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Abstract: Recent years have seen the adoption of workload orchestration into the network edge. Cloud orchestrators
such as Kubernetes have been extended to edge computing, providing the virtual infrastructure to efficiently
manage containerized workloads across the edge-cloud continuum. However, cloud-based orchestrators are
resource intensive, sometimes occupying the bulk of resources of an edge device even when idle. While var-
ious Kubernetes-based solutions, such as K3s and KubeEdge, have been developed with a specific focus on
edge computing, they remain limited to container runtimes. This paper proposes a Kubernetes-compatible
solution for edge workload packaging, distribution, and execution, named Feather, which extends edge work-
loads beyond containers. Feather is based on Virtual Kubelets, superseding previous work from FLEDGE.
It is capable of operating in existing Kubernetes clusters, with minimal, optional additions to the Kubernetes
PodSpec to enable multi-runtime images and execution. Both Containerd and OSv unikernel backends are
implemented, and evaluations show that unikernel workloads can be executed highly efficiently, with a mem-
ory reduction of up to 20% for Java applications at the cost of up to 25% CPU power. Evaluations also show
that Feather itself is suitable for most modern edge devices, with the x86 version only requiring 58-62 MiB of
memory for the agent itself.

1 INTRODUCTION

Modern microservice architectures are shifting from
cloud-only to running in a cloud-edge continuum for
various reasons. For example, many applications ben-
efit from local processing in terms of response time,
improving Quality of Experience (QoE) (Luo et al.,
2019). Additionally, processing data on or near the
edge devices where it is generated reduces network
load and can preserve privacy if implemented cor-
rectly (Sadique et al., 2020). Processing workloads
on edge devices also has the potential to better utilize
local supplies of green energy (Al-Naday et al., 2022).
Finally, an important enabler is that modern edge de-
vices have become powerful enough to run various
workloads dynamically on-demand.

In the cloud, developers commonly use orchestra-
tors such as Kubernetes 1 to deploy and manage appli-
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cations on a uniform infrastructure independent of the
actual hardware. Edge computing, however, has tra-
ditionally used a different set of tools to deploy and
manage applications. This adds an additional barrier
for cloud application developers to venture into edge
computing. Therefore, bringing cloud orchestrators to
edge computing has the potential to improve the expe-
rience of transitioning from a cloud-only application
to a cloud-edge application.

Bringing cloud orchestrators to the edge is chal-
lenging, however, because of their resource overhead.
For example, Kubernetes agents have a significant re-
source overhead, around 145MiB for the agent alone
and 300+MiB with all necessary components, poten-
tially using most of the memory on an edge device
even when idle (Goethals et al., 2020). Although re-
cent developments such as ioFog 2, KubeEdge 3 and
FLEDGE (Goethals et al., 2020) provide alternative
orchestration options, most of them still present a
significant overhead, and all of them are exclusively
based on containerized workloads. While contain-
ers are a highly performant, lightweight virtualization

2Eclipse ioFog: https://iofog.org/
3KubeEdge: https://kubeedge.io/
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option, they may not always be the best solution for
any combination of workload and edge device. Other
virtualization options include micro Virtual Machines
(microVMs), which boast improved security and re-
source use compared to containers (Goethals et al.,
2022), or WebAssembly (Wasm) (Sebrechts et al.,
2022), which aims for microVM security and perfor-
mance without the necessity for a hypervisor. Exam-
ple use cases include a home automation edge gate-
way running privacy sensitive processing tasks in a
microVM, while automation rules and dashboards are
run in containers. Another use case involves ad-hoc
federation of networked resources in emergency sit-
uations, running mission critical tasks on possibly
untrusted nodes inside microVMs while support ser-
vices are run in containers.

