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Abstract: This study presents results on the utility of DJI P4 Multispectral (DJI-PH4) UAV-Drone and Sentinel-2 MSI 
(S2-MSI) satellite datasets for the retrieval of Turbidity and Total Dissolved Solids (TDS) using empirical 
linear regression (ELR), XGBoost (eXtreme Gradient Boosting) and Random Forest Regression (RFR) 
machine learning (ML) models. For the case study of Gaborone dam in Botswana, 21 water sampling points 
were correlated with the corresponding spectral reflectances from DJI-PH4 and S2-MSI imagery. For the 
estimation of Turbidity, XGBoost gave the best prediction results with average training accuracy of R2 = NSE 
= 0.999, MAE=0.001 NTU, RMSE = 0.001 NTU and PBIAS = 0.1% for both the DJI-PH4 and S2-MSI 
sensors. XGBoost performed better than ELR and RFR at the model training phases, however its prediction 
of Turbidity in testing was lower than ELR but nearly same as RFR. In predicting TDS from both sensors, 
XGBoost had the highest performance with equivalent accuracy measures as for the prediction of Turbidity. 
Both the training and testing results for the estimation of TDS is accurate from the sensors, with ELR 
marginally outperforming the XGBoost and RFR in the testing phase with R2 = 0.998, MAE=0.338 mg/L, 
RMSE = 0.435 mg/L and NSE = 0.858. For the prediction of Turbidity, all the ML models gave good training 
results from the drone and Sentinel-2 data except for RFR in the case of Sentinel-2. The introduction of 
ensemble ELR-XGBoost model significantly improved the prediction of the water quality parameters from 
the drone and Sentinel-2 datasets. With the potential of providing high-frequency and large spatial coverage 
observational data in the near-real-time mode, the results of this study demonstrate the applicability of UAV-
drone for the retrieval of Turbidity and TDS physical water quality parameter in dam reservoirs. 

1 INTRODUCTION 

For dam water reservoirs, the spatiotemporal 
monitoring of water quality is important for the 
determination of the impacts of pollution due to 
anthropogenic activities as well as the environmental 
health of the dam catchments. While the present 
global focus is mostly on water quantity and its 
distribution, the relatively weak water source 
management strategies eventually contribute to poor 
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water quality which ends up undermining the 
availability and supply of water resulting into health 
and environmental losses. 

In most developing countries, dam water reservoir 
management institutions rely on traditional water 
quality monitoring approaches through sporadic 
sampling and laboratory testing. These in-situ 
approaches are however costly, labour-intensive, 
time-consuming, hazardous, and are not able to 
adequately assess the entire reservoir or dam water 
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body (Ouma et al., 2018). To overcome these 
limitations, near real-time, cost-effective, and non-
invasive semi-automated techniques with adequate 
spatiotemporal coverages are preferred. To this 
effect, the use of high spatial and spectral resolution 
remote sensing data has been recommended (Shi et 
al., 2022).  

In addition to satellite data, the growing 
innovations in near-earth surface remote sensing 
techniques such the use of Unmanned aerial vehicles 
(UAVs) are beginning to compensate for the 
limitations in acquiring high spatiotemporal 
resolution data and might soon be successful in 
acquiring multiscale data for water quality 
monitoring. Because of their potential for higher 
spectral, spatial and temporal data acquisition, 
affordability, simplicity to operate, and minimal 
susceptibility to cloud interferences, UAVs have the 
ability to acquire the desired high-resolution image 
data for near-real-time monitoring of water pollution 
in terms of water quality parameters (WQPs). 
Previous studies have tested the use of UAVs to 
monitor the concentration and distribution of TSS, 
Chl-a, TP, Total Nitrogen (TN), permanganate index 
(CODMn), and metal ions in water bodies (Chen et 
al., 2021).  

