activities at multiple levels.

• In our analysis of malicious code injection attacks
on container behavior, specifically focusing on
key stages outlined in the CNCF framework, we
delve into critical factors like syscall frequency
and sequence. This comprehensive examination
encompasses various routes for a broad spectrum
of malicious code injection attacks. To enhance
the efficiency of our solution, we categorize a
key group of system calls that exhibit substantial
changes during an attack, utilizing frequency as a
filtering mechanism to exclude irrelevant system
calls and better detect malicious activity.

• We implement our solution for Docker and Kuber-
netes (the most popular choices for containeriza-
tion) and evaluate its effectiveness using the pro-
posed attack paths in CNCF Finance User Group
(CNCF, 2022) in comparison to existing works
(Abed et al., 2015) and (Castanhel et al., 2021).
We achieved a F1 score of 98.2%(Fig. 6b) and a
recall score of 99%(Fig. 6a).
The rest of the paper is organized as follows. In

Section 2, we discuss some existing works on con-
tainer security. Section 3 presents the details of our
proposed solution. Section 4 contains our implemen-
tation setup and dataset handling. In Section 5, we
discuss the outcome of our experiment. Then in Sec-
tion 6 we discuss the validity and reliability of our
study. Finally, we conclude the paper in Section 7.

2 BACKGROUND AND
LITERATURE REVIEW

Background. Container: Containers enable multiple
instances of a program to run on a single host OS by
sharing its kernel, providing separated user space, file
system, and network stack, resulting in lightweight
and efficient virtualization using portable images.

OS Level Virtualization: Multiple microservices
may be deployed on a single server thanks to vir-
tualization, which also offers cost savings, resource
efficiency, and scalability. Due to its benefits over
VMs, such as lightweight, fast, easy to deploy, effec-
tive resource usage, and support for version control,
container-based virtualization stands out as the best
choice for microservices (Sultan et al., 2019).
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System call: User space applications can seek ac-
cess to OS services by making system calls. The “ker-
nel namespace isolation” feature of container systems
enables containers to have its own environment, as-
suring isolation and security. The Seccomp (Secure
Computing Mode) (Docker, 2022) feature of con-
tainer runtimes limits system calls to combat attacks
that use system call vulnerabilities.
Existing works. Brown et al. (Brown et al., 2022)
use system calls in a performant model such as a ran-
dom forest which allows fast, accurate classification
in certain situations. Abed et al. (Abed et al., 2015)
advocate a host-based intrusion detection solution for
Linux containerized systems. Cavalcanti, Inácio, and
Freire (Cavalcanti et al., 2021) propose a container-
level anomaly-based intrusion detection system for
multi-tenant applications using machine learning al-
gorithms. Lin et al. (Lin et al., 2018) curate a dataset
of attacks targeting the container platform, categoriz-
ing them using a two-dimensional attack taxonomy
and assessing the security of Linux container technol-
ogy with common attacks. Chelladhurai et al. (Chel-
ladhurai et al., 2016) address Docker container secu-
rity challenges, while Tunde et al. (Tunde-Onadele
et al., 2019) propose a detection mechanism based on
the frequency of selective system calls. These works
cover various attack types, including SQL injection,
system user privilege escalation, authentication cir-
cumvention etc. While they employ a common so-
lution using syscall sequences, our work introduces
attack-specific detection methods.

Yarygina et al. (Yarygina and Otterstad, 2018)
propose a cost-conscious intrusion response system
for microservices utilizing a game-theoretic method
to respond to network threats in real time. Thanh
Bui’s (Bui, 2015) research focuses on Docker’s in-
ternal security and its interactions with Linux kernel
security features. Souppaya et al. (Souppaya et al.,
2017) discuss security issues related to container us-
age and provide suggestions for resolution. Sarkale,
Rad, and Lee (Sarkale et al., 2017) suggest a secu-
rity layer using the Most Privileged Container (MPC).
Lee et al. (Lee et al., 2023b) analyzes attack scenarios
based on attack cases by malicious code, and surveys
and analyzes attack techniques used in attack cases.
While these works offer insights into container secu-
rity measures, none of them implements and evalu-
ates their methodologies using performance metrics
or specifically addresses attack signatures, making it
challenging to confirm their effectiveness, unlike our
approach. Castanhel et al. (Castanhel et al., 2021) and
Hofmeyr and Somayaji (Hofmeyr et al., 1998) work
on detecting anomaly using sequence of system calls
and different machine learning algorithms. They do

not work on any particular attacks that can finally lead
to malicious code injection.

