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Abstract: From management views on complex website page structures, we formulate an algebraic structure of re-
cursively constructed page references as presenting situations of them to the website with 3-valued domain.
Algebraic structure of references, abstracted from website page references, is here expressed as a finite or
countably infinite set of rules, where each rule is defined, by representing the recursive relations among web
page references. The situations of a reference with request to the website can be denoted as the acquisitive
positive, rejective negative and suspended negative, respectively. With respect to algebraic structure, a fixed
point of the mapping associated with the rule set may be a model denoting consistent evaluations to assign
the situations of references to 3-valued domain. Model theory for representation of consistent evaluations of
references and the rule set (constructed with references) is newly settled if a fixed point consistently exists. A
retrieval derivation to detect acquisitive positives and rejective negatives can be presented, to be sound with
respect to the model, based on the inference by negation as failure, which is related to the suspended negative.
As multiple knowledge base formed by a tuple of rule sets, this paper next presents algebraic structure of a
distributed knowledge system constrained by a state, and sequential applications of such systems, containing
state transitions. Model theory can be defined with fixed point of the mapping associated with the distributed
knowledge system, although the fixed point may not be always applied to modeling. If consistent fixed point
modeling is available, we may have a model of the distributed knowledge system, constrained by a state. Then
the application of such a distributed knowledge system may be considered as causing state transitions, follow-
ing modeling and designed state transitions.

1 INTRODUCTION

The well organized website contains web pages so
that complex information system may be constructed.
In this paper, we study the algebraic structure of web
page references, in more details, from the purpose of
analyzing the page references recursively constructed
among references, whose situations are in the cases
of being active, inactive or different, in close relation
of a reference request to the website. The active, inac-
tive and different situations are then interpreted as tak-
ing acquisitive, rejective and suspended values (which
are, as algebraic elements, assigned to references),
such that algebraic element may be knowledgeable by
itself. In this context, the algebraic structure of re-
cursively constructed references are formulated with
3-valued domain. The structure is complex enough,
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however, references recursion may be compact to an-
alyze and to apply to knowledge base with processing.
The 3-domain is defined by the set of truth, falsity and
the unknown, for the acquisitive, rejective and sus-
pended values, respectively. What values are to be
consistent assignments of references in a given alge-
braic structure is discussed, by the method of evalua-
tion of references and the whole structure, as a model
theory. We newly present a fixed point model for the
algebraic structure, to make it clearer for the complex
structure of references to be captured as consistent in
the recursive construction of references. Based on the
evaluation of each reference in a 3-valued domain, the
model theory is regarded as relevant to consistency of
data integrity, when the complex structure of refer-
ences is applied to knowledge base.

For model theory, retrieval derivation to the struc-
ture with rejective negation is also presented, as
knowledge processing. With reference to knowledge
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processing, we may see the algebraic structure, from
the view of knowledge base with logic.

About logic for knowledge and reasoning, we
have seen the backgrounds:
(a) The propositional system and algebra for inquis-
itive logic with negative variants are organized, by
means of intermediate logic in the class between
those classes of inuitionistic and propositional cal-
culi. (Bezhanishvili et al., 2022). Nonmonotonic
logic on reasoning and inference mechanism should
contain applicative aspects with respect to design and
programming (Hanks and McDermott, 1987; Reiter,
2001).
(b) Modal logic contains semantics based on state
space in Kleene-Kripke theory. Not only proposi-
tional logic but also first-order modal logic is formally
dealt with (Fitting, 2002). With reference to knowl-
edge processing and computability, quantified modal
logic is discussed (Rin and Walsh, 2016). For step-
wise removal of objects, there is dynamic modality
(Bentham et al., 2022). Two-dimensional modality is
studied (Gessel, 2022).
(c) With respect to representation of implementation,
dynamic logic for action was presented (Spalazzi and
Traverso, 2000). As other dynamic aspects of knowl-
edge processing, relevant works are made with the
concepts of justified belief truth (Egre et al., 2021),
reduction of decidability (Rasga et al., 2021) and in-
ference theory (Tennant, 2021).

Compared with the backgrounds, this paper is
concerned with knowledge base, which the algebraic
structure of references denotes, as well as knowledge
retrieval sound with respect to fixed point model. The
primary aim of this paper is relevant to nonmono-
tonic logic. We next obtain the algebraic structure
of a distributed knowledge system containing a tuple
of knowledge bases, where the whole system is con-
strained by a state (environment). After knowledge
processing to each knowledge base, state transitions
may be supposed for further knowledge processing in
next states, where each state constrains a distributed
knowledge system.