This paper proposes a Kubernetes-compatible
solution for edge workload orchestration named
Feather. Based on the lightweight FLEDGE orches-
trator (Goethals et al., 2020), Feather extends its ca-
pabilities beyond containers to include microVMs.
As such, it allows developers to choose the right vir-
tualization option for their workloads, and allows re-
searchers to easily compare different virtualization
methods for edge computing. Additionally, Feather
uses relevant Open Container Initiative (OCI) stan-
dards, which are important for interoperability with
Kubernetes and Docker containers.

This paper also presents an end-to-end solution
for packaging, distributing and deploying workloads
in a runtime-agnostic manner, allowing developers to
use an almost identical deployment workflow for both
containers and microVMs that seamlessly integrates
with the Kubernetes ecosystem.

Concretely, the contributions of this paper are:

• Designing an extensible, Kubernetes-compatible
agent which allows for the deployment of non-
container workloads on edge devices

• Providing an OCI-compliant method for pack-
aging and distributing non-container workloads
through a container repository

• Illustrating the potential of multi-runtime work-
loads in a Kubernetes (edge) cluster

• Minimizing the resource overhead of edge orches-
tration, leaving the bulk of device resources for
edge computing

The rest of this paper is organized as follows: Sec-
tion 2 presents existing research related to the various
topics in this paper, from which research questions are
derived in Section 3. Section 4 introduces all the high
level architecture aspects. In Section 5, the evaluation
setup, scenarios and methodology are detailed, while
the results are presented and discussed in Section 6.

Topics for future work are listed in Section 7 and fi-
nally, Section 8 draws high level conclusions from the
paper.

2 RELATED WORK

2.1 Virtualization

The properties and performance of container run-
times have been extensively examined in various stud-
ies (Wang et al., 2022; de Velp et al., 2020).

MicroVMs are a lightweight form of VM de-
signed to run individual workloads or processes.
There are several technologies that enable the cre-
ation of microVMs, among which unikernels are
a varied group with excellent security and perfor-
mance features (Kuenzer et al., 2021; Abeni, 2023).
Unikernels are a type of library operating system in
which a program, along with only the required sys-
tem libraries and system calls, is compiled into a
single kernel space executable embedded in a VM
image, thus minimizing image size and attack sur-
face. Furthermore, they can be roughly classified
into two types: POSIX-compatible (Portable Oper-
ating System Interface(Walli, 1995)) ones that fo-
cus on existing software, and those based on non-
POSIX system interfaces which sacrifice compatibil-
ity for smaller images and lower resource require-
ments. OSv(Kivity et al., 2014) in particular is
a POSIX-compatible unikernel platform with wide
compatibility for existing programs and programming
language runtimes. Although microVMs generally
support a wide variety of hypervisors for their ex-
ecution, QEMU(Bellard, 2005) with KVM (Kernel-
based Virtual Machine(Habib, 2008)) acceleration is
a widely supported option.

Both containers and microVMs are examples of
degrees of virtualization, where at least some degree
of isolation from the host system is established. Dif-
ferent classes of virtualization technologies, includ-
ing gVisor and Firecracker, have been compared and
benchmarked (Goethals et al., 2022), and their per-
formance examined at the kernel level (Anjali et al.,
2020).

The WebAssembly System Interface
(WASI) (Ménétrey et al., 2022) is a new and
fundamentally different approach to sandboxing,
interposing itself between WebAssembly (Wasm)
programs and a host system (e.g. Linux kernel). Like
gVisor, it implements its own System Interface to
intercept program system calls, but it focuses on both
security and performance while being entirely device-
and system-agnostic. While still under development,
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WASI covers a wide range of devices up to ESP32
microcontrollers (BytecodeAlliance, 2023), making
it suitable for the edge and IoT (Ray, 2023). WASI
can also be used to optimize container-oriented
architectures, e.g. Kubernetes controllers (Sebrechts
et al., 2022).

2.2 Orchestration

Several edge-oriented Kubernetes-based platforms
are currently available, for example KubeEdge and
Eclipse ioFog (Čilić et al., 2023). KubeEdge has
a memory overhead of only 70 MiB for its worker
nodes, although it is incompatible with default Kuber-
netes clusters. ioFog, another popular orchestration
platform for the edge, has a memory footprint of only
100 MiB on worker nodes, which is fairly low in com-
parison with other Kubernetes distributions. How-
ever, while these frameworks are aimed at edge com-
puting, they are limited to container workloads.

