
Reverse Engineering of Classical-Quantum Programs

Luis Jiménez-Navajas1 a, Ricardo Pérez-Castillo1 b and Mario Piattini2 c

1aQuantum, Faculty of Social Sciences and IT, University of Castilla-La Mancha Talavera de la Reina, Spain
2aQuantum, Information Technology and Systems Institute, University of Castilla-La Mancha Ciudad Real, Spain

Keywords: Reverse Engineering, Quantum Computing, Software Modernization, Qiskit, Knowledge Discovery
Metamodel.

Abstract: Quantum computing has emerged as a crucial technology, which is expected to be progressively integrated into
current, traditional information systems. Society could be benefited from several potential, promising applica-
tions based on quantum computing. To achieve such advantages, this new paradigm will require integrating the
quantum software into the new hybrid (classical-quantum) information systems. Thus, it is necessary to adapt
well-known and validated software engineering methods and techniques, such as software evolution methods
based on Model-Driven Engineering principles. In particular, the proposal of this paper is framed in the Quan-
tum Software Modernization process, and, in particular, it addresses the reverse engineering phase. The main
contribution is a reverse engineering technique that analyses quantum (Qiskit) and classical (Python) code and
builds a common, abstract model that combines both classical and quantum elements. The models are built in
a technology-agnostic manner through the Knowledge Discovery Metamodel. Within this technique, relation-
ships have been established between classical and quantum elements which can help to preserve knowledge
and provide meaningful insights during the evolution toward hybrid information systems. The functioning of
this technique is demonstrated through a running example with a program from the Qiskit Github repository.

1 INTRODUCTION

In recent years, a great number of achievements have
been beheld in the field of quantum computing. This
new technology is leading to promising applications
like the discovery of new drugs (Cao et al., 2018) or
new industrial solutions related to optimization prob-
lems (Bayerstadler et al., 2021) which, if they finally
succeed, will inevitably imply an impact on society.
Furthermore, the various providers of quantum com-
puting have enabled a truly accessible ecosystem for
the development of quantum software which favors
the development of this technology.

Although quantum computing is gaining more
and more importance, software engineering for quan-
tum software should be considered equally important
(Hoare and Milner, 2005). In order to develop high-
quality quantum software in an industrial and con-
trolled manner, it is necessary to adapt the knowledge
and lessons learned from the software engineering
field, so the Quantum Software Engineering (QSE)

a https://orcid.org/0000-0001-6257-7153
b https://orcid.org/0000-0002-9271-3184
c https://orcid.org/0000-0002-7212-8279

approach is essential (Piattini et al., 2020; Serrano
et al., 2022).

Companies that are eager to get benefited from
quantum software, may want to adapt their classi-
cal software systems in order to adopt the quantum
computing paradigm. For example, companies re-
searching the creation of certain materials or pharma-
ceuticals will be forced to adopt quantum software,
since its performance is better than classical software
with these type of problems (Aaronson, 2008). How-
ever, discarding the classical information systems (as
a whole) and migrating them into quantum informa-
tion systems makes no sense as quantum computing
performs better than classical computing for specific
scenarios (those that may take advantage of quantum
parallelism or simulation of elements (Zhao, 2020)).
Thus, the migration toward pure quantum informa-
tion systems is very unlikely since the performance-
cost ratio could be degraded, among other reasons.
In contrast, it is expected to integrate quantum soft-
ware into the current information systems, leading to
the evolution toward the so-called hybrid information
systems. Typically, in these hybrid information sys-
tems, the classical part controls and receives all the

Jiménez-Navajas, L., Pérez-Castillo, R. and Piattini, M.
Reverse Engineering of Classical-Quantum Programs.
DOI: 10.5220/0012535000003687
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 275-282
ISBN: 978-989-758-696-5; ISSN: 2184-4895
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

275

outputs generated by the quantum software compo-
nents, which is, generally, executed in remote quan-
tum computers in the cloud (Nguyen et al., 2022).

One of the approaches to address the evolution
toward hybrid software systems is software mod-
ernization. Software Modernization embraces the
traditional reengineering process by following the
Model-Driven Engineering (MDE) principles. Soft-
ware modernization has allowed organizations to de-
velop and evolve high-quality software in compliance
with standards and following well-proven practices
(Durelli et al., 2014). To make a successful evolution
from classical information systems to hybrid informa-
tion systems, the software modernization process has
been adapted to the field of quantum software (Perez-
Castillo et al., 2021). This process of Quantum Soft-
ware Modernization alleviates problems that may oc-
cur during the analysis, design, and generation of hy-
brid information systems (Pérez-Castillo et al., 2024).

