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Abstract: Entity resolution, the process of discerning whether multiple data refer to the same real-world entity, is crucial
across various domains, including education. Its quality assessment is vital due to the extensive practical
applications in fields such as analytics, personalized learning or academic integrity. With Python emerging as
the predominant programming language in these areas, this paper attempts to fill in a gap when evaluating the
qualitative performance of entity resolution tasks by proposing a novel consistent library dedicated exclusively
for this purpose. This library not only facilitates precise evaluation but also aligns with contemporary research
and application trends, making it a significant tool for practitioners and researchers in the field.

1 INTRODUCTION

The field of entity resolution (ER), integral to nat-
ural language processing and emerging technologies
in education, is pivotal in understanding and link-
ing data across multiple sources. Some definitions
view it as identifying and linking data from multiple
sources(Qian et al., 2017). However, it’s argued that
this identification and linking is a more specialized
process(Talburt, 2011).

ER, also known as record linkage, data dedupli-
cation, merge-purge, named entity recognition, entity
alignment, and entity matching, plays a significant
role in educational communication and collaboration
tools, facilitating the information exchange between
parents, teachers and students. It can also be useful
to track the progression of alumni, by linking var-
ious data sources to provide meaningful insights on
the career trajectories of graduates. It is a key com-
ponent in AI literacy, particularly in those machine
learning tasks that involve identifying how disparate
pieces of information correlate to the same real-world
entity. ER itself has numerous implementations that
rely on machine learning and is important for AI lit-
eracy for that reason, too(Li et al., 2020). We rec-
ognize the importance of accurate and efficient ER in
both individual learning outcomes and broader soci-
etal impacts. Enhancing research integrity through
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plagiarism detection or enabling personalized learn-
ing by tracking a student’s preferences across learning
domains might qualify as fields of study in their own
right. For example, the work of (Chen et al., 2021)
points out the importance of University and profes-
sional information for career exploration. Their sur-
vey highlights that matching the educational offering
to fit student goals leads to a higher chance of students
developing successful careers. One can envision sys-
tems that automatically create educational offerings
based on the profiles of students. In this scenario, ER
has the role of automatically building the student pro-
file from heterogeneous information sources. Another
use case for automatically generated profiles might be
career recommender systems, for example. The ideal
outcome from using the information stored in these
profiles would be finding the best possible match be-
tween educational offering and student aspirations.

What if ER provides us with a misleading pro-
file? At best, we realize this is the case, stop trust-
ing the ER system and revert to a state where we
don’t benefit from the information stored in the pro-
files generated through ER. At worst, we do not re-
alize the system error and proceed career exploration
based on misleading profiles. This leads to bad career
choice recommendation and more severe risks related
to wasted time, financial misfortune, professional dis-
satisfaction, stagnation in personal development or
even health and relationship concerns. Adopting the
right ER system is desirable for obtaining the initial
benefits of making more informed decisions faster.
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ER systems should not be adopted and cannot be
maintained without measuring the quality of their out-
comes.

In this context, the paper introduces a new Open
Source library that is hosted in a Git repository on
GitHub(PyResolveMetrics, 2023). The library offers
implementations of well known metrics for evaluating
ER, contributing significantly to metrics and evalua-
tion in educational technologies. Thus, this library
could have a role in advancing tools and methodolo-
gies in the realm of education and technology by al-
lowing a more informed process for developing tools
that make use of ER. The book (Schütze et al., 2008)
studies various methods for evaluating the perfor-
mance of information retrieval systems that help in
assessing how effective these systems are in search-
ing, identifying, and retrieving relevant information
from large datasets. The metrics revolve around the
notion of relevant and irrelevant information that is
retrieved by the system. It is asserted that what is rel-
evant is stipulated in a ground truth which is depen-
dant upon an information need. ER systems partly
function as information retrieval systems, as they de-
termine whether multiple data points refer to the same
real-world entity. This capability to discern data iden-
tity within a context is the fundamental information
need of any ER system. Is it therefore fitting to use in-
formation retrieval metrics for entity resolution? This
seems to be the consensus drawn in the scientific lit-
erature as we shall see in the next section. Our li-
brary implements various information retrieval met-
rics adapted for ER.