Revising the work (S.Yamasaki et al., 2023), we
take knowledge processing with common negatives
in a state, constraining a distributed knowledge sys-
tem. On condition that only negatives may be com-
mon, consistency in the whole distributed knowledge
system is treated, without explicit communications
among knowledge bases. The state transitions are
characterized as sequential applications of state con-
strained systems.

We here note the literatures concerned with be-
haviours of distributed systems, paying attention to
the traverses of states in a system: Sequences travers-

ing states in a distributed system may be closely re-
lated to the method of automata (Droste et al., 2009).
As regards varying or moving processes, formulations
have been developed in mobility of ambients (Cardelli
and Gordon, 2000; Merro and Nardelli, 2005).

This paper captures the environment just by a state
name. About the traverse of states caused by applica-
tions of knowledge processing, we have semantics for
the effect of the sequential applications, on the basis
of algebraic semiring.

The paper is organized as follows. Section 2 for-
mally provides a rule set as algebraic structure of re-
cursively constructed references. In Section 3, the
meaning (model) of the algebraic structure may be
newly defined by fixed point of a mapping associ-
ated with the rule set. Section 4 presents the retrieval
derivation from the algebraic structure with respect to
its model. In Section 5, model theory of a distributed
knowledge system with common negatives is devel-
oped, as application of the rule sets to knowledge
bases and to a distributed knowledge system. Sec-
tion 5 is also concerned with the traverses of states,
with the model theory of the distributed systems con-
strained by states. Concluding remarks are given in
Section 6.

2 RECURSIVELY
CONSTRUCTED REFERENCES

As knowledge acquisition means, the website is es-
tablished. We note the static structure constructed by
organizing the website references of web pages. It is
concerned with recursive construction, as well as with
negatives owing to the situations of the website.

Algebraic Structure of References
As is seen, we observe web page reference with re-
quest to some website, as classified into several situa-
tion sets. In this paper, we suppose 3 situation sets of
the website collecting pages with references to them:

(a) The website is active so that the reference to the
site may be considered as in an acquisitive set
(for knowledge).

(b) The website is inactive so that the reference may
be regarded as in a rejective set.

(c) The website (to which the reference is made)
is different from the one which the reference
should be settled to, such that the reference may
be interpreted as in a suspended set.

Figure 1 presents views on the situation sets.
We also observe the relation among references

where the referenced page may contain finitely many
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Figure 1: Web page reference is classified.

page references, as likely denoted by:

⟨Re f1, . . . ,Re fn⟩ (contained in) Re f ,

where “Re f ” is a reference considered recursively
constructed with references Re f1, . . ., Re fn (n ≥ 0).
From application views, the reference is knowledge-
able, as well, in the sense that the reference may re-
cursively contain references.

We take Ac, Re and Sus as the acquisitive set,
the rejective set and the suspended set of references,
respectively, with Knowl as knowledge containing a
reference. Making use of a rule of the form

(Ac,Re,Sus))▷Knowl,

and of a (finite or countably infinite) set of rules, we
study the meaning of algebraic structure of rule set.
Its model theory is concerned with knowledge ac-
quirements.

Algebraic Rule
We firstly assume a domain A as a set of references
(as knowledgeable objects). We then make use of:

Anot = {not a | a ∈ A},
A∼ = {∼a | a ∈ A}.

where (i) not a is to be interpreted as rejection of a (or
its negation as in Heyting algebra), and (ii) ∼a is as
suspension of a, exactly defined later in model theory.
.A rule is of the form r, in a formal way as represented
by acquisitive, rejective and suspended informations
contained in an acquired one. It is regarded as knowl-
edge (with the notations “ /0” and “|” as the empty set
and “or”, respectively), from the application views as
in Section 5, denoted by the form as follows.

r = (Ac,Re,Sus)▷Knowl, where for a ∈ A:

Ac ⊆ A,Re ⊆ Anot ,Sus ⊆ A∼ such that
Ac ::= /0 | {a}∪Ac
Re ::= /0 | {not a}∪Re
Sus ::= /0 | {∼a}∪Sus
Knowl ::= a | not a | ∼a

That is, a rule is of the form (Ac,Re,Sus)▷Knowl
where: (a) Ac ⊆ A is a finite acquisitive set. (b) Re ⊆
Anot is a finite rejective set. (c) Sus ⊆ A∼ is a finite

suspended set. (d) Knowl = a, not a or ∼a is acuired
knowledge (for a ∈ A).