While there are works unrelated to container-
ized environments, such as (Kuang and Zulkernine,
2008)’s intrusion-tolerant approach for Network In-
trusion Detection Systems (NIDS), and DIGLOS-
SIA (Son et al., 2013) for code injection threat
detection, their solutions can be adapted for con-
tainer use. Kuang and Zulkernine focus on mak-
ing NIDS intrusion-tolerant with independent com-
ponents, while Son et al.’s tool, although effective,
is implemented in a non-containerized environment,
seperating it from our container-centric approach.

3 METHODOLOGY

This section describes our proposed method to detect
malicious code injection by monitoring multi-level
container activities.

3.1 Approach Overview

As illustrated in Figure 2, we streamline the entire
process of monitoring container activities into two
stages: pre-training, and runtime detection and moni-
toring. The pre-training phase involves the simulation
of both benign and malicious behavior through di-
verse attack scenarios. By scrutinizing changes in the
generated logs from both the container and orchestra-
tor, we obtain valuable pre-training knowledge. This
knowledge helps us in the later stage to perform effi-
cient detection of code injection attacks. Throughout
both of the stages, we leverage the following three
detection mechanisms: log file analysis, syscall fre-
quency assessment, and syscall sequence evaluation.

In the log file-based pre-training (Method 1),
we identify crucial events (1a) and monitor their
significance (1b). For frequency-based pre-training
(Method 2), we collect system call frequencies (2a),
identify impactful calls (2b), and establish standard-
ized frequencies (2c). Finally, in sequence-based
pre-training (Method 3), we gather syscall sequences
(3a), filter unnecessary parameters (3b), and cre-
ate standardized sequences using the Bag of System
Calls (BoSC) technique (3c). Individual pre-training
knowledge is extracted from each of these three meth-
ods.

During detection and monitoring phase, a mon-
itor is deployed as a separate container, incorporat-
ing this pre-training knowledge alongside the current
state of the cluster. Here, for log file based detec-
tion (Method 1), we event profiling to detect RBAC
attacks (1c). For frequency based detection (Method
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Figure 2: Overview of our proposed approach.

2), we employ impactful syscall frequencies for XSS
attacks (2d). And lastly for sequence-based detection
(Method 3), we use the Standard Sequence Set (SSS)
to detect CSRF and SQLi attacks (3d). As each de-
tection method specializes in a distinct class of at-
tacks, their outcomes are aggregated to conclusively
detect the presence or absence of an attack. This en-
tire approach aids analysts in determining the neces-
sary course of action by detecting code injection at-
tacks from multiple facets. The subsequent sections
elaborate on various decisions made as foundation of
the solution.

3.2 Modeling Benign Behavior

Our approach in detecting malicious code injection at
first involves figuring out the usual frequency of be-
nign activities in order to create benign profiles. This

is accomplished by building a comprehensive train-
ing set that combines malicious and benign data. This
comprehensive dataset serves as the foundation for
model training and identifying trends in system calls
linked to both benign and malicious activity.

Crucial to our approach is the determination of the
top k influential system calls (2a). Based on the fre-
quency transitions between benign and malicious ac-
tivity, we evaluate these system calls (2b). Because
these transitions are dynamic, we may identify im-
portant system calls that show notable differences in
their frequency patterns when they move from benign
to malicious states.

We take advantage of the average frequency seen
in both malicious and benign components to set effec-
tive thresholds for each system call. We can compute
upper and lower bounds for the threshold values due
to this dual consideration. As shown by 2(c) in Figure
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2, we improve the accuracy of our detection methods
by including these upper and lower constraints in our
analysis.

In Step 3(c) of Fig. 2, we conduct benign pro-
file editing to capture both standard and malicious
sequences of system calls. The standard sequence
represents the system calls when a user visits a nor-
mal profile, while the malicious sequence portrays
the system calls when an attacker injects something
malicious into their profile, and a normal user subse-
quently gets attacked. Employing the Bag of System
Calls (BoSC) and sliding window techniques (Abed
et al., 2015), we extract sliding windows from the
complete list of system calls, ranging in length from
two to ten. The resulting frequency list, exempli-
fied as [0,1,1,1,0,0,0,0,1,2,2,0,0,0,0,0,1,0,0,1]
for 20 system calls, is generated by listing the fre-
quency of each system call in order. A new sequence
is created by sliding one window of system calls, and
if not already produced, its frequency list is added to
our unique bag of sequences, disregarding duplicates.