This paper presents pilot study results on the use 
of UAV-derived imagery from Phantom DJI P4 
Multispectral Drone (DJI-PH4) in comparison with 
Sentinel-2 MSI (S2-MSI) satellite data for the 
retrieval of Turbidity and Total Dissolved Solids 
(TDS) in Gaborone dam (Botswana). While 
Turbidity is a measure of the water transparency and 
is an indicator of the distribution of sediments or 
total suspended solids (TSS), TDS represents the 
sum of all dissolved ions and organic matter present 
in a water sample, and thus an important indicator of 
overall water-quality. 

To improve on the drawbacks and limitations of 
the empirical, semi-analytical and matrix inversion 
models and for the effective estimation of WQPs 
from remote sensors, generalized models that are 
suitable for automatic update of WQPs estimations 
for a given water body are more desired (Chen et al., 
2021). To correlate the ground measured WQPs and 
water reflectance from remote sensors, this study 
applied Empirical Linear Regression (ELR), 
XGBoost and RF Regression (RFR) machine 
learning algorithms for the modelling of the linear 
and nonlinear relationships between imagery 
spectral information and ground measured WQPs. 
The objectives of this study were to: (1) compare the 
feasibility of UAV-drone and Sentinel-S2 
multispectral imagery for the retrieval Turbidity and 

TDS water quality parameter in dam reservoirs, and 
(2) explore the potential and performance of ML 
algorithms for water quality parameter predictions in 
dam reservoirs. 

2 MATERIALS AND METHODS 

2.1 Study Area 

The case study is Gaborone dam, located in southern 
eastern part of Botswana (Figure 1). The dam which 
started operating in 1964 is managed by Water 
Utilities Corporation (WUC) and has a storage 
capacity of 141.4 million cubic meters (MCM) 
(Ouma et al., 2022). The measured ranges for the 
parameters were: Turbidity (20.3-64.8 NTU) and 
TDS (112.8-117.6 mg/L).  

 

Figure 1: Location of Gaborone dam in Botswana and 
distribution of sampling points (SP1-SP21). 

 

Figure 2: Spatial profiles of measured Turbidity and TDS 
concentrations in Gaborone dam (Botswana).  

2.2 Data 

2.2.1 Water Quality Parameter Sampling  

Sampling was carried out from twenty-one (21) 
spatially distributed sampling stations located over 
the entire reservoir (Figure 1).  The concentrations of 
the WQPs were measured using a water depth 
sampler on 28 November 2022. The spatial profiles 
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of the measured WQPs are presented in Figure 2 for 
Turbidity and TDS. 

2.2.2 Multispectral UAV-Drone Data 

Drone image data was captured with the DJI 
Phantom 4 Pro using the five cameras for RGB, NIR 
and Red-Edge. Table 1 summarizes the spectral and 
spatial characteristics of the DJI-PH4 camera 
systems. The drone data was acquired in DNG 
format, with image width and height dimensions of 
5472×3648, field of view (FOV) of horizontal 
(73.7°) and vertical (53°) and the image bit depth of 
16-bits. The DJI-PH4 images were collected at 
flying height of 50 m with spatial resolution of about 
3.6 cm per pixel. Geometric correction was carried 
out using the affine transformation of the image 
coordinates to GPS measured sampling point 
coordinates.  

The reflectance values of the five multispectral 
bands were recorded for each water sampling data 
point using the mean pixel value with a window size 
of 20×20 pixels as recommended in (Yang et al., 
2022), to reduce errors in locating the sampling 
points and their reflectances. During the data 
collection, the sun glint effect was minimized but 
not eliminated completely due to lack of either a 
downwelling light sensor (DLS) or spectrally 
calibrated Lambertian reference panels within the 
FOV of the camera for acquiring information on the 
irradiance. Thus, to minimize the sun glint effects, a 
dual radiometric correction approach comprising of 
first histogram matching of the drone reflectance to 
the radiometrically corrected Sentinel-2 MSI, and 
then Linear Scanning Bias Correction (LSBC) 
adjustment to the Landsat-9 was applied. Eq. 1 
shows the calculation of final DJI-PH4 spectral 
reflectance using LSBC. Detailed approach for 
LSBC is outlined in (Ouma et al., 2024). 