It’s also important to acknowledge the distinct en-
tity resolution models. The library sets itself apart by
organizing metrics based on their compatibility with
ER models, influenced by the underlying differences
in data structures that are characteristic to each model.
Special attention is given to interoperability and the
seamless integration of the library into the Python
programming language ecosystem. Its key features
are: embracing an OpenSource licensing model, ef-
ficient implementation using state of the art libraries
under a very popular platform, and a design that is
agnostic to the ER implementation.

After this introduction, we overview two existing
mathematical models for ER which are widely used
and still represent the state of the art. Then we go
through other work that relates to this paper. Subse-
quently, we present the new library and pay special
attention to the reasons for implementing it. We go
over the metrics that are implemented, the technolog-
ical and design choices that were made, an example
of using the library and a performance evaluation of
the functions implemented by the library. In the end

we offer some conclusions and present aspects that
require more work.

2 ENTITY RESOLUTION
MODELS

Fellegi-Sunter Model. In the late 1960s Ivan Fel-
legi and Alan Sunter wrote the seminal paper(Fellegi
and Sunter, 1969) for record linkage — what would
later be known as ER. To this day, their mathematical
model based on probability theory is the most popu-
lar way of formalizing the ER problem. In this math-
ematical model, ER is a function that aids in prob-
abilistic decision making. In this model of ER, the
process primarily involves comparing data from two
sources. The essential step is matching two items —
one from each source, after which a decision is made
to categorize the match as a ‘link’, ‘non-link’, or ‘pos-
sible link’. Consequently, any matching algorithm un-
der this model typically returns pairs of items from
the original data sources, each tagged as one of these
categories. However, in practical applications today,
this process is often simplified to just returning a list
of pairs labeled as ‘links’. This intuitive explanation
gives us the structure of the input we can expect when
we use the Fellegi-Sunter ER model: an iterable se-
quence of pairs.

The metrics that are implemented with the Fellegi-
Sunter model of entity resolution in mind will accept
iterable sequences of pairs as input where the ground
truth and the result of the ER task are concerned.
Algebraic Model. The algebraic model for ER, ini-
tially conceived for assessing information quality in
large datasets(Talburt et al., 2007), was later refined
to describe the ER process itself(Talburt, 2011). This
model treats ER as an algebraic equivalence relation
over a given input set, which can include data from as
many original sources as necessary. The unique as-
pect of this model lies in the characteristics of equiva-
lence relations(Halmos, 1960). These relations create
partitions over the input set, with each partition com-
ponent equivalent to an equivalence class of the rela-
tion(Talburt, 2011). Conversely, a partition over a set
can also induce an equivalence relation. With this in
mind, evaluating the outcome of an ER task becomes
as easy as comparing two partitions: the partition that
induces the ideal equivalence relation (the gold stan-
dard or ground truth) to the partition that is produced
by the ER task.

The library supports a few metrics for comparing
partitions, all of which expect that a partition is repre-
sented as a list of sets.
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3 RELATED WORK

Measuring ER quality was a subject of inter-
est ever since the first paper on the subject sur-
faced(Newcombe et al., 1959). It speaks about ac-
curacy and contamination similarly to the current no-
tions of true and false positives. The fundamental the-
ory of record linkage(Fellegi and Sunter, 1969) of-
fers a probabilistic approach to evaluating the success
of an ER task. It suggests methods to affect the re-
sults through the selection of suitable thresholds for
defining success and failure. It also provides mecha-
nisms for properly weighting for independent proba-
bility variables. The literature expands on these tech-
niques in subsequent papers(Winkler, 1990). Some
of the ER evaluation metrics that are a direct result
of this theoretical foundation include match accuracy,
match rate(Jaro, 1989), error rate estimation, rate
of clerical disambiguation(Winkler, 1990) or relative
distinguishing power of matching variables(Winkler,
2014). A lot of effort is spent on estimating and mea-
suring the effectiveness of blocking techniques to re-
duce the input size of the data set used for evaluation
purposes(Winkler, 1990; Jaro, 1989). Measuring ER
performance was and remains a computationally in-
tensive task.