The Quantum Software Modernization process in-
volves three main phases: reverse engineering, re-
structuring, and forward engineering. This paper
specifically focuses on the reverse engineering phase.
This phase is crucial since is aimed at generat-
ing abstract representations of quantum and classi-
cal programs in combination. This proposal produces
abstract models in a technology-agnostic manner
through the usage of the Knowledge Discovery Meta-
model (KDM) (Pérez-Castillo et al., 2011). The re-
verse engineering technique analyzes the source code
of hybrid software programs developed in Python,
which import the Qiskit library (Aleksandrowicz
et al., 2019).

The remainder of the paper is structured as fol-
lows: Section 2 depicts the current state of the art
of quantum computing and classical-quantum soft-
ware modernization. Then, Section 3 introduces a
running example. Section 4 explains the proposed
reverse engineering technique and illustrates how it
works through the development of the running exam-
ple. Finally, Section 5 presents the conclusions ob-
tained from this research and future work.

2 BACKGROUND

This section introduces the underlying concepts re-
lated to the technique. Section 2.1 describes how
quantum software works. Section 2.2 presents the
software modernization process. Finally, Section 2.3
explains the adaption of software modernization to be
applied to the evolution of hybrid information sys-
tems.

2.1 Quantum Software

The Quantum Software Manifesto stated that “given
the recent rapid advances in quantum hardware, it
is urgent that we step up our efforts in quantum
software” (Ambainis et al., 2017), and the Euro-
pean Quantum Flagship´s Strategic Research Agenda
(EQF, 2020) proposes to investigate the “development
of software stacks to integrate quantum computing
into current computing environments”.

Currently, there are a large number of providers
that allow us to develop quantum software. The
world’s largest companies are already providing pro-
gramming languages and libraries that enable the de-
velopment of quantum software, i.e., OpenQASM,
Q#, Qiskit (IBM), Cirq (Google), pyQuil (Rigetti),
among others (Garhwal et al., 2019; Zhao, 2020).

Unfortunately, several quantum computer scien-
tists do not know the software engineering principles
and techniques, so several errors could be repeated,
and some expensive “rediscoveries” could happen
(Piattini et al., 2021). Nevertheless, with the advent
of “industrial” quantum software and its increasing
use in various business domains, there is a growing
demand for quantum software to be produced more
systematically, as stated in the Talavera Manifesto
for Quantum Software Engineering and Programming
(Piattini et al., 2020).

2.2 Software Modernization

The course of time also affects information systems,
forcing them to evolve continuously. Those systems
that were developed in the past can be affected by
degradation or aging, turning them into legacy infor-
mation systems, which means that the source code
which has been developed could be technologically
obsolete (Ulrich, 2002). The evolution of legacy sys-
tems is a duty that has been addressed for years since
many companies cannot simply discard such systems,
as they possibly embed a large amount of business
logic and business rules that are not depicted else-
where (Sommerville, 2011).

Reengineering is a successful practice in the soft-
ware industry, consisting of three phases: reverse
engineering, restructuring, and forward engineering.
However, when faced with specific challenges, this
practice has more than half of the traditional reengi-
neering projects fail because of a lack of standard-
ized and automated processes (Sneed, 2005). This is
why the OMG proposed ADM as a possible mecha-
nism for software evolution, which consists of apply-
ing reengineering with an MDE approach. For the re-
verse engineering phase, ADM advocates the use of

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

276

KDM to abstract and represent all the software ar-
tifacts that can be found in a legacy system. This
representation is done in a standard and technology-
independent way.

2.3 Quantum Software Modernization

The future implementation of quantum software or
services in our information systems will inevitably
lead to an evolution of information systems to adopt
this software. This does not imply the complete re-
placement of classical information systems by quan-
tum software but rather a modernization of these sys-
tems integrating new quantum software components.
To this end, the software modernization process has
been adapted to the domain of quantum computing
(see Fig. 1).

