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Abstract: As learning analytics increasingly relies on machine learning (ML) to provide insights and enhance educational
outcomes, the environmental impact of these ML-driven tools has become a critical but underexamined issue.
This study aims to fill this gap by investigating the energy consumption of various machine learning models
commonly employed in learning analytics. This is by the execution of four distinct models — Support Vector
Machines (SVM), Multi-Layer Perceptrons (MLP), Decision Trees (DT), and Logistic Regression (LogReg)
— when applied to an educational data set. Our findings reveal significant disparities in energy consumption
between these models, with SVM and MLP models consuming considerably more energy than their simpler
counterparts. This research serves as a call for action for the learning analytics community to prioritize energy-
efficient AI models, thereby contributing to broader sustainability goals in the face of climate change.

1 INTRODUCTION

Climate change is one of the most urgent issues of our
time that threatens humans and the planet and requires
immediate action (IPCC, 2022). Mitigation efforts are
required in all sectors, including the information and
communication technology (ICT) sector (Anser et al.,
2021), which contributed to 9% of global emissions in
2018, estimated to rise to 20% until 2025 (Mancebo
et al., 2021).

While there is growing awareness about hardware
and data center emissions, the environmental impact
of software products remains underappreciated. Soft-
ware is intangible, and no visible waste is generated
when used or disposed of (Naumann et al., 2021). The
environmental costs of software, in general, remain a
niche: “In many software development projects, sus-
tainability is treated as an afterthought, as developers
are driven by time-to-market pressure and are often
not educated to apply sustainability-improving tech-
niques” (Durdik et al., 2012). Nevertheless, “our civ-
ilization runs on software” (Stroustrup, 2014), which
leads to an increased demand for non-sustainable
products (Calero and Piattini, 2017).

Above that, applications utilizing artificial intelli-
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gence (AI) have risen significantly and will continue
to do so (Wu et al., 2022). AI research is continu-
ously improving the accuracy and capabilities of AI
models, which requires growing computational power
(Henderson et al., 2020; Schwartz et al., 2020).

The increased demand also includes AI for learn-
ing analytics (LA). While positive effects on learn-
ing success or reduced drop-out rates are well-
documented benefits, resource consumption of LA
remains a research gap. In a literature review on
sustainability dimensions of e-learning, most of the
examined studies have dealt with individual and so-
cial requirements (Alharthi et al., 2019). Only 4%
of the publications dealt with environmental aspects
and mainly focused on cloud computing. Despite the
growing integration of AI in education, there has been
no research on its resource consumption.

Our research contributes to this research gap and
compares the energy consumption of different LA AI
models. Our research questions are:

RQ 1: How do different AI models used in edu-
cation vary in terms of energy efficiency and environ-
mental impact?

RQ 2: What are the key drivers of energy con-
sumption in AI-based educational systems?

RQ 3: How much energy can be conserved by
choosing the optimal model concerning energy con-
sumption?

We analyze the energy consumption of four alter-
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native ML models designed to predict the likelihood
of correctly solving a task. Training and evaluating
models based primarily on performance metrics like
accuracy and speed is standard practice. Energy con-
sumption usually is not a determining factor. In this
study, we assess the energy consumption of models
for potential integration into a learning platform serv-
ing several thousand users. All models were trained
using the same dataset. The energy consumption of
the models was measured using the PowerJoular li-
brary (Noureddine, 2022).

This study specifically targets the energy con-
sumption associated with model inference. The en-
ergy needs for training the model, and the learning
platform itself are ignored — so are life-cycle emis-
sions, including hardware production, use and dis-
posal, and resources from software production and
uninstallation (Kern et al., 2018).

2 LITERATURE REVIEW

2.1 Measuring Energy Consumption of
Software

The energy consumption of software can be gauged
through both hardware and software-based method-
ologies. Noureddine et al. (2012) propose a software-
based approach and introduce the PowerAPI library,
which measures the energy consumption on the oper-
ating system level. Raw information is collected from
sensor modules (e.g., central processing unit (CPU) or
network) and used to calculate the system power con-
sumption as well as the power consumption of single
running processes. The authors test their approach by
running different algorithm implementations and con-
clude that an algorithm’s choice affects an applica-
tion’s energy consumption. A software-based tool in-
troduced more recently is PowerJoular (Noureddine,
2022), which uses interfaces provided by hardware
manufacturers.