The expression (Ac,Re,Sus)▷ a, (Ac,Re,Sus)▷
not a, or (Ac,Re,Sus)▷∼a may be adopted, if the
form Knowl is a ∈ A or not a ∈ Anot or ∼a ∈ A∼,
respectively.

R is inductively defined as a (finite or countably
infinite) set of rules. It is regarded as knowledge base,
as in Section 5: R ::= /0 | r∪R.

As a denotation of the page reference, the rule
form (∪i(Aci,Rei,Susi)) ▷ Knowl may be consid-
erable, however, it can be replaced by a rule set
∪i{(Aci,Rei,Susi)▷Knowl}.

3 MODEL THEORY IN
ALGEBRAIC STRUCTURE

As a more general case than the one (Yamasaki
and Sasakura, 2023) and the conditional causal re-
lation (Yamasaki and Sasakura, 2021), we exam-
ine the meaning of the rule set defined in Section
2. While many-valued logic provability is presented
(Pawlowski and Urbaniak, 2018), answer set pro-
gramming and problem solving are compiled in 2-
valued logic for practice (Gebser and Schaub, 2016;
Kaufmann et al., 2016).

The rejection negation is regarded as negation in
Heyting algebra, as well as in intuitionistic proposi-
tional logic. For the suspended negation, one more
negation is to be defined, so that 3-valued evaluation
is of use, with the unknown (as a value). But we
do not deal with weak negation as in the case (Ya-
masaki, 2006). With a 3-valued domain, we present
fixed point modeling, based on a mapping associated
with the rule set.

3.1 3-valued Domain

A bounded lattice K = ({ f ,unk, t},
∨
,
∧
,⊥,⊤)

equipped with the partial order ⊑ and an implication
⇒ may be taken:
(a) ⊥ and ⊤ are the least and the greatest elements f
and t, respectively, with respect to the partial order ⊑
such that ⊥= f ⊑ unk ⊑ t =⊤.
(b) The least upper bound ( join with

∨
) and the great-

est lower bound (meet with
∧

) exist for any two ele-
ments of the set { f ,unk, t}.
(c) The implication ⇒ (a relation on the set
{ f ,unk, t}) is defined in a way that z ⊑ (x ⇒ y) iff
x
∧

z ⊑ y.
t is the truth, f is the falsity and unk (the unknown

as t or f ) is the undefined for the truth value, where
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the partial order is defined, regarding the truth value.

Evaluation for Rule Set
A valuation V : A → { f ,unk, t} is assumed with the
bounded lattice K. With respect to V , the value
evalV (E) of an expression E is given.

evalV (a) =V (a) (a ∈ A)
evalV (not a)
= if (evalV (a) = f ) then t else f
evalV (∼a)
= if (evalV (a) = f ) then t
else if (evalV (a) = unk) then unk else f
evalV (Knowl)
= if (Knowl = a) then evalV (a)
else if (Knowl = not a) then evalV (not a)
else if (Knowl =∼a) then evalV (∼a)

evalV (Ac) =
∧

a∈Ac V (a)
evalV (Re) =

∧
not a∈Re evalV (not a)

evalV (Sus) =
∧

∼a∈Sus evalV (∼a)
evalV ((Ac,Re,Sus))
= evalV (Ac)

∧
evalV (Re)

∧
evalV (Sus)

evalV ((Ac,Re,Sus)▷Knowl)
= if evalV ((Ac,Re,Sus))⊑ evalV (Knowl)
then t else if (evalV (Knowl) = f ) then f else unk

evalV (R) =∧
((Ac,Re,Sus)▷Knowl)∈R evalV ((Ac,Re,Sus)▷Knowl)

(
∧

operates on a countable set)

Note that evalV ( /0) = t for Ac, Re, Sus and R to be the
empty set /0.

Model of Rule set
For a pair (I,J) ∈ 2A × 2A such that I ∩ J = /0, i.e., I
and J are disjoint, the valuation

V (I,J) : A →{ f ,unk, t}
is defined to be:

V (I,J)(a)
= if a ∈ I then t else if a ∈ J then f
else unk

such that evalV (I,J)(R) may be settled inductively as
above. If the disjoint pair (I,J) (I ∩ J = /0) causes
evalV (I,J)(R) = t, the pair is called a model of the rule
set R.

