
Text-to-SQL Meets the Real-World

Eduardo R. Nascimento1,4 a, Grettel M. Garcı́a1 b, Lucas Feijó1 c, Wendy Z. Victorio1,4 d,
Yenier T. Izquierdo1 e, Aiko R. de Oliveira4 f, Gustavo M. C. Coelho1 g, Melissa Lemos1,4 h,

Robinson L. S. Garcia2 i, Luiz A. P. Paes Leme3 j and Marco A. Casanova1,4 k

1Instituto Tecgraf, PUC-Rio, Rio de Janeiro, 22451-900, RJ, Brazil
2Petrobras, Rio de Janeiro, 20031-912, RJ, Brazil

3Instituto de Computação, UFF, Niterói, 24210-310, RJ, Brazil
4Departamento de Informática, PUC-Rio, Rio de Janeiro, 22451-900, RJ, Brazil

Keywords: Text-to-SQL, GPT, Large Language Models, Industrial Databases.

Abstract: Text-to-SQL refers to the task defined as “given a relational database D and a natural language sentence S that
describes a question on D, generate an SQL query Q over D that expresses S”. Numerous tools have addressed
this task with relative success over well-known benchmarks. Recently, several LLM-based text-to-SQL tools,
that is, text-to-SQL tools that explore Large Language Models (LLMs), emerged that outperformed previous
approaches. When adopted for industrial-size databases, with a large number of tables, columns, and foreign
keys, the performance of LLM-based text-to-SQL tools is, however, significantly less than that reported for
the benchmarks. This paper then investigates how a selected set of LLM-based text-to-SQL tools perform over
two challenging databases, an openly available database, Mondial, and a proprietary industrial database. The
paper also proposes a new LLM-based text-to-SQL tool that combines features from tools that performed well
over the Spider and BIRD benchmarks. Then, the paper describes how the selected tools and the proposed
tool, running under GPT-3.5 and GPT-4, perform over the Mondial and the industrial databases over a suite
of 100 carefully defined natural language questions that are closely related to those observed in practice. It
concludes with a discussion of the results obtained.

1 INTRODUCTION

Text-to-SQL (Katsogiannis-Meimarakis and
Koutrika, 2023), also referred to as NL2SQL
(Kim et al., 2020), is the task defined as “given a
relational database D and a natural language (NL)
sentence S that describes a question on D, generate
an SQL query Q over D that expresses S”. Numerous
tools have addressed this task with relative success
(Affolter et al., 2019)(Katsogiannis-Meimarakis and

a https://orcid.org/0009-0005-3391-7813
b https://orcid.org/0000-0001-9713-300X
c https://orcid.org/0009-0006-4763-8564
d https://orcid.org/0009-0003-0545-2612
e https://orcid.org/0000-0003-0971-8572
f https://orcid.org/0009-0001-8970-0454
g https://orcid.org/0000-0003-2951-4972
h https://orcid.org/0000-0003-1723-9897
i https://orcid.org/0000-0002-0528-5151
j https://orcid.org/0000-0001-6014-7256
k https://orcid.org/0000-0003-0765-9636

Koutrika, 2023)(Kim et al., 2020) over well-known
benchmarks, such as Spider – Yale Semantic Pars-
ing and Text-to-SQL Challenge (Yu et al., 2018)
and BIRD – BIg Bench for LaRge-scale Database
Grounded Text-to-SQL Evaluation (Li et al., 2023).
Recently, several LLM-based text-to-SQL tools, that
is, text-to-SQL tools that explore Large Language
Models (LLMs), emerged that outperformed previous
approaches on both benchmarks.

However, when run over industrial-size, real-
world databases, the performance of some LLM-
based text-to-SQL tools is significantly less than
that reported in the Spider and BIRD Leaderboards.
One of the reasons is that such databases have large
schemas, whereas these benchmarks feature a large
number of databases whose schemas are quite small.
Indeed, using just the number of tables, of the nearly
200 databases used for training in Spider, the largest
one has 25 tables (and it is the only one with more
than 20 tables) and, of the 20 used for testing, the
largest one has 11 tables. The BIRD benchmark tries

Nascimento, E., García, G., Feijó, L., Victorio, W., Izquierdo, Y., R. de Oliveira, A., Coelho, G., Lemos, M., Garcia, R., Leme, L. and Casanova, M.
Text-to-SQL Meets the Real-World.
DOI: 10.5220/0012555200003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 1, pages 61-72
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

61

to remedy this situation but of the 73 used for train-
ing, BIRD has only two databases with more than 25
tables and, of the 11 used for development, the largest
one has 13 tables.