Concerns about using accuracy and match rate are
also voiced(Goga et al., 2015). Thus we see a shift to-
wards metrics used in the related field of information
retrieval. The probabilistic model for ER aligns well
with concepts such as true/false positives/negatives.
Given the extensive history of using ground truths to
assess entity resolution quality, there is a natural fit
for using information retrieval quality metrics. Most
literature on this topic focuses on using information
retrieval metrics where the order in which results are
retrieved is not relevant(Schütze et al., 2008).

Besides the original statistical model for ER, other
models have evolved from it or alongside it. The work
of the InfoLab at Stanford on their Stanford Entity
Resolution Framework(Benjelloun et al., 2009) and
that of the Center for Entity Resolution and Informa-
tion Quality at the University of Arkansas in Little
Rock(Talburt et al., 2007) stand out. These models of
ER also propose new metrics for evaluating ER qual-
ity(Menestrina et al., 2010; Talburt, 2011).

There is ample coverage of the metrics used
for ER in syntheses on the subject(Köpcke et al.,
2010; Maidasani et al., 2012; Talburt, 2011). Clus-
tering metrics such as pairwise and cluster met-
rics(Menestrina et al., 2010; Huang et al., 2006) or
the Rand index(Talburt et al., 2007) seem to be used
more frequently to measure ER quality as time passes.

Numerous systems to perform ER are available.

Some of them include modules to evaluate the per-
formance of a particular ER solution(Köpcke et al.,
2009; Doan et al., 2020; University of Arkansas Lit-
tle Rock, 2012). There are also other Python packages
that implement some or all of the metrics provided by
our library(paulboosz, 2018; Virtanen et al., 2020).

4 PyResolveMetrics

In this context, the necessity for yet another spe-
cialized library dedicated to evaluating ER metrics
might seem redundant. This skepticism is rooted in
the expectation that Python, being a highly popu-
lar programming platform, should already offer high-
quality, reusable tools available for a wide range of
applications — including evaluating ER results.

Upon closer examination of the tools available for
evaluating entity resolution tasks, certain limitations
in the existing assumptions become apparent. There
are indeed numerous libraries offering packages for
computing entity resolution metrics. However, us-
ing a general-purpose library like SciPy raises con-
cerns about interoperability and efficiency. This is
particularly relevant when the sole requirement is to
compute entity resolution metrics, and the additional
features of a comprehensive library are unnecessary.
The challenge of seamlessly integrating ER evalu-
ation routines into a custom built project becomes
even more pronounced when attempting to use the
ones packaged with established ER systems (Univer-
sity of Arkansas Little Rock, 2012), (Papadakis et al.,
2017), (Li et al., 2020), (Doan et al., 2020).

Conversely, when specifically searching for li-
braries that only offer ER metrics, it becomes evident
that some of the essentials for effectively evaluating
ER tasks may be absent(paulboosz, 2018).

Approaching the issue from a different angle, us-
ing metrics from a general-purpose algorithmic li-
brary like Scipy (specifically scipy.metrics) for
ER evaluation requires strict adherence to certain de-
sign choices imposed by the library. For example,
to calculate the Rand index, data clusters must be
mapped with labels, and these labels must be provided
as input. While this might seem simple, the user-
friendliness of such an approach is debatable. The
complexity of adapting existing data and managing
the necessary labels for the package could potentially
rival the complexity of computing the Rand index it-
self, mooting the use of the package. Furthermore, ad-
ditional memory and compute time are also required
to perform the mapping between own data structures
and the ones required by the API contract.