{ }

{ }1

9

2 1

DN

m DNL

D D
m DN

DN DN
μ
μ

= ×  (1)

where 1DDN  is the histogram adjusted drone 

reflectance (DN), { }9m DNLμ  is the mean of Landsat-9 

reflectance, { }1m DNμ  is the mean of histogram 

adjusted drone reflectance, and 2DDN  is the 

corrected drone reflectance.  
Figure 3 presents the spectral reflectance patterns 

from the 21 sampling points from DJI-PH4 (Figure 
3(a)) and for S2-MSI (Figure 3(b)).  

2.2.3 Sentinel-2 MSI Data 

Sentinel-S2 MSI (S2-MSI) data was acquired from 
the Copernicus Open Access Hub European Space 
Agencies (https://scihub.copernicus.eu/). The S2-
MSI is a high-resolution multispectral imaging 
mission which includes two twin satellites (Sentinel-
2A and Sentinel-2B) in the same sun-synchronous 
orbit at a mean altitude of 786 km but offset 180 
degrees to give a revisit frequency of 5 days at the 
equator. The attributes of the S2-MSI satellite 
imagery are presented in Table 1. An average spectral 
reflectance of 2×2 pixel neighbourhood configuration 
was used to accurately correlate the reflectance with 
the WQPs. 

From the five multispectral bands in both sensors, 
84 bands combinations were derived and compared 
for the retrieval of Turbidity and TDS. 

2.3 Methods 

2.3.1 Empirical Linear Regression  

The multivariate regression model for estimating the 
water quality parameters is developed by determining 
the quantitative relationships between the measured 
 

(a) (b) 

Figure 3: Spectral reflectance from sampling points from (a) DJI-PH4 UAV-drone, and (b) Sentinel-2 (S2-MSI). 
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Table 1: Spectral and spatial band characteristics for the DJI P4 Multispectral and Sentinel-S2 MSI image data.  

Date of 
Acquisition 

Band 
Number 

Spectral 
Band 

Band Central 
Wavelength iρ  (nm) 

Band 
Width (nm) 

Spatial 
Resolution (m) 

DJI-PH4 
Drone 

Sentinel-2 
MSI 

DJI-PH4 
Drone 

Sentinel-2 
MSI 

DJI-PH4 
Drone 

Sentinel-2 
MSI 

28-Nov-
2022 

B1 ( 1DBρ ) Blue (B) 450 490 32 65 0.036 10 

B2 ( 2DBρ ) Green (G) 560 560 32 35 0.036 10 

B3 ( 3DBρ ) Red (R) 650 665 32 30 0.036 10 

B4 ( 4DBρ ) NIR 840 842 52 115 0.036 10 

B5 ( 5DBρ ) Red-Edge 
(RE) 

730 740 32 20 0.035 20 

 
in-situ water quality parameter and the reflectance 
from the satellite spectral data. Linear: * ( )ia bρ λ +  ; 

polynomial: 1 2* ( ) * ( ) * ( )n n n
i i ia b c dρ λ ρ λ ρ λ− −+ + +

(n ≤ 3); logarithmic: 10*log ( )ia bρ λ + ; power: 

* ( )b
ia ρ λ , and exponential: * ( )*e iba ρ λ  regression 

models were used. In the ELR, 15 sampling points 
data were used for the model development and the 
remaining 6 data points used in the testing the model. 

To determine the best-fit model, 
2R  and the 

statistical metrices in section 2.3.4 below were used. 

2.3.2 XGBoost Algorithm 

Extreme Gradient Boosting (XGBoost) is based on the 
decision-tree optimization concept and built on the 
gradient descent approach. Utilizing the gradient 
descent, XGBoost optimizes the loss function while 
preventing overfitting by employing regularization 
parameters (Le et al., 2021). The fundamental 
approach in XGBoost algorithm is on the basis of 
minimizing the objective function which comprises of 
the loss function and regularization terms. Boosting 
occurs in instances when the model’s prediction is not 
accurate or complex. To solve such instances, the 
algorithm skews the observational distributions to 
include difficult measures within the probable sample. 
Thua, the weak student focuses more on predicting the 
complex instances accurately. A more powerful 
XGBoost predictor is then derived combining all the 
prediction rules into a single model (Le et al., 2021). 