The Quantum Software Modernization process
was first proposed in (Jiménez-Navajas et al., 2020)
and consists of the same phases as classical reengi-
neering: reverse engineering, restructuring, and for-
ward engineering. In the reverse engineering phase
(the scope of this paper), software artifacts are an-
alyzed, and their components and interrelationships
are represented at a higher level of abstraction. For
this proposal, classical and quantum code has been
analyzed and represented using KDM models. The
restructuring phase consists of improving the inter-
nal structure of the model (either by modifying or
adding functionalities) but preserving the behavior of
the system. Finally, in the forward engineering phase
through generative and low-code techniques, the tar-
get classical-quantum information system is gener-
ated in a semi-automatic way.

3 RUNNING EXAMPLE

This section presents a running example which in the
following sections will be elaborated on based on the
proposed technique to illustrate how the reverse en-
gineering technique works. It should be mentioned
that this example has been entirely conducted using
a supporting tool that has been developed (Jiménez-
Navajas et al., 2023a). The input of the technique is
a basic program extracted from the Qiskit repository
(Aleksandrowicz et al., 2019) and using Qiskit’s ver-
sion 0.41. This example can be seen in Listing 1. Al-
though the complete program consists of two circuits,
only the first circuit (everything referred to with qc1)
will be explained hereinafter due to length limits. The
KDM representation of the complete program can be
obtained from (Jiménez-Navajas et al., 2023b).

KDM Models UML Models

Existing
Quantum
Programs

Classical
Information

System

Target Classical-
Quantum

System

New Quantum
Software

R
e
v
e
r
s
e

E
n
g
i
n
e
e
r
i
n
g

F
o
r
w
a
r
d

E
n
g
i
n
e
e
r
i
n
g

Restructuring

Figure 1: Quantum software modernization process.

1 # making f i r s t c i r c u i t : b e l l s t a t e
2 qc1 = Q u a n t u m C i r c u i t (2 , 2)
3 qc1 . h (0)
4 qc1 . cx (0 , 1)
5 qc1 . measure ([0 , 1] , [0 , 1])
6
7 # making a n o t h e r c i r c u i t : s u p e r p o s i t i o n s
8 qc2 = Q u a n t u m C i r c u i t (2 , 2)
9 qc2 . h ([0 , 1])

10 qc2 . measure ([0 , 1] , [0 , 1])
11
12 # s e t t i n g up t h e backend
13 p r i n t (” (BasicAER Backends) ”)
14 p r i n t (Bas i cAer . backends ())
15
16 # r u n n i n g t h e j o b
17 j o b s i m = e x e c u t e ([qc1 , qc2] , Bas icAer . g e t b a c k e n d (”

q a s m s i m u l a t o r ”))
18 s i m r e s u l t = j o b s i m . r e s u l t ()
19
20 # Show t h e r e s u l t s
21 p r i n t (s i m r e s u l t . g e t c o u n t s (qc1))
22 p r i n t (s i m r e s u l t . g e t c o u n t s (qc2))

Listing 1: Python program consisting of two quantum
circuits.

The declaration of a quantum circuit can be seen
in line 2. This circuit will have two qubits and two
classical registers. These last two registers will be
used later to store the values obtained from the mea-
surements of the qubits. Next, in line 3, a Hadamard
gate is applied to the first qubit of the qc1 circuit. This
gate has the function of setting the qubits in a super-
position state, i.e., it causes the qubits to have two
different states simultaneously. In line 4, the Con-
trolled Not gate is applied to qubits 0 and 1. The
function of this gate is to perform a negation on the
second qubit (target) if the state of the first qubit (con-
trol) is |1⟩. In line 5, a measurement operation is
applied to qubits 0 and 1 and stored in the classical
registers 0 and 1, respectively. This measurement un-
does the superposition of the qubits and reveals their
state, setting them to |0⟩ or |1⟩ until another quantum
gate is reapplied and changes their state. Finally, in
lines 17 and 18, the circuit is executed in the back-
end of qasm simulator, and the results are stored in
the variable sim result.