Some studies (Mavridis and Karatza, 2021) use
KubeVirt (KubeVirt, 2023) to deploy and evaluate
(micro)VM alternatives on Kubernetes clusters. How-
ever, while KubeVirt enables the deployment of virtu-
alized workloads, it also requires extensive interven-
tion in a Kubernetes cluster to work (e.g. custom re-
sources, daemonsets). Unlike KubeVirt, Feather is
aimed specifically at creating a multi-runtime agent
for edge computing, without the need to modify an
existing Kubernetes cluster in any way.

FLEDGE (Goethals et al., 2020) is a Kubernetes-
compatible edge agent based on Virtual Kubelets 4,
and designed for minimal resource overhead, using
only around 50MiB of memory. A Virtual Kubelet is
essentially a proxy which poses as an actual kubelet
to the Kubernetes API, but allows any sort of under-
lying provider to interpret and execute the received
commands. However, despite a low-resource imple-
mentation with support for both Docker and contain-
erd, FLEDGE is limited to the use of containers.
Feather aims to extend the State of the Art by allow-
ing the OCI-compliant side-by-side orchestration of
various types of workload images (e.g. containers,
microVMs) on edge devices, without architectural or
operational changes to an existing Kubernetes cluster
or its control plane nodes.

4Virtual Kubelet: an open source Kubernetes kubelet
implementation - https://github.com/virtual-kubelet/virtual-
kubelet

3 RESEARCH QUESTIONS

Considering the limitations of the state of the art, the
following research questions are stated for Feather:

1. RQ1. How can Kubernetes-compatible orchestra-
tors be extended to support pluggable backends,
including microVM workloads in the edge?

2. RQ2. How can edge microVM workloads be
seamlessly integrated into the regular cloud native
and Kubernetes ecosystem?

3. RQ3. What are the Feather overhead and perfor-
mance characteristics of microVM workloads in
the edge?

4 ARCHITECTURE

This section presents the solution architecture for both
the Kubernetes-side deployment of workloads, and
for runtime-agnostic workload packaging and distri-
bution. The code for Feather is made available on
Github5.

4.1 Deployments

Feather uses a Virtual Kubelet as a basis, receiv-
ing commands from Kubernetes through its interface.
Workload platforms (e.g. container, unikernel) are re-
ferred to as “backends”, which may be supported by
different runtimes (e.g. QEMU, VirtualBox), while
running workloads are “instances”.

A high-level overview of the deployment pipeline
from Kubernetes to Feather is shown in Fig. 1. On the
left side of the figure, deployments are entered into
Kubernetes through the API or dashboard. Feather
nodes are usually given a specific node label and taint
to avoid accidentally deploying heavier cloud work-
loads. While these can be disabled, deployments
should target Feather-managed devices specifically.

Next, the deployment is scheduled and sent to
Feather on an edge device, where it is picked up by
the Virtual Kubelet component. In order to separate
node and pod logic from atomic workloads (i.e. in-
dividual containers), Feather implements a Provider
which takes care of all pod-level logic, leaving the
workload-level (or instance) logic to backends (e.g.
containerd, OSv). This approach reduces the com-
plexity of additional backend implementations, and
allows mixing different runtimes in a single pod if
required, although individual backends may present
practical problems as shown in Section 4.2. The

5https://github.com/idlab-discover/feather
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Figure 1: High-level overview of Feather components and the separation of virtualization options into backends. Full and
dashed red rectangles represent new and heavily modified components compared to FLEDGE, respectively.

Provider also interacts with a basic Resource Monitor
to report node status and determine if it has enough re-
sources to execute a deployment. For advanced mon-
itoring outside the default Kubernetes dashboard, a
Prometheus Golang exporter may be enabled in ad-
dition to default process metrics.