3.2 Model of Rule Set with Fixed Point
Theory

For a method to obtain a model of the given rule set, a
fixed point of the mapping associated with the rule set
may be taken, although we cannot always have such

a fixed point, because of nonmonotonic functionality
of the mapping.

Given a rule set R (based on the set A of ob-
jects), for each rule (Ac,Re,Sus)▷ a (a ∈ A) to be
evaluated as t (following the definition of the evalua-
tion evalV with the valuation V ) such that evalV (R) =
t, we examine mutually exclusive cases. For each
(Ac1,Re1,Sus1) ▷ not b, or (Ac2,Re2,Sus2) ▷ ∼c
in R, we can exhaustively examine the cases for
(Ac1,Re1,Sus1)▷b or (Ac2,Re2,Sus2)▷ c.

From such an inspection, a pair (I,J) for the valu-
ation V (I,J) to model the rule set R is to be given as
a fixed point of the formally defined mapping TransR
(as below). The pair (I,J) = TransR(I,J) (by Defi-
nition 1) may be taken (to the valuation V (I,J)), as
satisfactory.

Definition 1. Given a rule R, a mapping TransR : 2A×
2A → 2A ×2A is defined to be

TransR(I,J) = (I′,J′)

such that the pair (I′,J′) may be given:

(a) if (∀(Ac,Re,Sus)▷a ∈ R. ((∃b ∈ Ac. b ∈ J) or
(∃not c ∈ Re. c ̸∈ J) or (∃∼d ∈ Sus. d ∈ I))),
then a ∈ J′

(b) else if (∃(Ac,Re,Sus)▷a ∈ R.
((∀b ∈ Ac. b ∈ I) and (∀not c ∈ Re. c ∈ J) and
(∀∼d ∈ Sus. d ∈ J))) on condition that
(∀(Ac1,Re1,Sus1)▷not a ∈ R.
((∃b ∈ Ac1. b ∈ J) or (∃not c ∈ Re1. c ̸∈ J) or
(∃∼d ∈ Sus1. d ∈ I))) and
(∀(Ac2,Re2,Sus2)▷∼ a ∈ R.
((∃b ∈ Ac2. b ∈ J) or (∃not c ∈ Re2. c ̸∈ J) or
(∃∼d ∈ Sus2. d ∈ I))), then a ∈ I′

(c) else if a rule of the form ((Ac,Re,Sus)▷ a) ex-
ists in R and (∀(Ac,Re,Sus)▷a ∈ R.
((∃b ∈ Ac. b ̸∈ I) or (∃not c ∈ Re. c ̸∈ J) or
(∃∼d ∈ Sus. d ̸∈ J))) and
(∀(Ac1,Re1,Sus1)▷not a ∈ R.
((∃b ∈ Ac1. b ∈ J) or (∃not c ∈ Re1. c ̸∈ J) or
(∃∼d ∈ Sus1. d ∈ I))) and
(∀(Ac2,Re2,Sus2)▷∼ a ∈ R.
((∃b ∈ Ac2. b ̸∈ I) or (∃not c ∈ Re2. c ̸∈ J) or
(∃∼d ∈ Sus2. d ̸∈ J)))), then a ̸∈ I′∪ J′

else undefined

If TransR(I,J) = (I,J) such that I∩J = /0, the pair
is called a consistent fixed point of TransR.

Proposition 2. If (I,J) is a consistent fixed point of
TransR then evalV (I,J)(R) = t.

Proof. For each a ∈ A, we examine the evaluation of
all the related rules in R with respect to the valuation
V (I,J).
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(i) When a ∈ I,

(∀(Ac,Re,Sus)▷a ∈ R.
evalV (I,J)((Ac,Re,Suc)▷a) = t).

Because a ∈ I,

(∀(Ac1,Re1,Sus1)▷not a ∈ R.
((∃b ∈ Ac1. b ∈ J) or (∃not c ∈ Re1. c ̸∈ J) or
(∃∼d ∈ Sus1. d ∈ I))).

It follows that
evalV (I,J)(Ac1) = f or evalV (I,J)(Re1) = f or
evalV (I,J)(Sus1) = f .

Thus evalV (I,J)((Ac1,Re1,Sus1)▷not a) = t.
As is the similar case, for a ∈ I,

(∀(Ac2,Re2,Sus2)▷∼a ∈ R.
((∃b ∈ Ac2. b ∈ J) or (∃not c ∈ Re2. c ̸∈ J) or
(∃∼d ∈ Sus2. d ∈ I))).