This paper, therefore, addresses the problem of as-
sessing if LLM-based text-to-SQL tools can be used
over relational databases with large schemas, with
several hundred objects, counting tables, columns,
and foreign keys.

To investigate this problem, the paper abandons
the strategy of using many databases with small-
to-medium schemas to test LLM-based text-to-SQL
tools and concentrates on two challenging databases:
a proprietary industrial database, IndDB (the name
was anonymized), and an openly available database,
Mondial.

IndDB is an oil and gas industrial asset integrity
management database, in production at an industrial
company. It features a relational schema with 27
tables, 585 columns, and 30 foreign keys (some of
which are multi-column); the largest table has 81
columns. Thus, IndDb has nearly 640 hundred ob-
jects.

IndDB features a database keyword search tool,
DANKE (Izquierdo et al., 2021), which compiles
SQL queries from keyword queries, enhanced with at-
tribute filtering and limited forms of aggregation.

However, since IndDB is proprietary, the exper-
iments cannot be replicated. Thus, the paper also
considers Mondial, an openly-available database stor-
ing geographic data, with a total of 47.699 instances;
the relational schema has 46 tables, with a total of
184 columns and 49 foreign keys (again, some of
which are multi-column) – a total of nearly 280 ob-
jects. Mondial was chosen precisely because it has a
large schema, which is challenging for text-to-SQL,
and is openly available, which permits replicating the
results. A version of Mondial, with 34 tables, is also
part of the BIRD benchmark.

The IndDB and the Mondial databases are each
accompanied by a suite of 100 NL questions that are
closely related to those observed in practice.

The paper proceeds to outline nine text-to-SQL
strategies, listed in Table 2. The strategies include
DANKE, a strategy that combines DANKE with key-
word extraction from an NL question (Nascimento
et al., 2023), SQLCoder1 based on an LLM fine-
tuned to text-to-SQL, three LangChain-based text-to-
SQL strategies2, “C3 + ChatGPT + Zero-Shot” (Dong
et al., 2023), “DIN-SQL + GPT-4” (Pourreza and
Rafiei, 2023), and “C3+DIN”, a new strategy that

1https://huggingface.co/defog/sqlcoder-34b-alpha
2https://python.langchain.com/docs/use cases/qa struc

tured/sql

combines components of C3 and DIN-SQL.
Then, the paper analyses how the text-to-SQL

strategies perform over the Mondial and the IndDB
databases, using the suite of 100 NL questions. Ex-
cept for DANKE and SQLCoder, the paper tested the
strategies with GPT-3.5 Turbo and GPT-4.

The paper concludes with a discussion of the re-
sults obtained. Briefly, using Mondial, the top-5
strategies with respect to overall accuracy used GPT-
4. C3 had the best overall accuracy of 0.78. SQL-
Coder had a limited overall accuracy of 0.35. Using
IndDb, DANKE had the best overall accuracy, closely
followed by “Manual prompt chain + DANKE” with
GPT-4. All other text-to-SQL strategies had a very
low overall accuracy. In general, the limited perfor-
mance of text-to-SQL strategies for IndDB and Mon-
dial, with large schemas, typical of real-world in-
dustrial databases, calls for different text-to-SQL ap-
proaches, as discussed in the conclusions.

The paper is organized as follows. Section 2 cov-
ers related work. Section 3 describes the IndDB and
the Mondial databases. Section 4 summarizes the
strategies tested. Section 5 details the experiments.
Section 6 contains the conclusions.

2 RELATED WORK

2.1 Text-to-SQL Datasets

The Spider – Yale Semantic Parsing and Text-to-SQL
Challenge (Yu et al., 2018) offers datasets for training
and testing text-to-SQL tools. Spider features nearly
200 databases covering 138 different domains from
three resources: 70 complex databases from different
college database courses, SQL tutorial Web sites, on-
line CSV files, and textbook examples; 40 databases
from DatabaseAnswers3; and 90 databases based on
WikiSQL, with about 500 tables in about 90 domains.
For each database, Spider lists 20-50 hand-written NL
questions and their SQL translations; the SQL queries
cover all the major SQL components.

Spider proposes three evaluation metrics: compo-
nent matching checks whether the components of the
prediction and the ground truth SQL queries match
exactly; exact matching measures whether the pre-
dicted SQL query as a whole is equivalent to the
ground truth SQL query; execution accuracy requires
that the predicted SQL query select a list of gold val-
ues and fill them into the right slots.