Another approach of our methodology is to in-
clude data of important events happening in container
through Kubernetes dashboard. The log of all API
requests made to the master node is tracked by this
Kubernetes dashboard. Kubernetes-entrypoint makes
direct queries to the Kubernetes API. Consequently,
all information related to an API request, including
the content of the response and the service account
token used for the request, is recorded in the Kuber-
netes log file (shown in 1(a) and 1(b) of Fig. 2). Later
on, these recorded contents are utilized to determine
whether or not a service account made an unautho-
rized API request.

Finally, we record the names of all system calls
made by a user who does not have root access to
a container. We consider this to be a list of com-
mon system calls performed by non-root users. We
carefully follow the procedures described in this sec-
tion in order to create a benchmark. Every system
call that has been detected is examined for its fre-
quency of occurrence and its sequence under benign
conditions. Through this procedure, a baseline un-
derstanding of the normal behavior displayed by non-
root users in the container environment may be cre-
ated. Now that we have this baseline, we can turn our
attention to proactively detecting possibly malicious
activity. We can now identify irregularities from the
predetermined benchmark by analyzing system calls
made inside the container. We then utilize this bench-
mark to identify the injection of malicious code into a
container.

For the additional assessment that simulates be-
nign behavior, we improve the frequency-based

(a) SQL injection Attack.

(b) XSS attack.

(c) CSRF attack

(d) RBAC attack.
Figure 3: Attack paths of SQLi, XSS, CSRF and RBAC.

analysis by incorporating event-number and event-
timestamp information for every system call. The
goal of this integration is to distinguish between nor-
mal high-workload situations and possible security
breaches. During this assessment, we meticulously
monitor the disparity in timestamps between succes-
sive system call events, as well as the difference in
event numbers. Specifically, if the event-number dif-
ference between two consecutive events is notably
high, yet the timestamp difference remains signifi-
cantly low, we interpret this pattern as indicative of
a potential security attack. With this method, we can
quickly spot anomalous trends in system call activity.
We are able to identify and address possible security
issues by concentrating on scenarios in which there
is an anomalous surge in the difference between the
event numbers while keeping the timestamps reason-
ably small.

3.3 Simulating Attacks

In this section, we are going to simulate four differ-
ent attacks which finally result in malicious code in-
jection in container. Each of these attacks represents
different attack paths presented in Fig. 3.
Attack Overview. We identify four distinct attack
paths provided by CNCF that ultimately lead to ma-
licious code injection. These paths include SQLi
(Fig. 3a), XSS (Fig. 3b), CSRF (Fig. 3c), and RBAC
(Fig. 3d). These attacks are simulated using SEED-
LABS 2.0 (SeedLab, 2022), with the exception of
RBAC, which follows a custom implementation.

For these alternative attack pathways, we simu-
late various attacks using a social networking plat-
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form from SEED-LABS 2.0 for XSS and CSRF, and
a company website for SQLi. The social platform al-
lows users to edit profiles, view others’ profiles, and
send friend requests. Meanwhile, the company web-
site, deployed with two containers, enables employ-
ees to view and modify certain profile fields.
CSRF Attack. This attack is done using malicious
code injection that follows the path shown in Fig. 3c.
The attack scenario is combining a malicious con-
tainer that contains elements that are malicious, like
malicious image, with a benign social networking
website. Because it makes it possible to take advan-
tage of vulnerabilities in the benign container, this in-
tegration is essential to the attack’s success.