Then
evalV (I,J)(Ac2) = f or evalV (I,J)(Re2) = f or
evalV (I,J)(Sus2) = f .

Finally evalV (I,J)((Ac2,Re2,Sus2)▷∼a) = t.
(ii) Assume that a ∈ J. Then

(∀(Ac,Re,Sus)▷a ∈ R.
((∃b ∈ Ac. b ∈ J) or (∃not c ∈ Re. c ̸∈ J) or
(∃∼d ∈ Sus. d ∈ I))).

Therefore
evalV (I,J)(Ac) = f or evalV (I,J)(Re) = f or
evalV (I,J)(Sus) = f .

It causes evalV (I,J)((Ac,Re,Sus)▷ a) = t. On the
other hand, evalV (I,J)(not a) = t such that

evalV (I,J)((Ac1,Re1,Sus1)▷not a) = t

for any (Ac1,Re1,Sus1)▷not a in R.
Also we have evalV (I,J)(∼a) = t such that

evalV (I,J)((Ac2,Re2,Sus2)▷∼ a) = t

for any (Ac2,Re2,Sus2)▷∼ a in R.
(iii) In case that a ̸∈ I ∪ J: there is a rule of the form
(Ac,Re,Sus)▷ a ∈ R such that evalV (I,J)(a) = unk,
where evalV (I,J)((Ac′,Re′,Sus′)) = unk or f for any
rule of the form (Ac′,Re′,Sus′)▷ a. It follows that
evalV (I,J)((Ac′,Re′,Sus′)▷ a) = t for any rule of the
form (Ac′,Re′,Sus′)▷a, on condition that

(∀(Ac1,Re1,Sus1)▷not a ∈ R.
((∃b ∈ Ac1. b ∈ J) or (∃not c ∈ Re1. c ̸∈ J) or
(∃∼d ∈ Sus1. d ∈ I))) and
(∀(Ac2,Re2,Sus2)▷∼a ∈ R.
((∃b ∈ Ac2. b ̸∈ I) or (∃not c ∈ Re2. c ̸∈ J) or
(∃∼d ∈ Sus2. d ̸∈ J))).

From the above condition: for any rule of the form

(Ac1,Re1,Sus1)▷not a ∈ R,

evalV (I,J)((Ac1,Re1,Sus1)) = f , while
evalV (I,J)(not a) = f . Thus

evalV (I,J)((Ac1,Re1,Sus1)▷not a) = t.

For any rule of the form

(Ac2,Re2,Sus2)▷∼a ∈ R,

evalV (I,J)((Ac2,Re2,Sus2)) = unk or f , while
evalV (I,J)(∼a) = unk. Thus

evalV (I,J)((Ac2,Re2,Sus2)▷∼a) = t.

4 RETRIEVAL DERIVATION IN
RULE SET

We conceive model theory in some case of replace-
ment of the rejective negation not by the suspended
negation ∼. Negation as failure derivation (which
corresponds to the suspended negation ∼) may be ex-
tended to be applicable to the model theory (in Sec-
tion 3). In the Japanese poem analysis (Yamasaki and
Yokono, 2008), this idea was adopted, while the anal-
ysis may be refined by the following derivation.

Given a rule set R, we have the recursively de-
fined derivation. Its implementation is applicable to
retrievals, when the algebraic rule set may be regarded
as knowledge base. Just a procedural aspect is now
presented, with a variable G ranging over the set A ∪
Anot ∪ A∼, such that G : suc and G : f ail may stand
for succeeding and failing derivations (of retrieval),
respectively.

(1) /0 : suc.

(2) When there is (Ac,Re,Sus)▷ a ∈ R such that
(∀(Ac1,Re1,Sus1)▷not a∈R. Ac1∪Re1∪Sus1 :
f ail) and (∀(Ac2,Re2,Sus2)▷∼a ∈ R. Ac2 ∪
Re2∪Sus2 : f ail), with (Ac∪Re∪Sus∪G : suc),
then {a}∪G : suc.

(3) If {a} : f ail and G : suc then {not a}∪G : suc.

(4) If {a} : f ail and G : suc then {∼a}∪G : suc.

(5) If (∀(Ac,Re,Sus) ▷ a ∈ R. (Ac ∪ Re ∪ Sus :
f ail)), then {a} : f ail.

(6) If {a} : f ail then {a}∪G : f ail.

(7) If {a} : suc then {not a}∪G : f ail.

(8) If {a} : suc then {∼a}∪G : f ail.