One may criticize Spider for having many
databases with very small schemas. In the number of

3http://www.databaseanswers.org/

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

62

tables, the largest five are: baseball 1, with 25 ta-
bles, cre Drama Workshop Groups, with 18 tables,
and cre Theme park, imdb, and sakila 1, with 16
tables. About half of the databases have schemas
with five tables or less. Therefore, the results re-
ported in the leaderboard are highly biased towards
databases with small schemas and do not reflect real-
world databases.

BIRD – BIg Bench for LaRge-scale Database
Grounded Text-to-SQL Evaluation (Li et al., 2023)
is a large-scale cross-domain text-to-SQL benchmark
in English. The dataset contains 12,751 text-to-SQL
data pairs and 95 databases with a total size of 33.4
GB across 37 domains. BIRD tries to bridge the gap
between text-to-SQL research and real-world applica-
tions by exploring three additional challenges: deal-
ing with large and messy database values, external
knowledge inference, and optimizing SQL execution
efficiency. However, as mentioned in the introduc-
tion, BIRD still has only two databases out of 73 in
the training dataset, with more than 30 tables.

WikiSQL (Zhong et al., 2017) has 80,654 NL sen-
tences and SQL annotations of 24,241 tables. Each
query in WikiSQL is limited to the same table and
does not contain complex operations such as sorting
and grouping.

SQL-Eval (Ping, 2023) is a framework4 that eval-
uates the correctness of text-to-SQL strategies, cre-
ated during the development of SQLCoder.

Finally, the sql-create-context5 dataset was
built for the text-to-SQL task. It contains 78,577
examples of NL queries, SQL CREATE TABLE state-
ments, and SQL Queries answering the questions.
The CREATE TABLE statement provides context for
the LLMs, without having to provide actual rows of
data.

2.2 Text-to-SQL Tools

LangChain6 is a generic framework that offers several
predefined strategies to build and run SQL queries
based on NL prompts. Section 4.3 reviews in more
detail LangChain.

The Spider Web site7 publishes a leaderboard with
the best-performing text-to-SQL tools. At the time of
this writing, in terms of Execution with Values, the
top 6 tools were (in descending order): “MiniSeek”
(no reference available at the time of writing); “DAIL-
SQL + GPT-4 + Self-Consistency” and “DAIL-SQL

4Available at https://github.com/defog-ai/sql-eval
5https://huggingface.co/datasets/b-mc2/sql-create-

context
6https://python.langchain.com
7https://yale-lily.github.io/spider

+ GPT-4”, both reported in (Gao et al., 2023); “DPG-
SQL + GPT-4 + Self-Correction” (no reference avail-
able at the time of writing); “DIN-SQL + GPT-4”
(Pourreza and Rafiei, 2023); “Hindsight Chain of
Thought with GPT-4” (no reference available at the
time of writing); and “C3 + ChatGPT + Zero-Shot”
(Dong et al., 2023).

The BIRD Web site8 also publishes a leaderboard
with the best-performing tools. At the time of this
writing, in terms of Execution Accuracy, the top 5
tools were: “SFT CodeS-15B” and “SFT CodeS-7B”
(no reference available at the time of writing); “DAIL-
SQL + GPT-4”; “DIN-SQL + GPT-4”; and GPT-4.

Section 4 presents the details of “DIN-SQL +
GPT-4” and “C3 + ChatGPT + Zero-Shot”. These
tools were selected since their code was available
when the experiments reported in this paper were de-
signed.

Other text-to-SQL tools include the Defog SQL-
Coder, outlined in Section 4.2. The “60 Top AI Text
To SQL Bot Tools” Web site9 lists other AI tools for
text-to-SQL.

Finally, the DB-GPT-Hub10 is a project exploring
how to use LLMs for text-to-SQL. The project con-
tains data collection, data preprocessing, model selec-
tion and building, and fine-tuning of weights, includ-
ing LLaMA-2, and the evaluation of several LLMs
fine-tuned for text-to-SQL.

3 BENCHMARK DATASETS
ADOPTED

A benchmark dataset for the text-to-SQL task is a pair
B = (D,{(Li,Gi)/i = 1, ...,n}), where D is a database
and, for i= 1, ...,n, Li is an NL question over D and Gi
is the ground truth SQL query over D that translates
Li. In the context of this paper, a benchmark dataset
is meant exclusively for testing text-to-SQL tools; it
is not designed for training such tools. Section 5.2
describes the procedure adopted to evaluate text-to-
SQL tools.

The primary benchmark dataset adopted in this
paper is IndDB, with a set of 100 NL questions and
their translations to SQL.

IndDB is an oil and gas industrial asset integrity
management database in production at an industrial
company. It features a relational schema with 27 ta-
bles, 585 columns, and 30 foreign keys (some multi-
column); the largest table has 81 columns.