When a person visits the compromised website,
the malicious code injection is especially designed to
alter their profile without their knowledge or agree-
ment. The attack mechanism involves a concealed
POST request directed towards the benign container
encapsulated within the image of the malicious con-
tainer. Under the pretense of legitimate traffic, this
covert communication enables the malicious code that
has been inserted to interact with and modify the
user’s profile on the benign website. The subtle nature
of Cross-Site Request Forgery (CSRF) attacks is il-
lustrated by the attacker’s ability to successfully carry
out unauthorized modifications to the user’s profile by
taking advantage of the trust that has been formed be-
tween the user and the compromised container (seed-
labs 2.0, 2022a).
XSS Attack. To carry out this attack, the attacker uses
malicious code injection by following the path that is
marked out in Fig.3b. By placing a malicious script
on the attacker’s profile, the attack’s method entails
infecting a benign website and gaining control over
the profiles of other users. An essential component of
this attack is the intentional alteration of the targeted
user’s profile without their awareness, which occurs
when the user visits the attacker’s profile page. By
carefully modifying their own profile, the attacker in-
serts malicious code into the material linked to their
profile page on the trustworthy website.

When other users interact with the compromised
profile, the injected code acts as a vector to spread
the attack. By use of this deceptive distribution of
malicious content, the attacker manages to subtly alter
other users’ profiles, so extending the attack’s reach
throughout the benign website(seed-labs 2.0, 2022b).
SQLi Attack. Executed through malicious code
injection as depicted in Fig.3a, this attack method
hinges on exploiting vulnerabilities via SQL injec-
tion (SQLi). To manipulate the database tables, the
attacker strategically utilizes the login page to insert
a malicious SQL query. A crucial prerequisite for the

effectiveness of this attack is the attacker’s prior fa-
miliarity with the database table structure, allowing
them to craft a query that exploits potential weak-
nesses. Through the login page, the attacker gains
access to the system and uses the input fields to insert
a carefully crafted SQL query. If successful, this in-
serted query modifies the underlying database tables,
which may allow for illegal access, the retrieval of
data, or even the change of data(seed-labs 2.0, 2022c).
RBAC Attack. Executed through malicious code in-
jection along the path illustrated in Fig. 3d, this attack
method leverages a service account endowed with the
privilege, or role, of generating containers within the
kube-system namespace. This simulation emulates
a Role-Based Access Control (RBAC) attack against
Kubernetes, highlighting vulnerabilities that may be
exploited by adversaries. Once a container is suc-
cessfully created in the master node under the dis-
guise of the privileged service account, the attacker
gains the opportunity to inject a malicious workload
into the container. This specific attack presents a seri-
ous security concern since the malicious container has
access to every service account in the kube-system
namespace. With that much access, the malicious
container might potentially jeopardize the privacy of
critical data by stealing credentials from different ser-
vice accounts in the kube-system namespace. This
unauthorized access puts the entire security posture
of the Kubernetes system at serious risk by enabling
the attacker to stealthily gather and exploit vital cre-
dentials (Gerzi, 2022).

3.4 Differentiating Malicious Code
Injection from Benign Activities

We set a baseline for system call frequency during
usual activities, including profile visits, in the ini-
tial phase of our study. The subsequent detection of
anomalies process used this baseline as a point of ref-
erence. We have now purposefully included Cross-
Site Scripting (XSS) attacks of varied intensities into
user profiles in order to thoroughly assess our sys-
tem’s resistance to them. The number of modified
fields is changed from one to six, which changed
the attack’s severity. Our detection technique iden-
tifies possible threats by methodically comparing fre-
quency samples obtained during these intentional at-
tacks to our defined normal reference.

Specifically, the activity is flagged as possible
XSS attack if more than 82% of the chosen system
calls exceed our predetermined frequency threshold.
As explained in Step 2(d) of Fig. 2, the crucial thresh-
old of 82% is determined by a rigorous trial-and-error
procedure aimed at attaining maximum recall score.

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

20



Table 1: Definition of sets of system calls for Fig. 5.