The above retrieval derivation may contain sound-
ness with respect to some model (I,J) of R, in the
sense:
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Proposition 3. Assume that for a rule set R, (I,J) is
a consistent fixed point of TransR. For the derivation
to R, we have:

(1) If {a} : suc, then a ∈ I.
(2) If {a} : f ail, then a ∈ J.

Proof. (1) If {a} : suc, then

∀(Ac1,Re1,Sus1)▷not a ∈ R. Ac1∪Re1∪Sus1 : f ail,

where
(∃b1 ∈ Ac1.{b1} : f ail) or
(∃not c1 ∈ Re1.{not c1} : f ail)
(i.e., ∃not c1 ∈ Re1.{c1} : suc) or
(∃∼d1 ∈ Sus1. {∼d1} : f ail)
(i.e., ∃∼d1 ∈ Sus1. {d1} : suc).

By induction hypothesis, there is b1 ∈ J or c1 ∈ I or
d1 ∈ I, for the assumed derivation {a} : suc. Also

∀(Ac2,Re2,Sus2)▷∼a ∈ R. Ac2 ∪Re2 ∪Sus2 : f ail,

where
(∃b2 ∈ Ac2.{b2} : f ail) or
(∃not c2 ∈ Re2.{not c2} : f ail)
(i.e., ∃not c2 ∈ Re2.{c2} : suc) or
(∃∼d2 ∈ Sus2. {∼d2} : f ail)
(i.e., ∃∼d2 ∈ Sus2. {d2} : suc).

By induction hypothesis, there is b2 ∈ J or c2 ∈ I or
d2 ∈ I, for the assumed derivation {a} : suc.

2 cases are also to be examined:
(a) If ( /0, /0, /0)▷ a ∈ R, as a basis, it is evident that
a ∈ I.
(b) If (Ac,Re,Sus)▷a ∈ R such that

Ac∪Re∪Sus : suc,

as induction step, we can reason that
(∀b ∈ Ac. b ∈ I) and (∀not c ∈ Re. c ∈ J)
and (∀∼d ∈ R. d ∈ J),

from the condition that (∀b ∈ Ac. {b} : suc)
and (∀not c ∈ Re. {not c} : suc)
and (∀∼d ∈ Sus.{∼d} : suc).

This completes the induction step, such that a ∈ I.
(2) If {a} : f ail, then

(∀(Ac,Re,Sus)▷a ∈ R. (Ac∪Re∪Sus : f ail)).

When there is no rule of the form (Ac,Re,Sus)▷ a,
then a ∈ J. Otherwise, it follows that

(∃b ∈ Ac.{b} : f ail) or
(∃not c ∈ Re. {not c} : f ail)
(i.e., ∃not c ∈ Re. {c} : suc) or
(∃∼d ∈ Sus. {∼d} : f ail)
(i.e., ∃∼d ∈ Sus. {d} : suc),

which are respectively caused by (∃b ∈ Ac.{b} : f ail)
or (∃not c ∈ Re. {c} : suc) or (∃∼d ∈ Sus. {d} : suc).
By induction, b ∈ J or c ∈ I or d ∈ I. This concludes
that a ∈ J.

5 MULTIPLE KNOWLEDGE
BASE CONSTRAINED BY
STATE

A distributed knowledge system, constrained by a
state, is formulated as multiple knowledge base (a tu-
ple of the algebraic rule sets as above described). We
suppose that the negatives (rejective negations) from
each rule set is common. We then have the meaning of
multiple knowledge base with common negatives, by
presenting a treatment of fixed point theory. The state
transitions may be caused by sequential applications
of state constrained, distributed knowledge systems,
where nondeterministic choices of the next state tran-
sition are admissible.

Distributed Knowledge System
With an assumed state set S, and a variable s over
the set S, we have got a formal definition of the state
constraint, distributed knowledge system (of multiple
knowledge base) DK containing the rule sets.

DK ::= (s)Σ
Σ ::= null | R[s];Σ

where R is defined in Section 2 and “;” (semicolon)
means the concatenation, with the empty list null.

The list (sequence) Σ may be alternatively denoted
by the form of tuple Σ = ⟨R1[s1], . . . ,Rn[sn]⟩ (n ≥ 0),
where (s)Σ may be dealt with, as follows.
(a) Σ is a distributed knowledge system consisting of
rule sets R1, . . . ,Rn. If n = 0 then Σ = null (as the
empty tuple). s is a constraint state of (s)Σ.
(b) A fixed point method with the models of R1, . . . ,
Rn may be definable, on condition that the negatives
(rejective negations) should be common among the
models.
(c) si as in Ri[si] indicates the next state, with some
model as an operation on the rule set Ri and after the
operation.