Reverse Engineering of Classical-Quantum Programs

277

4 REVERSE ENGINEERING OF
HYBRID QUANTUM
SOFTWARE

For the representation of the hybrid programs, an ap-
proach where two models are represented within the
same KDM segment, composed of a classical and a
quantum software model has been followed. On the
one hand, in the classical software model (cf. Sec-
tion 4.1), the whole Python program is represented,
including the Qiskit code. This means that Qiskit
(quantum) elements are depicted as mere classical
functions. On the other hand, in the quantum soft-
ware model (cf. Section 4.2), the underlying quantum
circuit is abstracted from the embedded Qiskit code.
The representation of these models in combination is
the main contribution of this technique since it en-
ables the creation of valuable relations between ele-
ments of the two models (cf. Section 4.3). Modelling
such relationships can help us to answer interesting,
valuable questions during the software modernization
process. These questions are the following (although
this is not a limited list):

• RQ1. What classical data elements are going to
receive and manage results from the quantum soft-
ware component?

• RQ2. What classical parts are involved in the dy-
namic generation of a quantum circuit?

• RQ3. What quantum circuits are controlled and
executed by specific classical drivers?
This technique has been divided into two phases.

The first phase consists of the static analysis of the
hybrid programs and their representation through an
Abstract Syntax Tree (AST). The second phase takes
the AST as input and generates KDM representations
of each element embodied in the tree depending on its
function in the program.

For the first phase analysis of the hybrid programs,
ANother Tool for Language Recognition (ANTLR)
has been employed (Parr, 2013). This tool allows
parsing source code and representing it in an AST
by defining the grammar and lexicon on which the
file is based. Program parsing is divided into two
phases: lexical analysis and parsing. In the lexical
analysis phase, characters are grouped into words or
other characters (tokenize), and this is done by a lexer
based on Python code. The second stage is the actual
parser which feeds off these tokens to recognize the
sentence structure, in this case, an assignment state-
ment.

In the lexical analysis phase, the Python3 lexicon
and grammar available in the ANTLR GitHub reposi-
tory has been used as a starting point since Qiskit is a

library of this language (Everet, 2020). However, this
grammar had to be modified so that in the next phase,
some quantum elements could be identified in a bet-
ter way. For the running example presented, Listing 2
shows an example of the modification in the Python3
lexer file. In the running example, there are only three
quantum gates: a Hadamard gate, a Controlled Not
gate, and a measure operation (the implementation of
these can be seen in Listing 1). Adding these lines to
the lexicon file three new tokens are defined. After-
wards, in the parser file it is defined how each these
tokes are grouped and represented.

1 / / Q i s k i t ’ s Quantum Gates
2 HADAMARD : ’ h ’ ;
3 CONTROLLEDX : ’ cx ’ ;
4 MEASURE : ’ measure ’ ;

Listing 2: Quantum gates defined on the lexer.

Having analyzed the programs and built the AST
model, it is then necessary to define how each of the
elements of the tree will be represented in certain
parts of the KDM model. Section 4.1 explains how
these elements are modelled for the classical soft-
ware model, and Section 4.2 the same mapping for
the quantum software model. Finally, Section 4.3 dis-
cusses the relationships that are established between
the two models.

4.1 Classical Software Model

The classical representation of the hybrid programs
(based on Qiskit-Python code) defines how each el-
ement must be represented in KDM. All variables
that will save any result are represented using the
code:StorableUnit type, while functions are repre-
sented using the action:ActionElement type. Also,
each element appearing in the classical software
model has a child of type action:CompliesTo aim-
ing to its corresponding LanguageUnit definition. A
LanguageUnits represents predefined data types and
other common elements determined by a particular
programming language. This LanguageUnit has the
function of helping the model to preserve as much in-
formation as possible.

Fig. 2 shows (through the Eclipse IDE model
viewer) part of the outgoing KDM model represent-
ing the classical software model of Listing 1. At
the beginning of the model, there are three code:
StorableUnit elements. One is the quantum reg-
ister where all the quantum operations point to any
of the respective indexes, another is the classical reg-
ister where the measurements of the operations per-
formed on the quantum register are stored and the
last one is the variable that stores the two registers
(so, the quantum circuit). When a circuit is de-

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

278

clared using the Qiskit library, the variable that de-
clares it holds a quantum register and a classical
register with the size indicated. The next element
is qc1=QuantumCircuit(2,2) which represents the
action of declaring a circuit with two qubits and two
classical registers. Afterward, all the quantum gates
used in the circuit are represented (Hadamard, Con-
trolled Not, and Measure) and then two print state-
ments (classical functions). Finally, the algorithm
is executed with the execute statement and the re-
sults are stored in the variable job sim, so another
code:Storable Unit is declared. With the function
result the results of the execution of a circuit are
saved. Since those results must be stored in another
variable, an additional sim result was declared. Fi-
nally, there is a print statement that displays the re-
sults of sim result.