8https://bird-bench.github.io
9https://topai.tools/s/Text-to-SQL-bot

10https://github.com/eosphoros-ai/DB-GPT-Hub

Text-to-SQL Meets the Real-World

63

The questions are classified into simple, medium,
and complex, that correspond to the easy, medium,
and hard classes used in the Spider benchmark (extra-
hard questions were not considered). As in the Spi-
der benchmark, the difficulty is based on the num-
ber of SQL constructs, so that queries that contain
more SQL constructs (GROUP BY, ORDER BY, IN-
TERSECT, nested subqueries, column selections, and
aggregators) are considered to be harder. The list
of questions contains 33 simple, 34 medium, and 33
complex questions.

However, since IndDB is proprietary and is not
openly available, the experiments cannot be repli-
cated. Thus, the paper also considers a version
of Mondial11, with a set of 100 NL questions and
their translations to SQL, divided into 34 simple, 33
medium, and 33 complex questions. Mondial stores
geographic data and is openly available. It has a total
of 47.699 instances; the relational schema12 has 46 ta-
bles, with a total of 184 columns and 49 foreign keys,
some of which are multi-column.

Finally, Table 1 shows basic statistics of the sets
of queries, where “#cols” refers to the number of
columns of the target clause and the other columns
refer to the number of joins, filters, and aggrega-
tions that occur anywhere in the query, including any
nested query. Note that, on average, the medium and
complex queries for IndDB have roughly twice the
number of joins and filters as the medium and com-
plex queries for Mondial.

4 STRATEGIES TESTED

This section outlines the strategies tested, summa-
rized in Table 2.

4.1 DANKE-Based Strategies

DANKE (Izquierdo et al., 2021) is an automatic,
schema-based tool that supports keyword query pro-
cessing for both the relational and RDF environments
(Izquierdo et al., 2018). DANKE is in production at
an oil company as an interface for several databases,
including IndDB.

DANKE supports expressions that contain key-
words along with filters and certain forms of aggre-
gation, embedded along the keywords, and some syn-
tactical sugar to enhance readability. An example of

11https://www.dbis.informatik.uni-
goettingen.de/Mondial/

12The Mondial referential dependencies diagram
can be found at https://www.dbis.informatik.uni-
goettingen.de/Mondial/mondial-abh.pdf

an expression that DANKE accepts is “What is the
total number of cities in Botswana?”, which corre-
sponds to the keyword query “total cities Botswana”.
Note that DANKE recognizes and processes the ag-
gregation “total cities” and the restriction “Coun-
try name=Botswana”, and ignores the phrase “What
is”, the article “the”, and the preposition “of”, treated
as syntactical sugar.

The core engine of DANKE first constructs a
Steiner tree that covers a set of nodes (relation
schemes or RDF classes) whose instances match the
largest set of keywords (Garcı́a et al., 2017). It then
compiles the keyword-based query into an SQL (or
SPARQL) query that includes conditions that repre-
sent keyword matches and joins. Without such joins,
an answer would be a disconnected set of tuples (or
nodes of the RDF graph), which hardly makes sense.

The “DANKE” strategy listed in Table 2 passes
the NL query to DANKE.

The “Manual prompt chain + DANKE” strategy
(Nascimento et al., 2023) uses an LLM to extract key-
words from an NL question through a sequence of 4
steps, each with a specific prompt: (1) identify the rel-
evant entities; (2) identify the relevant properties; (3)
generate keyword query candidates; and (4) select the
best query Q. Then, Q is passed to DANKE, which
processes Q as explained above. The experiments
tested this strategy with GPT-3.5-turbo and GPT-4.

4.2 SQLCoder

SQLCoder13 is a specialized text-to-SQL model,
open-sourced under the Apache-2 license. The latest
model, sqlcoder-34b-alpha, features 34B parameters
and was fine-tuned on a base CodeLlama model, on
more than 20,000 human-curated questions, classified
as in Spider, based on ten different schemas. The term
SQL Coder will refer to the model and the tool based
on the model.

The training dataset consisted of prompt-
completion pairs, encompassing several schemas
with varying difficulty levels, whereas the evaluation
dataset featured questions from novel schemas. The
use of complex schemas, with 4-20 tables, challenged
the model. The fine-tuning process occurred in two
stages: the base model was first refined using easy
and medium questions and then further fine-tuned on
hard and extra-hard questions to yield SQLCoder.

The accuracy of SQLCoder on the Defog’s dataset
is promising: defog-sqlcoder-34b achieved 84.0%,
whereas gpt4-turbo-2023-11-09 achieved 82.5%.