However, some pod-level information may be re-
quired to properly set up a workload, for example vol-
umes or pod networking information. To solve this,
the Provider extracts the relevant information from
the PodSpec (e.g. networking, volumes) on a per-
instance basis and embeds it into an extended Con-
tainer specification indicated by Container+. For ex-
ample, if the pod is globally configured to use host
networking, the backend requires that information to
create its workloads under that condition. The ex-
tended Container specification is then sent to the cor-
rect backend, which is responsible for pulling the cor-
rect image and managing its life-cycle.

4.2 Candidate Backends

At this point, the various backends require differ-
ent tools and kernel features, and manage instances
through different backends. This section describes the
backends currently implemented in Feather. Feather
is designed to be generic, supporting anything from
container runtimes to hypervisors and beyond. In or-
der to function as a sufficient proof-of-concept of this
design, both containers and microVMs are supported,
through containerd and OSv respectively. For com-
patibility purposes, the backend design is inspired by
the OCI Runtime Spec 6. This specification describes
the configuration, execution environment, and life cy-

6OCI Runtime Specification:
https://github.com/opencontainers/runtime-spec

cle of a container.
As containerd is a native container runtime

supported by Kubernetes by default, and because
FLEDGE already has a previous implementation for
it, creating a backend is self-evident. As shown in
Fig. 1, the containerd backend interacts with various
Feather tools to setup the required cgroups, names-
paces and container networking for a single container.
These in turn interact with the appropriate Linux sub-
systems, which for now is limited to cgroups v1, curb-
ing operating system options slightly. The image it-
self is started using the container runtime (contain-
erd), which may host any number of worker contain-
ers.

For microVMs, the unikernel platform OSv is
chosen for image creation, as it supports a wide array
of backends and devices, and has its own command-
line image creation and management tool Capstan.
Implementing a backend for OSv is less straightfor-
ward for several reasons. Firstly, instead of a con-
tainer runtime, the backend needs to communicate
with a hypervisor, in this case QEMU, which may
host any number of worker microVMs. Consequently,
the backend needs to extract a VM disk image from
the OCI Image Spec compliant image. The back-
end needs to determine which combination of param-
eters should be passed to the hypervisor to achieve the
same effect as they have on a container deployment.
Secondly, besides increased complexity, this can in-
troduce compatibility issues, for example for persis-
tent storage and mounts which have to be mounted
through virtio-fs drivers rather than a straightforward
shared location in the host filesystem. Due to virtio-
fs and OSv limitations, the current version of Feather
only supports read-only mounts of directories. While
Kubernetes ConfigMaps and Secrets may consist of a
single file, this is fixed by Feather by putting them in a
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Figure 2: Overview of the deployment sequence of a Feather workload, from an incoming deployment yaml to workload im-
age start. Full and dashed red rectangles represent new and heavily modified components compared to FLEDGE, respectively.

specific directory which is mounted into the image. A
custom C program is provided which can be inserted
into a Feather unikernel image, which scans for these
ConfigMaps and Secrets, and organizes them as re-
quired by the workload. Lastly, networking support
for unikernels in Feather is currently limited; while
unikernels are set up with a network interface which
is publicly reachable, and are assigned an IP address
from the same range as containers, sidecar services
are not currently possible for OSv workloads. Con-
sidering the current implementation, this section an-
swers RQ1.

4.3 Images

Packaging non-container images for backend-
agnostic storage is non-trivial. For example, OSv
images and other microVMs are packaged as raw
disk images with no additional information 7. In
order to distribute these atypical “container” images
reliably and correctly, well-established container im-
age standards are used in combination with minimal
metadata.

The most straightforward solution is to store a disk
image as a layer in an OCI Image, which enables con-
figuration similar to container images. In order to de-
termine the content type of an OCI Image Layer, the
OCI ImageConfig is extended, allowing Feather to se-
lect the correct backend for an image.