Figure 2: Classical software model generated.

Fig. 3 shows the LanguageUnit generated from
the circuit. Two LanguageUnit have been modelled:
one for Qiskit and another for Python. Each of these
LanguageUnit elements contain the description of
the elements of the programming language to which
this LanguageUnits corresponds to. Thus, the Qiskit
LanguageUnit only contains those elements that are
used in the program and defined by Qiskit (data types,
quantum gates, etc.). This means that in the classic
model of the example, two Python elements are used
during the development of the program: a print state-
ment and an integer value definition.

4.2 Quantum Software Model

The quantum software model abstracts the underly-
ing quantum circuit that is derived from the embed-
ded Qiskit source code. Abstracting this model is
not straightforward since many quantum circuits are
built dynamically with external data sources. The
approach taken for the representation could be con-
sidered similar to (Jiménez-Navajas et al., 2020),
where all the different quantum elements are associ-
ated with a stereotype from the extension family.

Figure 3: LanguageUnits generated.

That extension family allows the extension of the
semantics of KDM to represent all the quantum ele-
ments that may appear in a program, applying them
to the elements represented with the metamodel defi-
nition.

Fig. 4 provides the KDM representation of the
quantum software model in Listing 1. In contrast to
the classical software model, this model is shorter.
This is because the underlying quantum circuit de-
rived from the Qiskit code is abstracted. This implies
representing only the quantum gates applied to the
defined circuit. Also, it can be seen how the differ-
ent quantum gates that perform actions to the circuit
qc1 are nested to it, as well as the number of qubits
that were declared. Each of these quantum gates has a
stereotype attribute referencing the stereotype iden-
tifier in the extension family. Another important
detail is that two measure operations appear since
in this pure quantum software model the measure-
ment that was performed (see Listing 1) over two
qubits at the same time has been represented as two
different measure operations. All these elements of
the quantum software model are defined in the Qiskit
LanguageUnit (see Fig. 3).

Figure 4: Quantum software model generated.

Reverse Engineering of Classical-Quantum Programs

279

4.3 Modelling of Classical-Quantum
Relationships

The definition of these relationships is the main con-
tribution of this research. In the proposed technique,
two different models (one classical and one hybrid)
are represented in the same KDM segment, and rela-
tionships between elements of those two models are
established. Three KDM mechanisms are used to de-
fine relationships: the code:CodeRelationship el-
ement and the to attribute of the action:Writes of
the qubit measurement operations, and the association
between the element action:Reads in the represen-
tation of the execute function with the quantum cir-
cuit declared in the classical software model.

Fig 5 shows an excerpt of the outgoing quantum
and classical KDM model representations for the dec-
laration of the quantum circuit, the measurement of
the two qubits declared, and the execution of qc1 (see
lines 2, 5, and 7 in Listing 1, respectively).

In the classical software model, the three first el-
ements represent the code:StorableUnit elements.
The two firs code:StorableUnit elements have a
type attribute whose value points, respectively, to
the description of the Quantum and Classical regis-
ters. Then, the action:ActionElement represents
the declaration of the circuit that it has as children:

• The value of the first and parameters with the
type pointing to the definition of the Quantum and
Classical Registers in the LanguageUnit, respec-
tively.

• The relation indicating that the declaration of the
circuit is compliant with the Qiskit definition,
pointing to the element ”Quantum Circuit” of the
LanguageUnit.

• The relation that indicates on which
code:StorableUnit the circuit will be de-
clared, i.e., qc1
Regarding the measurement operation rep-

resentation, it is represented employing an
action:ActionElement that has as children:

• The programming language to which it belongs.
• The relation pointing to which quantum circuit is

acting, in this case, qc1.
• The relation pointing to which registers it affects.
• Both the child with type Calls and
action:CompliesTo point to the same identifier,
which is the description of the measurement
operation in the LanguageUnit.

• The value of the parameter used in the gate, with
type pointing to the definition of the Quantum
Register in the LanguageUnit.