13https://huggingface.co/defog/sqlcoder-34b-alpha

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

64

Table 1: Basic statistics of the sets of queries.

Table 2: Summary of the strategies tested.

1) “DANKE” –
The database keyword search tool that is the current interface for IndDB.
2) “Manual prompt chain + DANKE” –
The LLM extracts keywords from the NL question, and passes the keywords to KwS Tool;
tested with GPT-3.5-turbo and GPT-4.
3) “SQLCoder” –
Defog’s tool for text-to-SQL, using a special-purpose LLM.
4) “SQLQueryChain (LangChain)” –
The LangChain SQLQueryChain processes NL questions into SQL;
tested with GPT-3.5-turbo-16k and GPT-4.
5) “SQLDatabaseSequentialChain (LangChain)” –
The LangChain SQLDatabaseSequentialChain processes NL questions into SQL;
tested with GPT-3.5-turbo-16k and GPT-4.
6) “SQL Database Agent (LangChain)” –
The LangChain SQL Database Agent processes NL questions into SQL;
tested with GPT-3.5-turbo-16k and GPT-4.
7) “DIN-SQL” –
An implementation of “DIN-SQL” that allows the use of different LLMs;
tested with GPT-3.5-turbo-16k and GPT-4.
8) “C3” –
An implementation of “C3” that allows the use of different LLMs;
tested with GPT-3.5-turbo and GPT-4.
9) “C3+DIN” –
The C3+DIN tool introduced in Section 4.4;
tested with GPT-3.5-turbo-16k and GPT-4.

4.3 LangChain-Based Strategies

LangChain14 is a framework that helps develop
LLM applications. LangChain offers three prede-
fined chains15 for text-to-SQL, and is compatible
with MySQL, PostgreSQL, Oracle SQL, Databricks,
SQLite, and other DBMSs.

Very briefly, SQLQueryChain extracts meta-
data from the database automatically, creates a
prompt, and passes this metadata to the LLM. This
chain greatly simplifies creating prompts to access
databases. SQLDatabaseSequentialChain, based on
the query, determines which tables to use and, based
on those tables, calls the SQLQueryChain. This helps

14https://docs.langchain.com
15https://python.langchain.com

when the number of tables in the database is large.
Finally, SQLAgent provides a more flexible way of
interacting with databases. It answers NL questions
based on the database schema, as well as on the
database content, and recovers from errors by running
a generated SQL query, catching the traceback and re-
generating it correctly.

In addition to passing the schema in the prompt,
these chains for SQL make it possible to provide sam-
ple data that can help an LLM build correct queries
when the data format is not apparent. Sample rows
are added to the prompt after the column information
for each corresponding table.

The experiments tested all LangChain-based
strategies with GPT-3.5-turbo-16k and GPT-4.

Text-to-SQL Meets the Real-World

65

4.4 C3 and DIN-Based Strategies

4.4.1 C3

“C3 + ChatGPT + Zero-Shot” (Dong et al., 2023)
(or briefly C3) is a prompt-based strategy, originally
defined for ChatGPT, that uses only approximately
1,000 tokens per query and achieves a better perfor-
mance than fine-tuning-based methods. C3 has three
key components: Clear Prompting (CP); Calibration
with Hints (CH); Consistent Output (CO).

Clear Prompting addresses two problems: (1) the
size of the database schema may exceed the prompt
limit; (2) a prompt with too many tables and columns
may confuse ChatGPT. Clear prompting then recalls
relevant tables and columns (to the NL question) and
adds them to the prompt, along with the schema.

Calibration with Hints avoids errors caused by
certain biases inherent in ChatGPT: to select columns
that are relevant to the question but not required; to
use LEFT JOIN, OR, and IN incorrectly. Calibration
with Hints then instructs ChatGPT to follow two “de-
bias” hints: (1) select only the necessary column; (2)
avoid misusing SQL constructs.

Consistent Output tries to avoid the problem that
the output of ChatGPT is unstable due to the inherent
randomness of LLMs. The proposed solution sam-
ples multiple reasoning paths to generate several SQL
queries, executes the SQL queries on the database and
collects the execution outcomes, and uses a voting
mechanism on the results to identify the most con-
sistent SQL.

At the time of writing, C3 was the sixth strategy
listed in the Spider Leaderboard, achieving 82.3% in
terms of execution accuracy on the test set. It outper-
formed state-of-the-art fine-tuning-based approaches
in execution accuracy on the test set, while using only
approximately 1,000 tokens per query.

The experiments tested C3 with GPT-3.5-turbo
and GPT-4.