Values along X-axis for all subfigures in fig 5
Set Modified Field=1 Modified Field=2 Modified Field=3 Modified Field=4 Modified Field=5 Modified Field=6
S1 write pwrite fdatasync pread write fdatasync
S2 S1+fdatasync S1+write S1+write S1+fdatasync S1+fdatasync S1+write
S3 S2+pwrite S2+fdatasync S2+pwrite S2+write S2+pwrite S2+pwrite
S4 S3+pread S3+fsync S3+fsync S3+pwrite S3+fsync S3+do submit
S5 S4+fsync S4+io submit S4+io submit S4+fsync S4+io submit S4+fsync
S6 S5+io submit S5+sched yield S5+sched yield S5+io submit S5+sched yield S5+io submit
S7 S6+sched yield S6+futex S6+futex S6+sched yield S6+nanosleep S6+sched yield
S8 S7+nanosleep S7+nanosleep S7+nanosleep S7+nanosleep S7+futex S7+nanosleep
S9 S8+futex S8+unknown S8+munmap S8+futex S8+unknown S8+futex
S10 S9+munmap S9+mmap S9+unknown S9+unknown S9+mmap S9+ppoll
S11 S10+unknown S10+munmap S10+mmap S10+mmap S10+munmap S10+recvfrom
S12 S11+mmap S11+sendto S11+sendto S11+munmap S11+ppoll S11+munmap
S13 S12+mprotect S12+recvfrom S12+recvfrom S12+ppoll S12+recvfrom S12+unknown
S14 S13+sysdigevent S13+io getevents S13+io getevents S13+recvfrom S13+sendto S13+sendto
S15 S14+io getevents S14+ppoll S14+ppoll S14+sendto S14+io getevents S14+mmap
S16 S15+sendto S15+getrusage S15+getrusage S15+io getevents S15+getrusage S15+io getevents
S17 S16+recvfrom S16+sched getaffinity S16+sysdigevent S16+mprotect S16+sched getaffinity S16+pread

(a) Frequency vs. attack severity.

(b) Sequence of system call vs. bag size.
Figure 4: Performance metrics for two different proposed
methods.

Selecting the 82% threshold is essential to guaran-
teeing precise detection of malicious activities. Ad-
justing this setting involves finding a balance: al-
though a lower threshold could cause benign behav-
ior to be mistaken for malicious activity, a higher
threshold would increase precision at the expense of
the system’s capacity to recognize subtle attacks. As
such, we recognize that this threshold is application-
dependent and may have an effect on the overall per-
formance of the system. Changing this threshold af-
fects the system’s capacity to distinguish between be-
nign and malicious activity, so it’s not just a matter
of preference. The 82% level was selected after thor-
ough consideration in order to maximize the system’s
capacity to correctly detect XSS assaults while low-
ering the possibility of false positives. This degree
of flexibility is essential to guaranteeing our system’s
efficacy in a variety of usage scenarios and threat en-
vironments.

Our approach uses unique sequences from benign
profile modifications in Step 3(d) of Fig. 2 to provide
a baseline for system calls. More specifically, we use
methods like sliding window and Bag of System Calls
(BoSC) techniques to produce system call sequence
samples during the simulation of a Cross-Site Request
Forgery (CSRF) attack. We use a strict criterion to
distinguish between benign and harmful actions: be-
haviors that match the established benign reference
by more than 80% are considered benign, while those
that fall short of this threshold are classed as pos-
sible malicious. During CSRF attack simulations,
this method guarantees a stable and flexible system
that can recognize and classify system call sequences
with accuracy. In order to simulate a more sophisti-
cated threat, specifically a SQL injection (SQLi) at-
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tack, it is required that the attacker has root access
and database knowledge. We compare system calls
made throughout sessions with a retrained root user
to closely examine variances in order to identify po-
tential breaches and unauthorized image insertions in-
side the container. During these sessions, any de-
viations or anomalies from the standard system call
sequences are important indicators of any security
lapses, demonstrating the system’s capacity to iden-
tify and counteract SQLi attacks.

Monitoring the activity of each pod through the
Kubernetes dashboard involves utilizing the Sec-
comp (Kubernets.io, 2022) tool located in the kube-
system namespace on the master node. This tool gen-
erates log files that meticulously record the various
requests made to a pod, including operations such as
GET and POST. The primary purpose of these logs is
to facilitate the swift identification of suspicious ac-
tivities, with a particular emphasis on detecting any
attempts to access or inject unauthorized content into
a pod, especially when operating within the default
namespace. This process aligns with Step 1(d) of the
overarching framework depicted in the corresponding
figure. (Step 1(d) of Fig. 2).