2.3.3 Random Forest Regression 

Like XGBoost, RFR is an ensemble learning 
regression based on a decision tree algorithm. It is an 
extended decision tree algorithm that combines the 
decision trees; however, each tree is trained 
independently. The RFR principle entails randomly 
generating different unpruned CART decision trees, 

in which the decrease in Gini impurity is regarded as 
the splitting criterion (Breiman, 2001). As a bootstrap 
resampling and bagging approach, the bootstrap 
samples from the training dataset are fitted with an 
unpruned decision tree for each bootstrap sample. At 
the decision tree nodes, variable selection is made on 
small random subsets of the predictor variables and 
the best split from the predictors used to split the 
node. The trees in the forest are averaged or voted to 
generate output probabilities and a final model that 
generates a robust regression model.  

2.3.4 Prediction Performance Evaluation 

The statistical measures in Eqs. 2-6 were used to 
determine the accuracy of the regressions between the 
predicted and the measured WQPs. In Eqs. 2-6, 
coefficient of determination (R2), mean absolute error 
(MAE), root mean square error (RMSE), Nash–
Sutcliffe model efficiency (NSE) coefficient and 

percent bias (PBIAS) are used. ix  and iy  are 

respectively the laboratory measured (observed) and 
the model predicted WQPs concentrations at each 
sample point i for n samples.  

( )
( ) ( )

2
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2 2

1 1
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R
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y y x x

y xy x
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= =
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− − ⋅
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n
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i
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n
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x y
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−  (4)

( ) ( )2 2
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NSE 1 /
n n
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3 RESULTS AND DISCUSSIONS 

3.1 Estimation of Turbidity from  
DJI-PH4 and Sentinel-2 MSI 
Sensors 

The results for the prediction of Turbidity using DJI-
PH4 and S2-MSI are respectively presented in 
Figures 4(a)-(b) for the best regression model using 
ELR, Figures 4(c)-4(d) for XGBoost and Figures 
4(e)-4(f) for RF. With third-order polynomial 
regression, the ELR modelling showed that Turbidity 
was predicted from the two sensors with high R2 
accuracy of 0.908 (DJI-PH4) and 0.942 (S2-MSI). 
The blue (B1) and the Red-Edge (B5) were observed 
to be the most significant in the prediction of 
Turbidity from DJI-PH4. From S2-MSI, blue (B1) 
and NIR (B4) bands were the most informative band 
combinations in the prediction of Turbidity using 
ELR.  

The results for the XGBoost in Figure 4(c)-4(d) 
indicate that a combination of the first three bands for 
the drone and band difference between red (B3) and 
Red-Edge (B5) from Sentinel-2 had the most 
significant contributions to the prediction of 
Turbidity, with perfect model training prediction 
accuracy of for both sensors. The performance of RF 
was however slightly lower than ELR and XGBoost, 
with regression R2 of 0.775 and 0.392 respectively 
from drone and satellite data.  

From the training results in the prediction of the 
concentration of Turbidity in Gaborone dam, the 
results show that both DJI-PH4 drone and Sentinel-2 
gave good results when using the XGBoost model, 
with the least MAE and RMSE of less than 0.001 
NTU, NSE = 100% and negligible PBIAS. While 
good results were obtained for the testing phase in 
terms of low PBIAS, the low number and the 
variability in the concentration of Turbidity for the six 
testing points resulted in low R2 for XGBoost and RF 
and with corresponding higher MAE and RMSE as 
compared to the ELR results. These results indicate 
that there is a high variability in the concentration of 
Turbidity within the dam and therefore more 
sampling points are necessary to improve on the 
prediction accuracy of the machine learning 
algorithms especially at the testing phase.  