1. feather.backend: The backend that this image
was designed for.

7OSv, a new operating system for the Cloud:
https://github.com/cloudius-systems/osv

2. feather.runtime (optional): The preferred run-
time to schedule this instance with. In the case of
virtual machines, this refers to the used hypervi-
sor.

Since containerd images are already OCI Images,
these fields are only required for the OSv backend.
Whenever the feather.backend field is not present,
Feather can safely assume a container image. The
general process of pulling an image is shown in Fig.
2. A deployment yaml is sent to the edge device 1 ,
which is forwarded to the provider as a parsed De-
ployment 2 and split into separate Container+ de-
ployments forwarded to a suitable backend 3 . Due
to OCI compatibility, all image types can be pulled
from a single repository 4 , which returns an image
of the required type 5 . The backend then parses this
image and unpacks it, if required 6 . Depending on
the backend, the image is stored in either the local
containerd repository 7a , or the Capstan repository
7b. The backend sends a start command for the im-
age to the required runtime 8a & 8b, which uses the
image from the matching local repository.

Flint is developed alongside Feather to provide
multi-backend image management between online
and local repositories as a command-line tool. For
the OSv backend, it allows users to import images
from a local Capstan repository into OCI images. The
combination of optional extra Image fields and Flint
solves RQ2.
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5 EVALUATION SETUP

This section considers RQ3 by assessing the per-
formance of Feather and the implemented backends
through three different evaluation scenarios:
1. Baseline: Measures the resource consumption of

Feather itself, without any running workloads.
While some of the backends may have running
processes even without active workloads, they are
not yet loaded into Feather and no (container) net-
working is active.

2. Minimal: Measures the overhead of Feather per
workload container or unikernel by deploying an
idle workload to both backends. Specifically, this
scenario uses a Hello World application written
in C, which sleeps for the duration of the exper-
iment. This ensures that there is no work done,
but that it is still possible to verify if the appli-
cation has started successfully. This approach al-
lows measuring the exact overhead of deploying
a basic workload for both Feather and the back-
ends.

3. Application Benchmark: Determines the rela-
tive resource overheads and performance penal-
ties of both backends for a real-world application,
specifically a Minecraft (PaperMC) server run-
ning. Due to OSv compatibility issues, the Java
runtime is limited to v11.0, which limits PaperMC
to v1.16.4. However, for the purposes of this eval-
uation using an older version is acceptable.

Considering an edge device with 1 GiB of total mem-
ory, it is a reasonable choice to allocate a maximum
of 800 MiB for the Java application, leaving 200 MiB
for the operating system, Feather, and its backends.
Unlike the minimal application, this application can
be configured through a ConfigMap which contains
properties such as the world seed and default game
mode. A Minecraft game server is initialized with
a world seed, where different seeds lead to different
worlds to be generated. By keeping the seed con-
sistent between backends, a deterministic testing en-
vironment can be created. For this evaluation, the
Minecraft worlds are initialized with seed -11970185,
although others have been evaluated to rule out out-
liers. The evaluations in this scenario are performed
as follows:
a) Any previous deployment is deleted.
b) The server image is deployed on the worker node

using Kubernetes. The logs then state the startup
time of the server, and verify the configuration of
the seed through the ConfigMap.

c) After 2 minutes, 4 clients join the server simulta-
neously. This verifies the ability of the server to

handle simultaneous events, such as chunk gener-
ation, which stresses the CPU.

d) After 4 minutes, villager entities are spawned at
a rate of about 3 villagers per 10 in-game ticks.
On a fully responsive server running 20 in-game
ticks per second, this corresponds to a rate of 6
villagers per second.
For the evaluations, two physical nodes are set up

on the IDLab Virtual Wall 8; a control plane node
running the Kubernetes control plane, and a worker
node running Feather and any required backends.
Both nodes are running Ubuntu 20.04.05 LTS, and
are equipped with two Intel E5520 CPUs, 12 GB of
RAM, and two Gigabit network interfaces.