An example of a hardware-based approach is to
use a measuring station consisting of two PCs - one
to execute the system under test and one to collect
the measured energy data (Junger et al., 2022). The
method is applied by Bültemann et al. (2023) to mea-
sure the energy usage of different AIED (AI in ed-
ucation) algorithms. Verdecchia et al. (2018) imple-
ment a similar approach and extend it to a spectrum-
based energy hotspot localization to identify energy-
intensive components in the code. Mancebo et al.
(2021) propose a general process that consists of a
hardware component that measures the energy con-
sumption and a software application that analyzes the

results. This proposal is applied in a different study
on the energy utilization of health data (Garcia-Berna
et al., 2021).

Kern et al. (2018) suggest assessment criteria
when measuring resource and energy consumption
of software usage. These include user autonomy
to configure resource-saving settings, resource man-
agement and default settings, hardware requirements
(e.g., electricity consumption), and backward com-
patibility when releasing new versions. While numer-
ous studies have been conducted in the past years, and
many processes share similarities, there is currently
no universally recognized standard process for energy
assessments of software.

2.2 Measuring Energy Consumption of
Machine Learning

Machine learning is used for various cases like speech
and image recognition, translations, or recommenda-
tions. ML algorithms use large data sets to recog-
nize patterns, learn a behavior, and make predictions
(Helm et al., 2020). Several parameters contribute
to the total energy costs of AI: execution costs of
a model, size of the training data set, and the total
number of hyperparameter experiments (i.e., number
of training iterations) (Schwartz et al., 2020; Sharir
et al., 2020). The increasing size of a model directly
increases the costs for training and inference. In addi-
tion, energy utilization of storage is rising as the data
sets become increasingly larger (Dhar, 2020). Other
drivers of the environmental cost of ML are the lo-
cal energy mix, water demand for data center cooling,
and electronic waste (Patterson et al., 2021; Wu et al.,
2022; Henderson et al., 2020). To reduce the envi-
ronmental impact of ML models, the choice of mod-
els and hardware is essential (Schwartz et al., 2020;
Sharir et al., 2020).

2.3 Artificial Intelligence and Learning
Analytics

LA is “the measurement, collection, analysis and re-
porting of data about learners and their contexts, for
purposes of understanding and optimising learning
and the environments in which it occurs” (LAK, 2011;
Greller and Drachsler, 2012). Patterns in a learner’s
behavior are recognized, and individual measures
may be drawn (Gobert and Sao Pedro, 2016). LA is
implemented in massive open online courses, intelli-
gent tutoring systems, or learning management sys-
tems (Lu et al., 2018).

Machine learning in learning analytics has grown
considerably in the last decade. AI for Learning
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Analytics relies on large amounts of data to gener-
ate models and predictions (Brooks and Thompson,
2017). Data is collected from the interaction be-
tween instructors, learners, the educational environ-
ment, and administrative or performance processes
(Brooks and Thompson, 2017; Romero et al., 2014).
Depending on the use case, AI techniques such as ma-
chine learning, natural language processing, or rec-
ommender systems are applied in LA (Brooks and
Thompson, 2017; McNamara et al., 2017; Chen et al.,
2020). Chen et al. (2020) investigate the impact of
AI on the education sector by reviewing 30 stud-
ies. They find that AI in education can take differ-
ent forms, e.g., in computers, embedded systems, or
web-based platforms. It primarily supports instruc-
tors pursuing administrative tasks like grading or pro-
viding feedback. On the other hand, students benefit
from AIED as the educational content is tailored to
their individual needs, thus increasing learning suc-
cess. They conclude that AI has a considerable effect
on the educational sector. The use of AI in LA en-
ables adaptivity and individualized interventions. An
adaptive learning environment observes and interprets
the user’s actions to identify and model learners’ indi-
vidual needs and preferences (Paramythis and Loidl-
Reisinger, 2003). AI adapts to a user’s unique level
of skills in real time and supports the personal learn-
ing process using educational data. Interventions take
place in the forms of direct messages to the learner
(i.e., when a learner is identified as being at risk of
failing), individual content, or actionable feedback
(Wong and Li, 2018).