4 IMPLEMENTATION

This section describes the implementation details of
our solution.
Implementation Setup. Our Docker containers are
running on the host operating system seed-Ubuntu
20.04. Minikube v1.28.0 (minikube, 2023) is uti-
lized to deploy our containers in Kubernetes. With
the help of Minikube, we can show Kubernetes on a
local computer. We had to generate our own dataset
for each of the attack, because there is no dataset that
contains the system calls made a container following
our attack pathways.
Dataset Generation and Pre-processing. We use
Sysdig (Sysdig, 2022) for system call frequency, pro-
viding comprehensive container information updated
every second after a simulated attack. For system
call sequence, we employ strace (Kerrisk, 2022), log-
ging newly created calls during any container activ-
ity. Minikube Dashboard aids RBAC attack data col-
lection, offering detailed container information. The
dashboard logs Kubernetes API requests, and Sec-
comp (Kubernets.io, 2022) (Docker, 2022) generates
log files automatically on the master node and pods.
Python v3.10.1 is used for data pre-processing, cap-
turing frequency data for benign and malicious ac-
tions. Focusing on approximately twenty system calls
with a significant deviation from normal behavior, we

filter out extraneous data from strace and sysdig tools,
including system calls’ arguments, timestamps, and
other details, for both frequency and order of syscalls.

5 EXPERIMENTS & RESULTS

This section presents our experimental results.
Detection Using Frequency. The detection tech-
nique’s performance improves with the intensification
of the attack, increasing the malicious workload from
infecting one to six fields (as shown later). Fig. 4a
illustrates that performance metrics (accuracy, preci-
sion, recall, and f1 score) increase as the number of
infected fields grows, indicating improved detection
as attack severity rises. We limit our attack severity to
infecting six fields since our detection method consis-
tently performs well under these conditions. Fig. 4a
is derived from the top k system calls, determined by
their percentage change from benign to malicious ac-
tivity, showcasing significant shifts with varying at-
tack intensity. Six graphs correspond to different
workload lengths, and values along the X-axis are ex-
plained in Table 1.

Inference from Fig. 5a suggests optimal perfor-
mance up to set S6 for all metrics. System calls like
io submit, sched yield, and nanosleep are identi-
fied as reducing the effectiveness of frequency-based
detection. The same inference applies to the remain-
ing five graphs. The top ten to twelve most significant
system calls, demonstrating regular frequency, are se-
lected to build the graph in Fig. 4a.

For the second experiment, we mainly use the sys-
tem calls write, fdatasync, and io submit in or-
der to distinguish between high workload and an at-
tack. We selected these three because, according to
Table 1, they alter the most significantly over the
attack severity range of 1 to 6. We run our appli-
cation 120 times while injecting malicious code via
XSS attacks during half of them. We perform vari-
ous tasks, such as profile view, friend request, direct
message, timeline post etc. Through behavioral as-
sessment, we find that during malicious code injec-
tion, the event number difference between consecu-
tive events exceeds 40,000, while their time difference
remains below 9,99,999 microseconds. It’s important
to note that these data may vary between different sys-
tem calls. However, in our scenario, this criterion ef-
fectively identified 52 out of 60 malicious operations
and 47 out of 60 benign activities for these three sys-
tem calls. This minimal detection mechanism works
well when syscall frequencies become uniform dur-
ing heavy workloads, aiding in distinguishing XSS
attacks alongside frequency-based detection.
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(a) Attack severity=1. (b) Attack severity=2.

(c) Attack severity=3. (d) Attack severity=4.

(e) Attack severity=5. (f) Attack severity=6.
Figure 5: Finding key group of system calls for different intensity of attack.

Detection Using Sequence. When an XSS attack oc-
curs within a container, we have employed the BoSC
approach in our experiment. We have experimented
with various bag sizes to find the smallest bag yet it
provides the greatest performance scores. In our ex-
ample, we see a sharp decline in the efficacy of our
detecting method as we increased bag sizes. In light
of our findings, a bag of size between two and six is

advised. Many combinations are possible if the bag
size is more than six. It is thus exceedingly challeng-
ing for our method to discern between legitimate and
malicious activities in a container. Also, the higher
the bag size, the longer it takes for our suggested tech-
nique to determine whether a given activity is benign
or malevolent (Hofmeyr et al., 1998). Fig. 4b shows
the result of the performance metrics of detection us-
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(a) Comparing recall score. (b) Comparing F1 score.
Figure 6: Comparison with (Castanhel et al., 2021; Cavalcanti et al., 2021).

ing sequence.
Detection Using Event Logs. We continually mon-
itor each pod’s condition in the master node using
Minikube Dashboard. For our RBAC attack, where
a Kubernetes API request is made to the master node,
we inspect event logs of the kube-apiserver pod in the
kube-system namespace (Kubernetes, 2023). Our fo-
cus is on the type of API request, the service account
token making the request, and the response content.
By analyzing these factors, we determine the API re-
quest’s privilege. If it is privileged but the service ac-
count token belongs to the default namespace, we flag
it as suspicious.