• The relation indicates that the value sent by the
parameter is read.

• The relationship that associates the quantum reg-
ister’s itemUnit.

• The value of the parameter used in the gate where
the value of the qubit is going to be stored, with
type pointing to the definition of the Classical
Register in the LanguageUnit.

• The relation indicates that the value sent by the
parameter is read.

• The relationship that associates the classical reg-
ister’s itemUnit.

Concerning the representation of the execution
of the circuit, first, the declaration of the vari-
able where the results of the operation will be
stored is represented. Then, an element of action:
ActionElement that represents what the function
execute performs is shown. This element has the
children:

• An action:Reads element that refers to the
quantum circuit that is reading.

• An action:CompliesTo element that indicates
which element of the LanguageUnit it complies
to.

• An action:Writes element associated with the
variable declared in the previous line to represent
the writing on it.

Regarding the quantum software model,
the quantum circuit is defined using a nested
code:CallableUnit, containing all the quantum
elements related to it (e.g., the qubits declared and
the quantum gates used in the circuit). In particular,
the nested elements are the following:

• The code:CodeRelationship element re-
lating the quantum circuit representation in
the quantum and the classical software mod-
els, with the stereotype associated with the
quantum circuits relationship.

• The two qubits declare the circuit through the
code:Storable Unit element. Both point to the
extension family stereotype qubit.

• The gate measure with the type
action:ActionElement to indicate that it
does an action type, which in this case indicates
that it does a read on qubit0 thanks to its child
element of type action:Reads that points from
the quantum gate identifier to the identifier
of the qubit on which it is applied. Immedi-
ately afterward, using a child element of type
action:Writes that references to the classical

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

280

Classical model

1 <codeElement xmi:id="id.51" xmi:type="code:CompilationUnit">

2 <codeElement xmi:id="id.54" xmi:type="code:StorableUnit" name="quantumRegister" type="id.20" />

3 <codeElement xmi:id="id.55" xmi:type="code:StorableUnit" name="classicalRegister"type="id.22" />

4 <codeElement xmi:id="id.52" xmi:type="code:StorableUnit" name="qc1" kind="local" />

5 <codeElement xmi:id="id.53" xmi:type="action:ActionElement" name="qc1=QuantumCircuit(2,2)" kind="New">

6 <codeElement xmi:id="id.56" xmi:type="code:Value" name="2" type="id.20" />

7 <codeElement xmi:id="id.57" xmi:type="code:Value" name="2" type="id.22" />

8 <actionRelation xmi:id="id.58" xmi:type="action:CompliesTo" from="id.53" to="id.24" />

9 <actionRelation xmi:id="id.59" xmi:type="action:Writes" from="id.53" to="id.52" />

10 </codeElement>

11 <codeElement xmi:id="id.79" xmi:type="action:ActionElement" kind="Call" name="Measure">

12 <source language="Qiskit" snippet="qc1.measure([0,1],[0,1])" />

13 <actionRelation xmi:id="id.92" xmi:type="action:Addresses" from="id.79" to="id.52" />

14 <actionRelation xmi:id="id.93" xmi:type="action:Addresses" from="id.79" to="id.54" />

15 <actionRelation xmi:id="id.96" xmi:type="action:Addresses" from="id.79" to="id.55" />

16 <actionRelation xmi:id="id.95" xmi:type="action:Calls" from="id.79" to="id.40" />

17 <actionRelation xmi:id="id.94" xmi:type="action:CompliesTo" from="id.79" to="id.40" />

18 <codeElement xmi:id="id.80" xmi:type="code:Value" name="0" type="id.20" />

19 <actionRelation xmi:id="id.81" xmi:type="action:Reads" from="id.79" to="id.80" />

20 <actionRelation xmi:id="id.82" xmi:type="action:Reads" from="id.79" to="id.21" />

21 <codeElement xmi:id="id.86" xmi:type="code:Value" name="0" type="id.22" />

22 <actionRelation xmi:id="id.87" xmi:type="action:Reads" from="id.79" to="id.86" />

23 <actionRelation xmi:id="id.88" xmi:type="action:Writes" from="id.79" to="id.23" />

24 </codeElement>

25 <codeElement xmi:id="id.108" xmi:type="code:StorableUnit" name="job_sim" type="id.23" kind="register"/>