3 CASE STUDY: THE LEARNING
PLATFORM “Orthografietrainer”

Orthografietrainer1 (OT) is a learning platform for
students from grades 5 to 10 to acquire and consol-
idate German spelling skills. It was established in
2008 and has since been accessed by more than 1.25
million. users. The platform provides more than 5000
tasks, which have been solved over 12 million times.

The training platform offers exercises in various
areas of competencies, such as comma formation or
capitalization. Each set of exercises bundles ten sen-
tences that have to be completed. In its default setup,
the platform works as follows: if a learner enters
a sentence incorrectly, two additional sentences will
be added to the exercise set before the previously
wrongly submitted sentence is displayed again. It pro-
vides immediate feedback and dynamic adjustments.
In the scope of an experiment, OT was transformed

1https://orthografietrainer.net/

into an adaptive platform using a machine learning
model to predict the probability of solving a task sen-
tence correctly (Rzepka et al., 2022, 2023). The de-
ployed adaptive learning interventions on the plat-
form outperform the original setup regarding learn-
ing gains and drop-outs (Rzepka, 2023). Before con-
ducting the experiment, four different ML algorithms
were trained on the data set: a decision tree, a logis-
tic regression, SVM, and MLP. The dependent vari-
able is the success of solving a task correctly (1) or
incorrectly (0). The data set consists of (1) demo-
graphic data (e.g., grade and gender), (2) task data
(e.g., difficulty, previous attempts), and (3) a learn-
ing history of submitted exercises over the past three
months (Rzepka, 2023). The models differ slightly in
accuracy (96.62 - 97.09), precision (97.38 - 97.97),
and recall (95.82 - 96.31) (Rzepka, 2023).

4 EXPERIMENTAL SETUP

4.1 Experimental Setup

In this study, we measure the energy consumption
of model inference, i.e., when the trained model is
provided with new data to predict the probability of
solving a sentence correctly. In each experiment, the
Python code predicts the probability of doing the task
using one of the models. Each model is executed 30
times, and an average is calculated for the measured
values. The averages of the four models are compared
to the baseline (BL), which is the metered energy con-
sumption of the system without inference running.
Before the experiments, the computer was newly set
up with the operating system, required software, and
dependencies for the measurement. Because of the
model requirements, Python is installed in two differ-
ent versions: version 3.7 for the decision tree, logistic
regression, and SVM, and version 3.10 for the MLP.
Only local resources are measured in this setup, as
it is impossible to access any further infrastructure.
The model is saved locally, so the differences across
models can be estimated. The PowerJoular software
(Noureddine, 2022) measures energy and system re-
source consumption. It is deployed on a Raspberry Pi.
PowerJoular reads resource consumption on the CPU
cycles using a power polynomial regression model
read from the /proc/stat system file. Its error rate
is estimated between 0.3% and 3.83%. PowerJoular
can monitor the entire system or processes based on a
process ID.

Measurements are conducted on a Raspberry Pi
4b with 4 GB RAM with Broadcom BCM2711, a 64-
bit system on chip, and a processor sub-architecture
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at 1.5GHz. Raspberry Pi devices have been used for
various studies in the past (Kumar et al., 2018; Saha
et al., 2018; Umarghanis et al., 2020) as they are in-
expensive and compatible with many other hardware
devices.

In this setup, PowerJoular is used to measure the
system’s CPU usage and electric power. Memory us-
age is captured by the Linux command line tool PS,
as suggested by Wagner et al. (2023). PS measures
the relative memory usage of the system on a process
basis (Balister et al., 2007). In this experiment, the
processes of each model execution (i.e., the execution
of the respective Python script) are monitored, and
memory is reported. In the baseline measurement, the
entire system is monitored. Time stamps are logged in
the code to get an accurate start and stop time for each
of the 30 measurement cycles. The variables gathered
are CPU usage as a percentage, memory consumption
as a percentage, and electrical power consumption in
watts.