Specific software versions used for the evaluations
are:

• containerd v1.6.18 to run container images
• qemu-system-x86 v4.2.1 to run unikernel images
• virtiofsd v1.6.0 for unikernel file system access
• Virtual Kubelet v1.9.0 as a basis for Feather
• Azul Zulu OpenJDK v11.0.19 for the application

benchmark
• PaperMC v1.10.2 as Minecraft server in the appli-

cation benchmark
In order to emulate an edge device with only

1 CPU and 1 GiB of RAM, Feather imposes re-
source limits on containerd and OSv using cgroups
and QEMU options respectively.

In all scenarios, Prometheus9 node and process
exporters are used to gather relevant node and work-
load data. Note that while all relevant processes are
examined in order to gauge the full impact of Feather
operation, processes on the control plane node are not
included as there are no additional requirements apart
from normal Kubernetes operation. The node ex-
porter is run as a separate process outside Feather to
avoid influencing either Feather or workloads, while
the process exporter gathers workload, QEMU, and
containerd metrics. For the application benchmark,
further application metrics are gathered using the Pa-
perMC Minecraft exporter. For the Feather process
itself, the Prometheus Golang exporter is disabled and
metrics are gathered using ‘top‘ to avoid interference.

6 RESULTS

This section presents the evaluation results for all sce-
narios, presented as timeseries charts over 5 to 10

8Virtual Wall — imec iLab.t documentation:
https://doc.ilabt.imec.be/ilabt/virtualwall/

9https://prometheus.io/
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minute ranges of the gathered metrics. Series are
color coded green for Feather and purple for backend
processes, with other colors reserved for scenario-
specific metrics. Importantly, all CPU percentages are
for a single core, not relative to the entire server.

6.1 Baseline

Fig. 3 shows the storage requirements of various com-
ponents and alternatives. The Feather binary used for
the experiment is a stripped, statically linked x86 64
binary. While Feather is around 13MiB larger than
FLEDGE, it is still 15MiB smaller than KubeEdge
(v1.13.0). The main size increase over FLEDGE is
caused by supporting more recent Kubernetes ver-
sions, and OSv images. As such, Feather offers high
flexibility at low storage overhead. Workload back-
ends represent the bulk of storage requirements; con-
tainerd requires twice as much storage as Feather it-
self, while a default installation of QEMU requires
seven times as much. However, QEMU can be built
from source to reduce this storage overhead, exclud-
ing all features that are non-essential for the OSv
backend.
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Figure 3: Installed size of various components and alterna-
tives for edge workload orchestration.

Fig. 4 shows the CPU use of relevant processes
for the baseline scenario. Feather uses only around
0.3% of a single core when idle, mostly due to back-
end polling and Kubernetes status updates. As shown
in Fig. 5, Feather only uses around 58 MiB of mem-
ory after initialization. While this is significantly
more than FLEDGE, which only requires around 46
MiB (Goethals et al., 2020), it is an acceptable in-
crease for offering multiple backends, and for newer
Kubernetes feature support due to using a higher ver-
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Figure 4: CPU usage of relevant processes in the baseline
scenario.

sion Virtual Kubelet. The containerd process has no
significant CPU usage after initialization, and uses 55
MiB of memory on average.
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Figure 5: Resident memory usage of relevant processes in
the baseline scenario.

6.2 Minimal

Fig. 6 shows that Feather CPU use peaks for a few
seconds for both OSv and containerd workload cre-
ation. Although containers have a limited impact at
2.8%, creating a unikernel needs significantly more
CPU at 6.8%. A higher setup cost is a natural con-
sequence of the superior isolation of unikernels com-
pared to containers, which requires setting up a much
more extensive virtual infrastructure. After container
creation CPU use drops back to around 0.4%. As
such, idle CPU use is no higher than in the baseline
scenario.