For a distributed knowledge system (with a con-
straint state s), Σ = ⟨R1[s1], . . . ,Rn[sn]⟩, we may have
models of R1, . . . , Rn, such that negatives are com-
mon. A tuple of rule sets σ = ⟨R1, . . . ,Rn⟩ (n ≥ 1) is
adopted, in correspondence to Σ. To get models of a
distributed knowledge system, we extend the method
(in Section 3) of how each rule set is denoted.

A valuation Vi : A → { f ,unk, t} (1 ≤ i ≤ n) is as-
sumed with the bounded lattice K, as in the case of
Section 3. The evaluations of Rk are to be executed
for 1 ≤ k ≤ n.

Evaluation and Model for Rule Sets
With (V1, . . . ,Vn), the value Eval(V1,...,Vn)(σ) is given
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by:
Eval(V1,...,Vn)(σ)
= Eval(V1,...,Vn)(⟨R1, . . . ,Rn⟩)
= (evalV1(R1), . . . ,evalVn(Rn))

For a pair (I,J) ∈ 2A ×2A such that I ∩ J = /0, i.e.,
I and J are disjoint, the valuation

Vk(I,J) : A →{ f ,unk, t} (1 ≤ k ≤ n)

is used as V (I,J) in Section 3.
If with the disjoint pairs (Ik,Jk) (1 ≤ k ≤ n) for a

tuple σ of rule sets,

Eval(V1(I1,J1),...,Vn(In,Jn))(σ) = (t, . . . , t)

then the pairs are called a model of σ. Just taking a
direct product of pairs each of which may be defined
by the mapping of TransRk (1 ≤ k ≤ n), we have a
mapping of Trσ.

Mapping Associated with Tuple of Rule Sets
Given a tuple of rule sets σ = ⟨R1, . . . ,Rn⟩, a mapping

Trσ : (2A ×2A)n → (2A ×2A)n

is defined to be

Trσ((I1,J1), . . . ,(In,Jn))
= (TransR1(I1,J1), . . . ,TransRn(In,Jn))
= ((I′1,J

′
1), . . . ,(I

′
n,J

′
n))

such that each pair (I′k,J
′
k) is given for the pair (Ik,Jk)

with TransRk , where TransRk follows Definition 1.
Following Proposition 2, the fixed point of the

mapping Trσ may be possibly obtained such that each
Rk (1 ≤ k ≤ n) is modeled, with the condition that
negatives are common:

Proposition 4. If

Trσ((I1,J), . . . ,(In,J)) = ((I1,J), . . . ,(In,J))

such that Ik ∩ J = /0 (1 ≤ k ≤ n) then

Eval(V (I1,J),...,V (In,J))(σ) = (t, . . . , t),
i.e.,evalV (Ik,J)(Rk) = t (1 ≤ k ≤ n).

Proof. For each Rk, the proof of Proposition 2 can
be applied, where each TransRk is independent of an-
other TransR j (k ̸= j), except that the set J is com-
mon. Trσ is defined in terms of such mutually inde-
pendent TransRk . Therefore the above fixed point of
Trσ is a tuple of the consistent fixed points of TransRk
(1≤ k ≤ n). Thus the above fixed point of Trσ is asso-
ciated with Eval(V (I1,J),...,V (In,J))(σ), which is a tuple
of n values of t.

The fixed points (Ik,J) (1≤ k≤ n) are components
of the (tuple) fixed point of σ, in:

Σ = ⟨R1[s1], . . . ,Rn[sn]⟩ (n ≥ 1)

With (Ik,J) (1≤ k ≤ n) as models in Σ, we may design
question answering on the model (Ik,J) of the rule set
Rk of Σ, and the state transition to sk for 1≤ k ≤ n. We
have nondeterministic choices to sk by (Ik,J), (Ik,J) :
s 7→ sk for 1 ≤ k ≤ n. With respect to models (Ik,J)
(1 ≤ k ≤ n), the distributed derivation (Yamasaki and
Sasakura, 2023) and its soundness can be corrected
and revised to the derivations working for rule sets Rk
(1 ≤ k ≤ n):

(1) /0 : k-suc.