For the estimation of Turbidity, the five bands are 
observed to yield the good results from both sensors. 
This indicates that the reflectance of turbid 
particulates could be much higher in the lower 
spectral wavelengths. In similar studies, Prior et al. 
(2021) demonstrated the retrieval of Turbidity in 

streams with R2 = 0.78 using drone image data. 
Similar results were also obtained by (Lotfi et al., 
2019), with the highest correlation obtained between 
the reflectance values of red and blue bands and 
measured Turbidity. Nearly similar results are 
observed in the current study in which the visible 
bands models for both sensors are found to be useful, 
in addition to the Red-Edge band.  

3.2 Retrieval of TDS from DJI-PH4 
and Sentinel-2 MSI Sensors 

TDS prediction results from DJI-PH4 and S2-MSI are 
respectively presented in Figures 5(a)-(b) for the best 
regression models using ELR, Figures 5(c)-5(d) using 
XGBoost and Figures 5(e)-5(f) using RF. From the 
ELR results, TDS was predicted from DJI-PH4 and 
S2-MSI data with respective R2 of 0.277 and 0.991 
(Figure 5). Using the DJI-PH4 sensor, the green (B2) 
and NIR (B4) combination was the most significant, 
while blue and Red-Edge bands were the most 
suitable for the prediction of TDS using XGBoost and 
RF. For S2-MSI, the different models determined 
different band combinations as the most informative, 
with the NIR being significant for both ELR and 
XGBoost models.  

For both sensors, the best results for the prediction 
of TDS is obtained using XGBoost. With the spectral 
reflectance from band 1 (B1) and band 5 (Red-Edge) 
for DJI-PH4 sensor, the XGBoost model showed 
perfect training and accurate model testing outcomes 
with average accuracy metrices of R2 = NSE = 0.835; 
MAE = 0.714 mg/L; RMSE = 0.804 mg/L, and 
negligible PBIAS. The training and testing for TDS 
prediction with RF using the same band combination 
of blue (B1) and Red-Edge (B5), gave acceptable 
average prediction results however with lower 
accuracy than XGBoost with R2 = NSE = 0.566; 
MAE = 0.718 mg/L; RMSE = 0.977 mg/L, and 
PBIAS of less than 1%. ELR performed better than 
RF but marginally lower than XGBoost. 

The S2-MSI results are observed to be nearly 
similar to the DJI-PH4 results, except for ELR relying 
on the combination of NIR and Red-Edge bands for 
the best regression results, while XGBoost performed 
well with the combination of blue and NIR bands, and 
RF combined all the bands except NIR. The results 
indicate that both sensors are suitable for detecting 
the variability of TDS in the reservoir with best 
accuracy from XGBoost. 

Despite the low R2 for both WQPs, the observed 
output test values were within suitable standard 
deviations from the observed data especially for the 
TDS results. From previous studies, Peterson et al 
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(2019) modelled TDS using the five ML models 
including multi-linear regression (MLR), partial 
least-squares regression (PLSR), Gaussian process 
regression (GPR), support vector regression (SVR), 
and extreme learning machine regression (ELR), and 
found that the SVR was suitable for training while 
MLR was best for testing. Further, in the prediction 
of TDS, Asadollahfardi et al (2012) developed ANN 
model for TDS prediction in the Talkheh Rud River 
(Iran), with high accuracy of R = 0.964. 

3.3 Further Analysis 

It is observed that for XGBoost and RF, the few 
numbers of testing datasets resulted in the overfitting 
effect during the testing phase. The overfitting 
implies that the model learned more about the 
individual data characteristics, hence good training 
results, but did not significantly learn about the 
substantive discipline of the dataset due to the few 
samples.  

   

(a) (b) (c) 

  

(d) (e) (f) 

Figure 4: Correlation between in-situ measured and predicted Turbidity concentrations from DJI-PH4 and Sentinel-2 MSI 
sensors using: (a)-(b) Empirical Linear Regression (ELR), (c)-(d) XGBoost (XGB) and (e)-(f) Random Forest (RF).  