In short, here are the reasons we chose to imple-
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ment such a library:
• Architecturally, adhering to the principle of ‘do

one thing and do it well’ is beneficial. This
approach avoids the biases and dependencies of
general-purpose libraries like SciPy, which can
complicate integration into our custom-designed
software.

• Historically, ER has adapted evaluation tech-
niques from statistics, information retrieval, and
graph theory, tailoring these methods to suit its
specific needs. It seems desirable to standardize
these methods into forms specific to ER.

• Currently, there appears to be no implementa-
tion that consolidates all the metrics useful for
ER evaluation, as identified in scientific literature,
into a single, cohesive unit.

• Our work has a significant component of evaluat-
ing ER outcomes.
Our opinion is that using mathematical models

specific to ER is the best approach for guiding the
library’s design. Since each model significantly im-
pacts the data structures used in evaluation, the li-
brary’s functions are categorized based on the type
of input they support and, implicitly, by the mathe-
matical model they align with. There are a couple of
important assumptions that the library makes, regard-
less of the ER model. One such assumption is that the
quality of the ER output is always measured against a
ground truth(Schütze et al., 2008). The other assump-
tion is that the ground truth and the ER result are both
structured under the same mathematical model.

4.1 Supported Metrics

Statistical quality metrics, extensively detailed in
the literature(Schütze et al., 2008; Maidasani et al.,
2012), are the most common method for measuring
ER performance as evidentiated by their almost ubiq-
uitous usage(Köpcke et al., 2009; Goga et al., 2015;
Li et al., 2020; Obraczka et al., 2021). These met-
rics are linked to the Fellegi-Sunter model for ER
which provides clear definitions of Type I and Type
II errors(Winkler, 1990). Type I and Type II errors
clarify the concepts of true positives, true negatives,
false positives, and false negatives as they are used in
entity resolution. Understanding these concepts ne-
cessitates referencing the M (matches) and U (non-
matches) sets as defined in the seminal paper on the
model.

Depending on the expected location of a pair pro-
duced by the entity resolution function, we define:

• true positives as pairs predicted to be in M that
should be in M,

• false positives, or type I errors, as pairs predicted
to be in M, but should be in U ,

• true negatives as pairs predicted to be in U that
should be in U , and

• false negatives, or type II errors, as pairs pre-
dicted to be in U , but should be in M.

Several metrics based on these concepts exist,
though the effectiveness of some has been ques-
tioned(Goga et al., 2015). With this in mind we finally
define the three quality metrics that are supported by
our library:

Precision =
true positives

true positives+ f alse positives
(1)

Recall =
true positives

true positives+ f alsenegatives
(2)

F1Score = 2 · Precision ·Recall
Precision+Recall

(3)

Precision (or the positive predictive value) is de-
fined as the number of correct predictions that were
made in relation to the total number of predictions
that were made. Recall (or sensitivity) is defined as
the number of correct predictions that were made in
relation to the total number of positive predictions
that could have been made (which corresponds to the
number of items in the ground truth). The F1 score is
the harmonic mean of the precision and the recall and
it is used to capture the tradeoff between precision and
recall(Maidasani et al., 2012).

Algebraic metrics is the generic name we use for
‘cluster metrics’(Rand, 1971; Maidasani et al., 2012)
and ‘pairwise metrics’(Maidasani et al., 2012; Men-
estrina et al., 2010) because their foundation is al-
gebraic and because they are linked to the algebraic
model for ER. Most of the algebraic metrics imple-
mented by the library are an exercise in using opera-
tions on sets, while the rest focus on matrix operations
with a dash of combinatorics:

• Pairwise metrics (precision, recall and F-
measure)(Menestrina et al., 2010; Maidasani
et al., 2012)

• Cluster metrics (precision, recall and F-
measure)(Huang et al., 2006; Maidasani et al.,
2012)

• Talburt-Wang Index(Talburt et al., 2007)

• Rand(Rand, 1971) and Adjusted Rand In-
dex(Hubert and Arabie, 1985)

Their input arguments (the ground truth and the ER
result) are represented as partitions over the same set.