4.4.2 DIN

“DIN-SQL + GPT-4” (Pourreza and Rafiei, 2023)
(or briefly DIN) uses only prompting techniques and
decomposes the text-to-SQL task into four steps:
schema linking; query classification and decomposi-
tion; SQL generation; and self-correction.

Schema Linking includes ten randomly selected
samples from the training set of the Spider dataset and
follows the chain-of-thought template. The prompt
begins with “Let’s think step by step,”...; for the col-
umn names mentioned in the question, the corre-
sponding columns and their tables are selected from

the schema; possible entities and cell values are also
extracted from the question.

Classification and Decomposition classifies each
query into: easy – single-table queries that can be an-
swered without joins or nesting; non-nested – queries
that require joins but no sub-queries; nested – queries
that require joins, sub-queries, and set operations.

SQL Generation depends on the query classifica-
tion. A simple few-shot prompting with no intermedi-
ate steps is adequate for easy queries. For non-nested
complex queries, it uses NatSQL as an intermediate
representation, removes operators JOIN ON, FROM,
GROUP BY, and set operators, and merges the HAV-
ING and WHERE clauses. Briefly, for nested com-
plex queries, it breaks down the problem into multi-
ple steps; the prompt for this class is designed in a
way that the LLM should first solve the sub-queries
and then use them to generate the final answer.

Finally, Self-Correction addresses the problem
that the generated SQL queries can sometimes have
missed or redundant keywords such as DESC, DIS-
TINCT, and aggregation functions. To solve this
problem, the self-correction step instructs the LLM
to correct those minor mistakes by a zero-shot set-
ting, where only the buggy code is passed to the LLM,
which is asked to fix the bugs.

When released, “DIN-SQL + GPT-4” was the
top-performing tool listed in the Spider Leaderboard,
achieving 85.3% in terms of execution accuracy.

The experiments tested DIN with GPT-3.5-turbo-
16k and GPT-4.

4.4.3 C3+DIN

“C3+DIN” combines some of the C3 and DIN strate-
gies and decomposes the text-to-SQL task into six
steps: database schema description; clear prompt-
ing and schema linking; classification and decompo-
sition; calibration with hints; SQL generation; and
self-correction.

Database schema description uses LangChain’s
SQLDatabase module to access database metadata.
This metadata is manipulated to represent the schema
in an automated way.

Clear prompting and schema linking takes advan-
tage of DIN’s chain of thought for schema linking,
but uses C3’s clear prompting to pass only the ta-
bles and columns relevant to the query. Hence, “C3
+ DIN” uses fewer tokens to represent the schema in
the prompt.

Classification and decomposition uses the DIN’s
classification strategy, which is important for SQL
generation, since it uses different prompts for each
class. Additionally, the prompts help detect tables that

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

66

should be joined and nested queries by detecting sub-
queries contained in the main query.

Calibration with hints uses C3’s calibration,
which incorporates prior knowledge of the LLM. Be-
fore the SQL generation step, “C3 + DIN” provides
hints to help the model generate SQL queries that
align more closely with the desired output.

SQL generation is based on DIN’s chain of
thought (Wei et al., 2023), where some thought-
chain demonstrations are provided as stimulus exam-
ples. This significantly improves the ability of LLMs
to perform complex reasoning. Furthermore, DIN’s
SQL Generation applies different few-shot prompts
for each query class. Thus, “C3 + DIN” adopts this
approach to generate SQL code.

Self-correction incorporates DIN’s self-correction
mechanism, which seeks to correct the SQL code in a
simple way by passing some hints to the model along
with the database schema. Indeed, LLMs have hallu-
cination problems, that is, they can generate text that
does not make sense (Yu et al., 2023).

The experiments tested “C3+DIN” with GPT-3.5-
turbo-16k and GPT-4.

5 EXPERIMENTS

5.1 Configurations

The experiments tested the strategies summarized in
Table 2 for the 100 NL questions and their translations
to SQL over the Mondial and IndDB databases, stored
in Oracle. The foreign keys of Mondial were used, but
not those of IndDB, which were not available for the
experiments.

Except for DANKE and SQLCoder, the experi-
ments ran each strategy with two LLMs – GPT-3.5-
turbo or GPT3.5-turbo-16k and GPT-4. Since both
schemas are fairly large, some experiments had to use
GPT3.5-turbo-16k, which allows 16k tokens. The ex-
periments used the (paid) OpenAI API.

SQLCoder used the sqlcoder-34b-alpha
model, with 34B parameters. For the experiments,
owing to constraints inherent in the model, the Mon-
dial DDL was transposed to the PostgreSQL syntax,
facilitated by GPT-4 under human supervision. Then,
the output comprised SQL queries formulated in
PostgreSQL syntax, subsequently transcribed into
the Oracle syntax through GPT-4, again under human
supervision.