4.2 Experimental Hypotheses

The objective of the following measurements is to an-
alyze the effect of the independent variables (the mod-
els, i.e., decision tree, logistic regression, SVM, and
MLP) on the dependent variables (CPU usage, mem-
ory usage, power usage) to answer RQ1 and RQ2.
The null hypothesis states that there is no significant
difference between the independent variables (m) and
the dependent variables. The alternative hypothesis
H1 states that a statistically significant difference be-
tween a dependent and an independent variable is ob-
served.

H0 : µm = µBL

H1 : µm ̸= µBL

RQ3 aims to determine how much energy could
be conserved by choosing a model. We assume that
the amount of energy saved in comparison to the base-
line is not significant (H0), as opposed to statistically
significant savings (H2).

H0 : µm = µBL

H2 : µm ̸= µBL

5 DATA AND RESULTS

5.1 Measured System Demand of ML
Models and Baseline System

We measure system demand using CPU utilization
[%], memory utilization [%], and power in Watt

(W)2. The values of these measures for all four
models and the baseline system are available in ta-
ble 1. Compared to the baseline average of 1.8%,
CPU utilization measured by PowerJoular of the four
models ranges between 24.47% for the decision tree
(DT) model and 33.59% for the multilayer percep-
tron (MLP) model. The lowest mean value for
memory utilization is also measured in the decision
tree with 29.47%, the highest in MLP (41.97%).
Baseline memory utilization is 7%. For electric
power, mean values range from 3.33W/3.38W (deci-
sion tree/logistic regression) to 3.91W (MLP), in con-
trast to a baseline metric of 3.24W.

Table 1: Descriptive variables for system demand.

Min Max Mean Median Std

CPU Utilization
DT [%]

1.00 33.84 24.47 26.75 0.07

Memory
Utilization DT
[%]

1.20 41.8 29.74 31.8 8.12

Electric Power
DT [W]

3.03 3.65 3.33 3.37 0.1

CPU Utilization
LogReg [%]

1.5 52.12 26.1 26.82 0.06

Memory
Utilization
LogReg [%]

15.5 41.9 32.72 33.75 7.19

Electric Power
LogReg [W]

3.03 4.70 3.38 3.36 0.19

CPU Utilization
SVM [%]

1.25 79.34 28.36 28.25 0.02

Memory
Utilization SVM
[%]

1.20 43.9 30.92 30.9 1.13

Electric Power
SVM [W]

3.03 5.86 3.42 3.41 0.08

CPU Utilization
MLP [%]

0.0 50.50 33.59 45.89 0.17

Memory
Utilization MLP
[%]

8.5 63.0 41.97 43.05 10.01

Electric Power
MLP [W]

3.03 4.61 3.91 4.33 0.6

Memory
Utilization BL
[%]

7.0 8.0 7.00 7.0 0.01

Electric Power
BL [W]

3.03 3.41 3.24 3.26 0.05

In the next step, the mean values are compared
to the baseline values (table 2). All models require
more resources in terms of CPU utilization, memory
utilization, and electric power than the baseline.

2Cf. the GitHub repository https://github.com/
marlenebuelt/messung-2 for results.
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Table 2: Relative difference to baseline values (pp.: per-
centage points).

Delta
DT %

Delta
LogReg

%

Delta
SVM %

Delta
MLP %

CPU
Uti-
lization
[pp.]

1260.49 1350.90 1476.93 1767.92

Memory
Uti-
lization
[pp.]

324.90 367.49 341.72 499.53

Electric
Power
[pp.]

2.90 4.44 5.65 20.63

The data undergoes a Shapiro-Wilk test to as-
sess normality. However, the results indicate that the
data is not normally distributed. Therefore, a Mann-
Whitney U test compares the mean system demand
parameters between the models and baseline. The ef-
fect sizes are estimated using Cliff’s delta. It takes
on a value between -1 and 1, with 0 indicating no ef-
fect and |1| a very strong effect. The threshold for a
medium effect is set at a value larger than |0.28|, and
a large effect is considered |0.43| and above (Vargha
and Delaney, 2000). Table 3 shows that almost all dif-
ferences between models and between baseline and
models are highly significant with a p-value of 0.00.
Only the p-values for the correlation of CPU utiliza-
tion and power conversion between DT and LogReg
models are not close to zero but are still very low at
0.01. As indicated by Cliff’s delta (refer to Table 4),
the effect size consistently demonstrates a high mag-
nitude when comparing the ML models to the base-
line. Additionally, there is a notable high effect size
between the decision tree and logistic regression mod-
els on the one hand and SVM and MLP on the other.