   

(a) (b) (c) 

  

(d) (e) (f) 

Figure 5: Correlation between in-situ observed and predicted TDS concentrations from DJI-PH4 and Sentinel-2 MSI sensors 
using: (a)-(b) Empirical Linear Regression (ELR), (c)-(d) XGBoost (XGB) and (e)-(f) Random Forest (RF). 
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The spatially interpolated results using Inverse 
Distance Weighting (IDW) for the observed 
Turbidity and TDS are respectively presented in 
Appendix (a) and Appendix (d). The predicted water 
quality parameters from drone data using XGBoost as 
the best regression model is visually presented in 
Appendix (b) and Appendix (e).  

From the visualization of the IDW interpolation 
results in the Appendix, it is inferred that the use of a 
single ML model may not always give accurate 
prediction results. This, is attributed in part to the 
complexity of bio-optical responses of the water 
quality parameters and to the few number sampling 
stations, requires the development of ensemble ML 
approaches that combines the advantages of the of the 
optimal machine learning algorithms for a given 
WQP (Satish et al., 2024).  

For the minimization of overfitting, not only 
should the sampling data be increased, but ensemble 
ML can be modelled such that the inputs of the second 
stage contain both the spectral indices and the 
prediction results from the first-stage ML method. 
The results in Appendix (c) and Appendix (f) shows 
the improvements in the prediction of Turbidity and 
TDS with the ensemble ELR-XGBoost in using the 
DJI-PH4 drone data. 

4 CONCLUSIONS 

In this study, spectral indices with different band 
combinations were constructed from the spectral 
reflectances of DJI-PH4 Multispectral UAV-Drone 
and Sentinel-2 satellite data for the retrieval of 
concentrations of Turbidity and TDS water 
parameters in a dam reservoir. For the case study of 
Gaborone dam (Botswana), the sensor spectral 
reflectance and the in-situ measured WQPs were 
modelled using univariate Empirical Linear 
Regression (ELR), XGBoost and RFR machine 
learning models. For both WQPs, XGBoost 
performed better in the model training phase, 
however third-order polynomial ELR gave good 
results for training and testing of the drone and 
satellite reflectance data. Turbidity prediction results 
from the drone and satellite data showed that the ELR 
multivariate regression model outperformed the 
XGBoost in data testing and was also better than RF 
in both training and testing phases. For the prediction 
of TDS, XGBoost gave the best results for both the 
drone and satellite data. The XGBoost and ELR 
ensemble algorithm demonstrated the ability to 
improve water quality parameter inversion as the 
ensemble WQP prediction results were higher than 

from single ML models. While the absolute accuracy 
for the retrieval of WQPs still requires improvements 
such as the inclusion of seasonal variability 
measurements and increasing the number of sampling 
stations, the current results on the WQPs prediction 
using machine learning algorithms demonstrates the 
potential of using the drone and satellite sensors for 
spatial retrieval of Turbidity and TDS in dam 
reservoirs. The proposed histogram equalization and 
linear bias adjustment of the drone spectral 
reflectances based respectively on Sentinel-2 MSI 
and Landsat-9 OLI2 satellite data is found to provide 
suitable results. Based on the comparatively similar 
WQPs estimation results from the drone and satellite 
sensors, the sensors can be integrated to exploit the 
high temporal resolution of drone sensors, and the 
dynamic spectral band wavelengths in the Sentinel-
MSI for improved water quality monitoring in dam 
reservoirs. 
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APPENDIX 

 
Appendix: Inverse Distance Weighting (IDW) interpolated: (a) measured Turbidity, (b) XGBoost predicted Turbidity from 
DJI-PH4 Drone data; (c) ensemble ELR-XGBoost predicted Turbidity from DJI-PH4 Drone data; (d) measured TDS, (e) 
XGBoost predicted TDS from DJI-PH4 Drone, and (f) ensemble ELR-XGBoost predicted TDS from DJI-PH4 Drone data. 
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