Additional experiments, not reported here, used
other LLMs. The “Manual prompt chain + DANKE”
strategy was run with GPT-3.5-turbo-1106, an-
nounced on November 6th, 2023, whereas the strate-

gies described in Section 4.3 and 4.4 were run with
LLaMA-2-chat, with 70B parameters. However, none
of these experiments resulted in good accuracy.

5.2 Evaluation Procedure

Let B = (D,{(Li,Gi)/i = 1, ...,n}) be a benchmark
dataset. Recall that Li is an NL question and Gi is the
corresponding ground truth SQL query. Let Pi be the
SQL query predicted by a text-to-SQL strategy for Li.
Let PTi and GTi be the tables that Pi and Gi return
when executed over D, called the predicted and the
ground truth tables.

Intuitively, Pi is correct if PTi and GTi are similar.
The notion of similarity adopted neither requires that
PTi and GTi have the same columns, nor do they have
the same rows. This allows for some mismatch be-
tween PTi and GTi. The following procedure captures
this intuition:
1. Compute GTi and PTi over D.
2. For each column of GTi, compute the most simi-

lar column of PTi, respecting a minimum column
similarity threshold of tc. This step induces a par-
tial matching M from columns of GTi to columns
of PTi.

3. If the fraction of the number of columns of GTi
that match some column of PTi is below a given
threshold tn, Pi is considered incorrect.

4. The adjusted ground truth table AGTi is con-
structed by dropping all columns of GTi that do
not match any column of PTi, and the adjusted
predicted table APTi is constructed by dropping
all columns of PTi that are not matched and per-
muting the remaining columns so that PCk is the
kth column of APTi iff GCk, the kth column of
AGTi, is such that M(GCk) = PCk.

5. Finally, AGTi and APTi are compared. If their sim-
ilarity is above a given threshold tq, then Pi is cor-
rect; otherwise Pi is incorrect.
In Step 1, GTi may be pre-computed to avoid re-

executing Gi over D for each experiment.
In Step 2, the similarity between two table

columns was measured as their Jaccard coefficient
(recall that table columns are sets). The threshold tc
was set to 0.50.

In Step 3, the threshold tn was set to 0.80, that is,
0.80 of the number of columns of GTi must match
some column of PTi. Note that setting tn = 0.80
forces all columns of GTi to match some column
of PTi, if GTi has four or fewer columns (indeed,
4 ∗ 0.80 = 3.20 is rounded up to 4, that is, GTi must
have all four columns matching some column of PTi,
and likewise for a smaller number of columns).

Text-to-SQL Meets the Real-World

67

Now, from column “#cols” of Table 1, observe
that all queries for Mondial have a result with at
most four columns. Hence, setting tn = 0.80 im-
plies that all columns of GTi must match a column
of PTi. However, the same is not valid for IndDB. In-
deed, from column “#cols” of Table 1, observe that
some queries for IndDB have a result with up to 19
columns. Hence, for such queries, some columns of
GTi may not match any column of PTi.

In Step 4, the new tables AGTi and APTi will
have the same number of columns and the matched
columns will appear in the same order.

In Step 5, the similarity of AGTi and APTi was
computed as their Jaccard coefficient (recall that ta-
bles are sets of tuples), and the threshold tq was set
to 0.95. Thus, AGTi and APTi need not have the same
rows but, intuitively, Pi will be incorrect if APTi con-
tains only a small subset of the rows in AGTi, or APTi
contains many rows not in AGTi.

Finally, the accuracy of a given text-to-SQL strat-
egy over the benchmark B is the number of correct
predicted SQL queries divided by the total number of
predicted queries, as usual.

5.3 Results

Tables 4 and 5, at the end of paper, show the results
for the Mondial and the IndDB databases. Columns
under “Accuracy” indicate the accuracy results for
the simple, medium and complex queries, as well as
the overall accuracy; columns “Input Tokens” and
“Output Tokens” respectively show the number of
tokens passed as input and received as output from
the model; column “Estim. Cost” indicates the esti-
mated cost in US Dollars; and column “Exec. Time”
displays the total time to compute the 100 queries,
which naturally depends on the HW and SW setup,
and should be used only to compare the strategies.

5.3.1 Results for Mondial

Accuracy. The top-5 strategies with respect to overall
accuracy used GPT-4. C3 had the best overall accu-
racy of 0.78. Then, SQLQueryChain with samples,
DIN, and C3+DIN had the same overall accuracy
of 0.70. Lastly, SQLQueryChain, without samples,
achieved 0.69. Among the Langchain-based strate-
gies, those that passed the entire schema and samples
in the prompt had superior overall accuracy. SQL-
Coder had a limited overall accuracy of 0.35.