To validate our results, we compare them with
prior research, assessing their performance against
our own. Fig. 6a and Fig. 6b illustrate this compari-
son. In our case, a bag size of 2–10 yields satisfactory
performance metrics. Unlike other studies, our per-
formance metrics decline as the bag size increases.
This finding is significant; excessively decreasing the
bag size limits the variety in our standard sequence,
impairing our detection technique, while increasing
the bag size above 10 escalates computing costs.

6 DISCUSSION

Threats to Validity. Recognizing and examining any
risk that might compromise the validity of our re-
search and affect the dependability and applicability
of our findings is crucial. One notable threat to inter-
nal validity is the possibility of mixing up malicious
activity with high workload in case of using frequency
to detect malicious code injection. To mitigate this,
we conduct another assessment that is described in
the last paragraph of section 3.2. Another threat can

be considering unnecessary system calls that may de-
grade the performance of our detection mechanism.
We address this issue by identifying key group of sys-
tem calls which is shown in Fig. 5
Scaling for Larger Cloud Workloads. Giving care-
ful thought to scaling our solution for bigger cloud
environments is important. Since the scope of our
study was limited, we had to rely on using a smaller
cluster built on Minikube. But an organized strat-
egy is needed to extrapolate our findings to bigger
cloud infrastructures. Our solution’s scalability de-
pends on effective resource allocation, reliable com-
munication protocols, and load balancing techniques.
Subsequent studies should focus on refining these el-
ements to guarantee smooth scaling.
Considering Other Threats. Our approach is ef-
fective against Cloud Native Computing Foundation
(CNCF) threats, but it is also flexible and resilient
to different threat environments. Since our solution
includes analyzing log files from Kubernetes dash-
board, any suspicious activity in master node by a user
in default namespace can be detected. Moreover, it
is evident from previous research work ((Abed et al.,
2015)) that BoSC technique is not limited to detect
only malicious code injection in containerized envi-
ronment.
Platform Independence. A key component of our
solution’s broad use is making sure that it can be
transferred to other containerized environments as
well. While our study focuses on a specific container
orchestration platform (e.g., Kubernetes), methods
that are used in our study can be mapped to other con-
tainer orchestration tools like Red Hat OpenShift(Hat,
2023), Docker Swarm(Docker, 2023), etc. The only
requirement is that these orchestration tools allow
runtime monitoring of log files by collection of var-
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ious information. As we collect system call parame-
ters (e.g., frequency, sequence) from operating system
level, using frequency and sequence to detect mali-
cious code injection should work irrespective of con-
tainer orchestration tools.

7 CONCLUSION

In this work, we presented an innovative approach
for detecting malicious code injection in container-
ized systems. Our approach makes use of detailed
logs that are sourced from the Kubernetes dashboard,
along with an in-depth examination of the names, fre-
quencies, and sequences of system calls. Our method
helps create a more thorough and reliable detection
system for malicious activity inside of containers by
merging these many information sources.

Superior accuracy was demonstrated by our
method in differentiating between benign and mali-
cious activities. This achievement can be credited to
the careful analysis of system call patterns, which en-
ables us to identify modest but noteworthy deviations
suggestive of possible security risks. By means of
the incorporation of state-of-the-art techniques, our
methodology outperforms current approaches as re-
ported in the literature. Our method’s ability to pin-
point the key system calls linked to malicious activity
is one of its main advantages. Our method not only
improves detection precision by identifying these cru-
cial system calls, but it also offers important informa-
tion about the particular attack vectors that attackers
use.

However, our work has some limitations. While
we focused on known attack pathways leading to code
injection, there may be other methods not considered.
Sequence-based system call detection, especially with
extensive sequences, might face challenges in timely
identifying malicious behavior. We employed the
Kubernetes dashboard for RBAC attacks, but auto-
mated log tracking is essential for future improve-
ments. Moreover, the current threshold establishment
method based on trial and error could be misleading
with a small dataset. Although machine learning tech-
niques were not applied in this work, future research
aims to explore their general applicability, investigat-
ing how parameters impact learning, detection speed,
and accuracy to optimize their values for the intended
use.
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