Both containerd and containerd-shim-runc-v2 use
an insignificant amount of processing resources, ex-
cept at container creation, when containerd spikes at
4.2% CPU. The QEMU hypervisor, however, uses
a significant amount of processing power, idling at
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11.5% after a 21% spike at creation.
Memory use for this scenario is shown in Fig. 7.

Note that all processes are relatively stable in their
memory use; containerd itself seems to use around 5
MiB extra memory during container creation which
is later released, while in both cases Feather allocates
an extra 3 MiB at some point which is not directly
tied to workload creation. Comparing this to the base-
line scenario, the Feather process requires 3-4 MiB of
memory to instantiate and manage backends, putting
Feather itself at 60-62 MiB depending on the active
backend.

Comparing both backends, containerd uses 56.5
MiB of memory on average, while containerd-shim-
runc-v2 uses around 9.5 MiB, resulting in a total
memory overhead of 66 MiB on average. With
a memory consumption of 63.3 MiB on average,
QEMU performs slightly better than containerd and
containerd-shim-runc-v2 combined, although this ad-
vantage quickly disappears for multiple workloads as
containerd memory use is amortized over all contain-
ers.

Note that there are no metrics for virtiofsd in-
cluded in Fig. 6, as the minimal scenario does not
make use of any volume mounts.
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Figure 6: CPU usage of relevant processes in the minimal
scenario.

6.3 Application

Fig. 8 shows the performance of PaperMC in in-game
terms. The responsiveness of the server (expressed in
ticks per second, or TPS) drops significantly after 2
minutes as clients join the server, leveling back out
as the server stops generating chunks. Then, it drops
steadily after 4 minutes as villagers are spawned. The
rate at which villagers are spawned also decreases in
time, which notes its relation to TPS as mentioned in
Section 5. Throughout the chunk generation phase,
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Figure 7: Memory usage of relevant processes in the mini-
mal scenario.

OSv performance consistently changes incrementally
faster than containerd is affected, although in magni-
tude both are equally affected. This may indicate that
unikernels are significantly more effective at chunk
generation.
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Figure 8: Ticks per second and number of villagers in the
application scenario.

Additionally, TPS starts to drop slightly faster for
the OSv instance than for the containerd instance, in-
dicating that the OSv may be less efficient at the type
of calculation involving villagers. Finally, the logs
show that the containerd instance starts in 38.713s,
while the OSv instance only takes 37.199s to start,
or around 4% faster. Fig. 9 shows that QEMU uses
more than the 1 CPU limit set by the deployment de-
spite producing a lower TPS. Taking into account the
higher “idle” use at 2:00 and 3:00, and the CPU re-
sults from Fig. 6, QEMU appears to have a signifi-
cant, structural CPU overhead, but the application it-
self is limited to 1 CPU. Comparing Fig. 8 at con-
stant 1200 villagers, OSv on QEMU runs at a 28%
lower TPS compared to the container instance, despite
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a 30% CPU overhead.
Fig. 9 shows that OSv on QEMU uses signif-

icantly less memory than its container counterpart
throughout the evaluation. After spawning all vil-
lagers, QEMU uses only 661 MiB of RAM, sig-
nificantly less than the container Java instance at
820 MiB. Note that spawning villagers, and thus the
slightly different population of both instances, does
not seem to affect memory use significantly. Look-
ing at JVM statistics, Fig. 11 shows that OSv garbage
collection is more efficient and stable than containerd,
averaging 0,83% ± 1,11% vs 1,68% ± 2,16% CPU.

Similarly, Fig. 12 shows that the JVM on OSv al-
locates 20-40% less memory than when running in a
container, and uses the allocated memory more effi-
ciently. This result is expected, as OSv claims that
it is able to expose specific hardware features to the
JVM because it is running in the same address space
as the kernel. This allows the JVM to manage mem-
ory more efficiently, resulting in fewer allocations and
time spent on garbage collection.
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Figure 9: CPU usage of relevant processes in the application
scenario.