5.2 Estimation of the Annual Energy
Consumption

To interpret the system demand, the model runtimes
need to be considered. The models differed in mean
power and average run time per inference (table 5).
To calculate the energy consumption per year, we re-
quire an estimation of the total number of inferences
per year. We base our assumption on the experiment
described in Rzepka (2023). In four months, 38,000
sessions took place on the platform (114,000 sessions
per year). One session is assumed to include an exer-
cise set of ten sentences. As the first sentence is pre-
defined, nine inferences are undertaken to determine
the second sentence, eight inferences for the third, and

Table 3: Mann–Whitney U test.

BL DT LogReg SVM

CPU
DT 0.00
LogReg 0.00 0.01
SVM 0.00 0.00 0.00
MLP 0.00 0.00 0.00 0.00

Memory
DT 0.00
LogReg 0.00 0.00
SVM 0.00 0.00 0.00
MLP 0.00 0.00 0.00 0.00

El. Power
DT 0.00
LogReg 0.00 0.01
SVM 0.00 0.00 0.00
MLP 0.00 0.00 0.00 0.00

Table 4: Cliff’s delta.

BL DT LogReg SVM

CPU
DT -0.98
LogReg -0.98 −0.11
SVM -1.00 -0.76 -0.70
MLP -0.91 -0.41 -0.37 −0.21

Memory
DT -0.97
LogReg -1.00 −0.23
SVM -1.00 0.12 -0.7
MLP -1.00 -0.75 -0.37 -0.81

El. Power
DT -0.69
LogReg -0.85 −0.11
SVM -0.99 -0.76 -0.70
MLP -0.62 -0.44 -0.38 −0.21

so forth. This sums up to 44 inferences. However, if
the prediction for a learner to correctly solve a sen-
tence is determined to be less than 50%, the proce-
dure changes, and additional inferences are executed
to provide training sentences. Hence, the total number
of inferences in a session varies. This paper assumes
64 inferences per session, thus 7,296,000 inferences
per year.

Table 5 summarizes the use of electric power in a
single inference in watt-seconds (Ws), the estimated
usage of power per year in watt hours (Wh) as ex-
plained in chapter 5.2, and the costs of electric power
in euros per year. We assume the average market price
for electricity in Germany for the year 2022 of 0.3279
EUR per kWh Eurostat (2023). The average usage
per inference ranges between 45.77 Ws in the deci-
sion tree model and 3,783.27 Ws when executing an
SVM. This sums up to 92,760 Wh in a decision tree
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Table 5: Estimation of annual energy consumption.

Time per
Inference [s]

Mean
Power [W]

Energy per
Inference [Ws]

DT 13.8 3.33 45.77
LogReg 15.97 3.38 51.64
SVM 4085.00 3.42 3783.27
MLP 34.83 3.91 129.19

Energy
per Year [kWh]

Costs per
Year [C]

DT 92.8 30.43
LogReg 104.7 34.33
SVM 7667.4 2514.14
MLP 261.8 85.84

and to 7,667,428 Wh in an SVM. The energy costs of
a decision tree amount to 30.43 Eur, of a logistic re-
gression 34.33 Eur, of an SVM 2,514.14 Eur, and of
an MLP 85,84 Eur.

6 DISCUSSION

Answering RQ1, we find that ML models vary in en-
ergy consumption. The data indicates significant dif-
ferences between all models and the baseline as well
as between the models. The low basic load of a Rasp-
berry Pi contributes to the significance and the ef-
fect sizes when compared against the baseline. Our
data indicates that the decision tree is slightly more
efficient than the logistic regression model, while
MLP and especially SVM require much more elec-
tric power. The similar significance values and effect
sizes of CPU utilization and electric power consump-
tion in the PowerJoular measurement indicate that the
parameters correlate. Thus, CPU usage could be con-
sidered as a proxy for power use.

The general findings of this experiment coincide
with other findings, e.g., of Strubell et al. (2019) and
Frey et al. (2022). The study reveals that differences
between models are discernible and exhibit a broad
range. These findings align with the authors’ conclu-
sions drawn in a prior experiment, as documented in
(Bültemann et al., 2023).