26 <codeElement xmi:id="id.109" xmi:type="action:ActionElement" name="job_sim = execute(qc1,BasicAer.get_backend(qasm_simulator)">

27 <actionRelation xmi:id="id.112" xmi:type="action:Reads" from="id.109" to="id.52" stereotype="id.12"/>

28 <actionRelation xmi:id="id.111" xmi:type="action:CompliesTo" from="id.109" to="id.45"/>

29 <actionRelation xmi:id="id.110" xmi:type="action:Writes" from="id.109" to="id.108"/>

30 </codeElement>

Quantum model

31 <codeElement xmi:id="id.122" xmi:type="code:CallableUnit" name="qc1" stereotype="id.2">

32 <codeRelation xmi:type="code:CodeRelationship" from="id.122" to="id.52" stereotype="id.10" />

33 <codeElement xmi:id="id.123" xmi:type="code:StorableUnit" name="qubit0" stereotype="id.5" />

34 <codeElement xmi:id="id.124" xmi:type="code:StorableUnit" name="qubit1" stereotype="id.5" />

35 <codeElement xmi:id="id.130" xmi:type="action:ActionElement" kind="operator" name="Measure" stereotype="id.4">

36 <source language="Qiskit" snippet="MEASURE(0)" />

37 <actionRelation xmi:id="id.131" xmi:type="action:Reads" from="id.130" to="id.123" stereotype="id.6" />

38 <actionRelation xmi:id="id.132" xmi:type="action:Writes" from="id.130" to="id.55" stereotype="id.11" />

39 </codeElement>

40 <codeElement

RQ3 RQ2 RQ1

Figure 5: Excerpt of the output KDM model.

register of the circuit represented in the classical
software model, it indicates where the results of
the operations performed are stored.

The lines have been chosen to be represented to
see graphically the relationships between both mod-
els. The green line indicates which classical register
modelled in the classical software model will store
the results from a measurement operation of a quan-
tum circuit. This relationship relates to the classi-
cal and quantum software models, pointing out which
classical element is saving the state of a qubit. With
this relation, we can answer (RQ1), as we can obtain
which data elements are receiving the results from
the qubit measuring as well as know which elements
could manage those results. The black line for the
relationship of the representation of the quantum cir-
cuit between the classical and the quantum software
model. This relationship also associates the descrip-
tion of the quantum circuit in the classical and the
quantum software model, but this time we could an-
swer questions related to the influence of classical el-
ements in the generation of quantum circuits (RQ2).
Finally, the yellow line indicates which quantum cir-
cuit will be executed. With this relationship, the final
executed circuit can be tracked if the relationship is
followed, and the variable which stores the quantum
circuit can be obtained. This can help us to answer
questions related to which circuit is controlled and ex-
ecuted by specific classical drivers (RQ3).

5 CONCLUSIONS

This paper has presented a reverse engineering tech-
nique that analyses hybrid (classical-quantum) pro-
grams developed using Python-Qiskit. For this pur-
pose, a parser for Python source code is adapted to
represent the different quantum elements that may be
used in a hybrid program in the AST model. Then,
the relevant nodes of the AST model are represented
based on the standard KDM. This representation is
divided into two models: a classical software model
representing the program; and a quantum software
model representing the final underlying quantum cir-
cuit. These two models are related to a set of interrela-
tionships that associate the quantum elements in both
models. A running example is conducted to illustrate
how this new technique works.

This technique helps to improve the quantum soft-
ware modernization process since the representations
of both models and the relationships established be-
tween them help to extract valuable insights and an-
swer interesting questions. This is important since in
the near future, different organizations will have to
address the task of modernizing their information sys-
tems to be benefited from the promising applications
derived from quantum computing.

In future work, the design in KDM of more ele-
ments will be addressed. With this, the representation
of as many programs as possible using this technique
is an objective in the near term.

Reverse Engineering of Classical-Quantum Programs

281

ACKNOWLEDGEMENTS

This work is part of the projects PID2022-137944NB-
I00 (SMOOTH Project) and PDC2022-133051-
I00 (QU-ASAP Project) funded by MCIN/AEI/
10.13039/501100011033 / PRTR, EU.

REFERENCES

Aaronson, S. (2008). The limits of quantum. Scientific
American, 298(3):62–69.

Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello,
L., Ben-Haim, Y., Bucher, D., and et al. (2019).
Qiskit: An Open-source Framework for Quantum
Computing.

Ambainis, A. et al. (2017). Quantum software manifesto.
Bayerstadler, A., Becquin, G., Binder, J., Botter, T., Ehm,

H., Ehmer, T., Erdmann, M., Gaus, N., Harbach, P.,
Hess, M., et al. (2021). Industry quantum computing
applications. EPJ Quantum Technology, 8(1):25.

Cao, Y., Romero, J., and Aspuru-Guzik, A. (2018). Poten-
tial of quantum computing for drug discovery. IBM
Journal of Research and Development, 62(6):6–1.

Durelli, R. S., Santibáñez, D. S. M., Marinho, B., Honda,
R., Delamaro, M. E., Anquetil, N., and de Camargo,
V. V. (2014). A mapping study on architecture-driven
modernization. In Proceedings of the 2014 IEEE 15th
International Conference on Information Reuse and
Integration (IEEE IRI 2014), pages 577–584.

EQF (2020). European quantum flagship strategic research
agenda.

Everet, T. (2020). Python3 grammar developed in antlrv4.
Garhwal, S., Ghorani, M., and Ahmad, A. (2019). Quan-

tum programming language: A systematic review of
research topic and top cited languages. Archives of
Computational Methods in Engineering, 28.

Hoare, T. and Milner, R. (2005). Grand challenges for com-
puting research. The Computer Journal, 48(1):49–52.

Jiménez-Navajas, L., Pérez-Castillo, R., and Piattini, M.
(2020). Reverse engineering of quantum programs to-
ward kdm models. In Shepperd, M., Brito e Abreu,
F., Rodrigues da Silva, A., and Pérez-Castillo, R.,
editors, Quality of Information and Communications
Technology, pages 249–262, Cham. Springer Interna-
tional Publishing.

Jiménez-Navajas, L., Pérez-Castillo, R., and Piattini, M.
(2023a). Github’s repository of the technique.

Jiménez-Navajas, L., Pérez-Castillo, R., and Piattini, M.
(2023b). KDM representation of the program ”us-
ing qiskit terra level 0.py”.

Nguyen, H. T., Usman, M., and Buyya, R. (2022). Qfaas: A
serverless function-as-a-service framework for quan-
tum computing. arXiv preprint arXiv:2205.14845.

Parr, T. (2013). The definitive antlr 4 reference. The Defini-
tive ANTLR 4 Reference, pages 1–326.

Pérez-Castillo, R., De Guzman, I. G.-R., and Piattini,
M. (2011). Knowledge discovery metamodel-iso/iec

19506: A standard to modernize legacy systems.
Computer Standards & Interfaces, 33(6):519–532.

Perez-Castillo, R., Serrano, M. A., and Piattini, M. (2021).
Software modernization to embrace quantum technol-
ogy. Advances in Engineering Software, 151:102933.

Piattini, M., Peterssen, G., Pérez-Castillo, R., Hevia, J. L.,
Serrano, M. A., Hernández, G., de Guzmán, I. G. R.,
Paradela, C. A., Polo, M., Murina, E., et al. (2020).
The talavera manifesto for quantum software engi-
neering and programming. In QANSWER, pages 1–5.

Piattini, M., Serrano, M., Perez-Castillo, R., Petersen, G.,
and Hevia, J. L. (2021). Toward a quantum software
engineering. IT Professional, 23(1):62–66.

Pérez-Castillo, R., Serrano, M. A., Cruz-Lemus, J. A., and
Piattini, M. (2024). Guidelines to use the incremen-
tal commitment spiral model for developing quantum-
classical systems. Quantum Information and Compu-
tation, 24(1&2):71–88.

Serrano, M. A., Perez-Castillo, R., and Piattini, M. (2022).
Quantum Software Engineering. Springer Nature.

Sneed, H. M. (2005). Estimating the costs of a reengineer-
ing project. In 12th Working Conference on Reverse
Engineering (WCRE’05). IEEE.

Sommerville, I. (2011). Software Engineering, 9/E. Pearson
Education India.

Ulrich (2002). Legacy systems: transformation strategies.
Prentice Hall PTR.

Zhao, J. (2020). Quantum software engineering: Land-
scapes and horizons.

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

282