6.4 Analysis

The evaluation is performed for a simulated edge
device with 1 CPU and 1 GiB of memory. Both
the minimal and application scenarios indicate that
QEMU has some CPU overhead independent of the
actual workload, greatly impacting its potential for
edge devices. While the overhead may be managed
by QEMU itself through cgroups, overall workload
performance would suffer as a result. However, some
types of workloads (e.g. chunk generation, or REST
services (Goethals et al., 2022)) are shown to be more
efficient with OSv on QEMU despite this overhead.
Additionally, different hypervisors may produce bet-
ter results.
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Figure 10: Memory usage of relevant processes in the ap-
plication scenario.
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Figure 11: CPU time spent on garbage collection by the
JVM in the application scenario.

In terms of memory, QEMU far outperforms the
containerized Java application; the OSv application
instance requires 20% less memory than the contain-
erd instance. Generally superior memory manage-
ment is also clearly visible in the increased stability
of garbage collection and memory management of the
JVM. As unikernels have a base memory overhead
of around 50 MiB compared to container instances,
the advantage of using a unikernel increases with the
memory requirements of its workload.

Finally, the evaluation does not cover ARM-based
edge devices. However, OSv is shown to perform
similarly on a Raspberry Pi 4 (Goethals et al., 2022),
although slower in absolute terms.

7 FUTURE WORK

In Kubernetes environments, data is generally stored
in PersistentVolumes, however, Feather has no sup-
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Figure 12: Used and allocated JVM memory statistics in the
application scenario.

port for PersistentVolumes at this point, which is a
limitation of using a Virtual Kubelet.

Additionally, individual files cannot be mounted,
and the virtio-fs driver provided by the OSv kernel
only supports read-only mounts. As such, the OSv
backend can not currently bind mounts for persis-
tent storage. Other options supported by OSv in-
clude NFS and ZFS, but as Kubernetes only supports
NFS filesystems as a VolumeSource, future work will
likely focus on this option to store files persistently.

Another area of improvement is container net-
working, as OSv unikernels are not currently inte-
grated into the container network. However, they do
have flexible networking capabilities, and Feather al-
ready integrates other initialization programs for Ku-
bernetes features into unikernels (e.g. ConfigMaps,
storage, etc), making full network integration a log-
ical next step. The two most significant steps for
future work are assigning a suitable container net-
work IP address, which is trivial with initialization
programs, and ensuring localhost availability between
workloads in the same Pod, likely through eBPF pro-
grams.

Feather can be further extended by developing
backends for other technologies, such as Wasm, Kata
Containers, Firecracker, Unikraft. Some of these are
image creation tools, while others are runtimes or may
be designed with both image creation and runtime
tools. As Feather allows deployments to distinguish
between type of workload (i.e. container, OSv) and
actual runtime (e.g. containerd, QEMU), future work
will focus on both providing additional workload im-
age formats and potential runtimes.

8 CONCLUSION

Feather provides a solution for extending the Kuber-
netes ecosystem in the edge with non-container alter-
natives such as unikernels, which can reduce resource
requirements for certain use cases.

Building on previous work from FLEDGE,
Feather leverages existing standards such as the OCI
Specifications and the Kubernetes ecosystem, ensur-
ing that the proposed solution is seamlessly interop-
erable with existing infrastructure, requiring minimal
effort by developers to leverage the capabilities of
Feather.

Two backends, containerd and OSv, are imple-
mented and evaluated in three different scenarios,
showing the relative strengths and weaknesses of
each backend for specific computational tasks. While
unikernel workloads on QEMU tend to have a sig-
nificant CPU overhead compared to containers, even
when idle, their memory use is up to 20% lower in
high load scenarios.

This work opens up possibilities for further re-
search and development, including research towards
additional lightweight alternatives to containerized
workloads in the edge.

In conclusion, extending Kubernetes workloads
to cover multiple backends shows that containers are
not always the ideal choice, and other backends can
significantly improve performance in several cases.
However, automatically determining the ideal choice
of runtime, when implemented, remains future work.
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