The Rand index is one of the first metrics used
to compare the similarity between two different data
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clusterings. It quantifies the agreement or disagree-
ment between these clusterings by considering pairs
of elements.

RandIndex =
(a+b)(n

2

) (4)

The main components of the Rand index are as fol-
lows: a: Represents the number of times a pair of
elements belongs to the same cluster across both clus-
tering methods, b: Represents the number of times a
pair of elements belongs to different clusters across
both clustering methods,

(n
2

)
: denotes the number of

unordered pairs in a set of n elements.
The Rand index always takes values in the [0,1)

interval.
A variation on the Rand Index is the Adjusted

Rand Index for chance grouping of elements. It ac-
counts for agreements between data clusterings that
occur due to chance (Yeung and Ruzzo, 2001). The
Adjusted Rand Index is calculated by using the fol-
lowing formula:

ARI =
RandIndex−E

max(RandIndex)−E
, (5)

where E is the expected value of the RandIndex. The
Adjusted Rand index is valued in the interval [−1,1].
For a comprehensive understanding of the Adjusted
Rand Index and its calculation, we recommend con-
sulting the detailed and informative work presented in
the study by (Warrens and van der Hoef, 2022) on the
subject. For both of these indexes, higher scores indi-
cate a closer alignment between the compared parti-
tions.

A metric that attempts to approximate the Rand
Index is the Talburt-Wang Index which counts the
number of overlapping subsets of two partitions over
the same input set. Assuming A and B are two parti-
tions over the same input set of elements, the Talburt-
Wang Index is given by the formula:

∆(A,B) =
|A| · |B|

Φ(A,B)2 (6)

where Φ(A,B) = ∑
|A|
i=1{B j ∈ B|B j ∩Ai ̸= /0}.

This metric approximates the Rand Index with-
out requiring the expensive counting of true positives,
false positives, true negatives or false negatives (Tal-
burt et al., 2007). It is valued within the same interval
as the Rand Index.

Our library implements other popular metrics that
can be used for comparing partitions: pairwise pre-
cision, pairwise recall and their harmonic mean (the
pairwise F1 measure)(Maidasani et al., 2012).

If we have two sets X and Y , the pairwise precision
is given by the ratio of pairs that are in both sets to the

total amount of pairs of the reference set.

PP(X ,Y ) =
|Pairs(X)∩Pairs(Y )|

|Pairs(X)|
(7)

The pairwise recall is given by the ratio of pairs that
are in both sets to the number of pairs in the compar-
ison set(Maidasani et al., 2012).

PR(X ,Y ) =
|Pairs(X)∩Pairs(Y )|

|Pairs(Y )|
(8)

The pairwise F-measure is given by the harmonic
mean of the pairwise precision and pairwise recall.

PF =
2 ·PP ·PR
PP+PR

(9)

The library computes partition metrics by iteratively
analyzing equivalence classes within each partition
generated by the ER equivalence relation and extract-
ing element pairs from each subset.

Finally, our library supports ‘cluster mea-
sures’(Maidasani et al., 2012). Cluster precision is the
ratio of the number of completely correct clusters to
the total number of clusters resolved, whereas cluster
recall is the portion of true clusters resolved(Huang
et al., 2006). The harmonic mean of the cluster pre-
cision and cluster recall is typically called the cluster
F-measure. In this paragraph ‘clusters’ refer to the
equivalence classes of the entity resolution relation as
it is formalized in the algebraic model.

Given two partitions A and B, the cluster measures
are given by the following formulae:

CP(A,Y ) =
|A∩B|
|A|

(10)

CR(A,Y ) =
|A∩B|
|B|

(11)

CF =
2 ·CP ·CR
CP+CR

(12)

4.2 Technology

The technology used for implementing our library is
described in the Appendix (Olar, 2024) available on-
line.