(2) When there is (Ac,Re,Sus)▷ a ∈ Rk such that
(∀(Ac1,Re1,Sus1) ▷ not a ∈ Rk. Ac1 ∪ Re1 ∪
Sus1 : f ail) and (∀(Ac2,Re2,Sus2) ▷ ∼a ∈
Rk. Ac2 ∪ Re2 ∪ Sus2 : f ail), with (Ac ∪ Re ∪
Sus∪G : k-suc),
then {a}∪G : k-suc.

(3) If {a} : f ail and G : k-suc then {not a} ∪ G :
k-suc.

(4) If {a} : f ail and G : k-suc then {∼a}∪G : k-suc.

(5) If, for any 1 ≤ j ≤ n, (∀(Ac,Re,Sus)▷ a ∈ R j.
(Ac∪Re∪Sus : f ail)), then {a} : f ail.

(6) If {a} : f ail then {a}∪G : f ail.

(7) If {a} : k-suc then {not a}∪G : f ail.

(8) If {a} : k-suc then {∼a}∪G : f ail.

Meaning of Distributed Knowledge Systems
The distributed knowledge system (with a constraint
state) DK is to denote the set of objects (of the form)
(s)Σ. DK∗ stands for the set of finite sequences from
DK including the empty sequence λ. The sequence
of DK∗ may denote a finite number of sequential ap-
plications of the objects (possibly considered as pro-
cesses) in DK, or a finite number of transition se-
quences of objects in DK. The semantics for the se-
quence in DK∗ is defined inductively as follows, for a
state set S and its power set 2S:

Sem : DK∗ → (S → 2S),

such that for a state s ∈ S,

Sem[[(s′)null]](s) = /0 (with any s′ ∈ S)

Sem[[λ]](s) = {s}

Sem[[(s′)Σ]](s)

=


{s1, . . . ,sn} if (s = s′) and (∃(Ik,J).

(Ik,J) is a model of Rk)
for any k (1 ≤ k ≤ n) in
Σ = ⟨R1[s1], . . . ,Rn[sn]⟩

/0 otherwise

Sem[[Xy]](s)
= ∪t∈Sem[[X ]](s) Sem[[y]](t) (X ∈ DK,y ∈ DK∗)
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We may have an intuition of what Sem[[X ]] is for
X ∈ DK. The state transitions are abstracted into
the meaning of the object (named X) containing the
distributed knowledge system Σ, on condition that
there is some model (Ik,J) for each Rk within the dis-
tributed system Σ. Now let

Sem[[(s)null]] = Ω (s ∈ S)
Sem[[λ]] = Λ (λ ∈ DK∗)
Sem[[x]] = [[x]] (x ∈ DK∗−{λ})

With these notations, let A be inductively defined in
Backus Normal Form:

A ::= Ω | Λ | [[x]] | A + A | A ◦ A
Definition 5. For α, β ∈ A , we define α = β, if α(s)
= β(s) for any s ∈ S.
(1) The addition + is defined on A : For s ∈ S,

(α+β)(s) = α(s)∪β(s)
(2) The multiplication ◦ is defined on A : For s ∈ S,

(α◦β)(s) = ∪t∈α(s) β(t)
We have seen that Ω(s) = /0 and Λ(s) = {s} for

any s ∈ S. It is seen by induction that [[x]]◦ [[y]] = [[xy]]
for x,y ∈ DK∗. Without such reduction to [[xy]] from
[[x]] ◦ [[y]], we pay attention to the algebraic structure
of A . Then we can have a semiring (A ,+,◦,Ω,Λ).

6 CONCLUSION

The algebraic structure of references to website with
situations is abstractly formulated by means of re-
cursion of reference constructions, to make complex
structures of references clearer. The algebraic struc-
ture is equipped with fixed point model, when the
mapping, associated with the recursively constructed
references, may have a consistent fixed point such that
rejective and suspended negations cannot be contra-
dictory to the acquisitive positive..

About algebraic structure of a distributed knowl-
edge system, organized by a tuple of algebraic struc-
tures as multiple knowledge bases, and sequential
applications of such systems, we have the results,
in knowledge management technologies: (a) A state
constraint structure is formulated such that it may rep-
resent a distributed knowledge system and be mod-
eled by fixed point theory. (b) The structure con-
tains common negatives among knowledge bases con-
stituting the whole knowledge system. (c) As re-
gards sequential application of the distributed knowl-
edge systems, the traverses of states contain algebraic
semiring, with multiplication for the concatenation
(to form sequences) and with addition for nondeter-
ministic choices of state transitions, which are caused
by consecutive applications of distributed knowledge
systems.
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