Our results demonstrate that the complexity of
a model contributes to the consumption of com-
putational resources and, thus, energy consumption
(RQ2). The execution of all models resulted in a
significant increase in the load on the observed pa-
rameters (CPU utilization, memory utilization, elec-
tric power) compared to the baseline. This effect
was most pronounced for SVM and MLP. Less com-
plex models, such as decision trees and logistic re-
gressions, could make predictions more rapidly than
SVM and MLP. Several layers and the number of in-

terconnected neurons contribute to the increased en-
ergy consumption of an MLP. SVMs require more
runtime and energy due to the complex optimization
process of finding the largest margin between many
data points. The training kernel matrix squares with
the size of the dataset, thus making it inefficient on
large data sets like the ones used in this experiment.
On the other hand, decision trees and logistic regres-
sions have a relatively simple prediction process that
is boolean or mathematically explainable. Memory
usage reveals the highest values in MLP. This indi-
cates that a large amount of data is processed in the
prediction process of the models. Regarding RQ3, our
results indicate that the SVM model would substan-
tially increase energy consumption by 30-80. Real-
life implications could differ based on the hardware
used in the actual data center, but we expect an effect
of the same magnitude.

It is essential to acknowledge certain limitations
that reduce the generalizability of our findings. This
study only analyses ML model inference’s energy de-
mand and neglects model training’s energy consump-
tion and life-cycle emissions. Further, results depend
on the deployed hardware; data centers usually uti-
lize different hardware. Finally, models should also
be trained on other datasets to validate results.

As we reveal differences in the resource consump-
tion of different ML models, future research in ML
implementations for LA should consider the resource
impact of the chosen models in line with parameters
such as accuracy, fairness, and explainability. Both
energy consumption and learning outcomes should
be considered when comparing AI-related emissions
and learning outcomes to find a well-balanced, cost-
efficient solution. Energy costs, in particular, are
an essential economic determinant in times of per-
sistently high energy prices. If the performance of
models reveals similar results, environmental aspects
should be considered. This confirms the findings in
Schwartz et al. (2020), who propose to focus AI re-
search on efficiency measures.

7 CONCLUSION

This study aimed to fill a critical research gap by
investigating the environmental impact of machine
learning models on educational platforms, specifi-
cally focusing on their energy efficiency and con-
sumption. Our findings indicate significant variations
in energy consumption across different ML mod-
els. Decision trees and logistic regression models are
more energy-efficient than SVMs and MLPs. The
study also reveals that the model’s complexity is pro-
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portional to its energy consumption, with SVM and
MLP requiring considerably more computational re-
sources and computing time. These insights answer
our research questions, providing a better understand-
ing of the critical drivers of energy consumption in
AI-based educational systems (RQ2) and the poten-
tial energy savings by selecting more efficient models
(RQ3).

From a practical perspective, our findings indi-
cate that choosing an energy-efficient model could
reduce energy consumption significantly compared
to more resource-intensive models. This is partic-
ularly relevant for educational platforms that oper-
ate at scale, where even marginal improvements in
energy efficiency can lead to substantial reductions
in operational costs and carbon footprint. A key
driver is a model’s complexity caused by the train-
ing algorithms. A logistic regression is mathemati-
cally explainable, while a decision tree uses a boolean
decision process. SVMs use complex optimization
processes, and MLPs consist of many layers of in-
terconnected neurons, which makes prediction pro-
cesses more complex and the model larger in storage.
This causes the processes’ resource consumption to
rise and increases the runtime. Our work has shown
that choosing resource-efficient ML models for edu-
cational purposes is complementary to achieving ob-
jectives related to explainability and speed of infer-
ence.

Future research could extend this work by consid-
ering a broader range of ML models and algorithms.
Studies could also incorporate energy consumption
during the training phase and other life-cycle emis-
sions to provide a more comprehensive view of the
environmental impact. This study shows options for
incorporating sustainability considerations into de-
veloping LA systems. Performance predictions im-
ply that significantly lower energy consumption can
achieve the same results. In conclusion, educational
achievements and environmental sustainability are
not mutually exclusive.
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