4.3 Example Usage

To provide a visual outlook over the metrics pro-
vided by our library we are using a toy data set(Olar,
2023) containing near duplicates and the PPJoin(Xiao
et al., 2011) entity matching algorithm to perform ER.
The PPJoin algorithm matches items by using prefix
lengths determined using a Jaccard coefficient t.

We split the data in the toy data set into two data
sets by column. The resulting data sets are:
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DG1: with ‘name’, ‘manufacturer’, ‘price’,
‘id’, and

DG2: with ‘description’, ‘name’, ‘id’

Because we have split the data column-wise, we
know exactly what the ground truth should be for each
of the metrics, assuming that each row in the original
toy data set refers to a distinct real-world entity. Be-
cause we are working with two data sets, the ground
truth for the statistical model is the same as the ground
truth for the algebraic model: a list of pairs of match-
ing items obtained by iterating over DG1 and DG2
using the same cursor.

All that’s left is to apply the PPJoin algorithm on
DG1 and DG2 and plot the values of the metrics pro-
vided by the library for values of t in the interval [0,1)
at increments of 0.01. The plots that show the out-
come are available online in the accompanying Ap-
pendix (Olar, 2024).

4.4 Performance

CPU performance is usually evaluated by through-
put (e.g millions of operations per second or MIPS).
However it is meaningless to compare throughput on
different CPU architectures (Jain, 1991).

A similar concern can be raised about memory
profiling in relation to the underlying operating sys-
tem. Due to the variability of the outcomes during ex-
perimentation and the fact that all memory consump-
tion is very dependent on the operating system and
standard C library used for compiling and linking the
Python interpreter, we found memory profiling not to
provide great insights.

Under these circumstances we have chosen to
elaborate a method of profiling the CPU usage of the
library which is agnostic to the underlying hardware.
CPU profiling is useful in the context of judging the
metrics provided by the library relatively to one an-
other.

To prevent the ER task from interfering with pro-
filing the metrics library, we run our experiment in
two stages. In the first stage we run the ER task and
store its result in a file along with the ground truth.
The second stage loads the results and ground truth
from the file and runs the entity resolution metrics
while profiling the CPU usage.

The performance analysis is available online in the
Appendix (Olar, 2024) to this article. Perhaps the
most important lesson to learn from profiling our li-
brary is that algebraic metrics are an order of magni-
tude more expensive to compute than statistical met-
rics. Moreover, not all algebraic metrics were created
equal: the Rand indexes are an order of magnitude
more expensive to compute than the other algebraic

metrics. Therefore, because the Talburt-Wang index
approximate the Rand index well, it might be a prefer-
able choice to measure how well an ER algorithm per-
forms clustering.

5 CONCLUSIONS AND FUTURE
WORK

We have introduced a library for evaluating ER re-
sults that is based on standards and Python protocols,
making it highly interoperable. The API exposed by
this library is deeply rooted in the mathematical mod-
els fundamental to ER, making it more familiar to ER
users.

The performance of the library is sound because
it externalizes computationally expensive tasks to na-
tive code. The accuracy of the implemented metrics
is verified automatically through unit tests.

These attributes render the library not only highly
beneficial but also low maintenance, making it an in-
valuable asset ER. This does not preclude additional
work.

Missing Metrics. The ER models we have
touched upon support many more metrics that the
library does not currently implement. The work
by (Maidasani et al., 2012) provides an insight-
ful overview. For well-rounded support of the ER
models mentioned so far, the library should imple-
ment at least additional cluster comparisons, such
as the Closest Cluster F1, the MUC F1, B3F1 and
the CEAFF1 (Maidasani et al., 2012), and additional
Rand-like indexes (Warrens and van der Hoef, 2022).

Missing Models. Besides the models we have
covered herein, ER has been theorized to be a graph
problem(Obraczka et al., 2021) or an exercise in lat-
tice theory with an ordering relation based on “merge
dominance”(Benjelloun et al., 2009). More work is
required to distil the metrics that become available for
evaluating ER under those models and the data struc-
tures that are used in the evaluation process.
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