As for the query types, C3 with GPT-4 had the best
accuracy for complex queries, 0.71; SQLQueryChain
with samples had the best accuracy for medium
queries, 0.85; and C3+DIN with GPT-4 had the best
accuracy for simple queries, 0.91.

Strategy Details. Experiments with Langchain were
divided into two groups: (1) passing the NL ques-
tion and the schema; and (2) passing the NL question,
the schema, and two sample rows from each table.
The second group resulted in larger prompts, requir-
ing GPT-3.5-turbo-16k in some cases, while GPT-4
handled large prompts seamlessly. SQLDatabaseSe-
quentialChain and SQLAgent had minimal cost due to
the smaller prompts obtained by filtering the schemas
for the relevant tables. However, GPT-3.5-turbo and
GPT-4 misidentified crucial tables, leading to incor-
rect SQL queries. SQLAgent became lost or hallu-
cinated using GPT-4. In fact, SQLAgent is not fully
compatible with GPT-4. Also, SQLAgent had a poor
performance with GPT-3.5-turbo.

DIN with GPT-3.5-turbo had the largest number
of input tokens, followed closely by DIN with GPT-
4, both with over 1,4 MM input tokens. Indeed, DIN
generates large prompts since it passes the complete
database schema and uses a few examples to indicate
how the LLM should reason and generate SQL code
in each stage, except for the self-correction stage.

C3’s Consistent Output generated many output
tokens since it produces ten answers in each clear-
prompting stage (table recall and column recall). Fur-
thermore, at the time of writing, the output token price
of GPT-4 ($0.06/1K sampled tokens) is higher than
the input token price ($0.03/1K prompt tokens). Thus,
albeit C3 with GPT-4 had the best overall accuracy, it
generated 426,937 output tokens with an overall cost
of $30.23.

Table 3 shows the error analysis of C3 with GPT-
4. When compared with that of C3 for the Spider
benchmark (Dong et al., 2023), it indicates that the
errors resulting from schema linking and joins are
exacerbated in the experiments with Mondial, which
would be expected, given that the Mondial schema is
far more complex than the majority of the datasets in
the Spider benchmark.

C3+Din with GPT-4 had the same overall accu-
racy as DIN, but lower than C3 with GPT-4. However,
its cost and execution times were the highest among
all experiments. It inherited the problems of C3 and
DIN, such as a high table and column recall time and
large prompt sizes, but generated fewer input tokens
than DIN, as it did not use all DIN modules.

5.3.2 Results for IndDB

Accuracy. “DANKE” had the best overall accu-
racy, followed by “Manual prompt chain + DANKE”
with GPT-4, but both were low. All other strategies
achieved a very low overall accuracy. Of these strate-
gies, C3+DIN with GPT-4 had the best overall accu-

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

68

Table 3: Error analysis of the C3 with GPT-4 experiment using the Mondial database.

Error Type Schema Linking Joins Nested Query Invalid Query Misc
Percentage 53.3 30.0 3.3 6.7 6.7

racy, 0.13, but at a high cost, and SQLQueryChain
with GPT-4 had the second-best overall accuracy,
0.12, but with a much lower cost.

Strategy Details. SQLQueryChain with GPT-4 and
using samples could not be run since it required more
tokens than the allowed 8,192 for GPT-4. DIN with
GPT-4 generated the largest number of input tokens
since the IndDB schema has fewer tables than Mon-
dial, but the tables have more columns. SQLCoder
was not tested over IndDB for privacy reasons.

Analysis of the Predicted SQL Queries. The low
accuracy results call for a careful comparison of the
predicted and the ground truth SQL queries. Rather
than going through each of the 22 strategies (the num-
ber of lines of Table 5), the analysis concentrated on
LangChain SQLQueryChain with GPT-4, the second-
best accuracy of the text-to-SQL strategies with a low
cost.

The analysis revealed some problems with the ex-
periments with IndDB: (1) some of the NL questions
in the ground truth were incomplete or ambiguous; (2)
certain ground truth SQL queries were very specific
translations of the NL question, either because they
had columns in the target clause that were specific in-
terpretations of terms in the NL question, or because
the where clause contained conditions that were again
specific interpretations of filters in the NL question;
(3) the relational schema had table and column names
that did not match terms the user typically adopted
for the concepts (and therefore were used to formu-
late the NL questions); (4) the relational schema is
relatively large, which led to LLM hallucination; (5)
many NL questions led to SQL queries with up to 5
joins to gather all the required data.

The ground truth was then adjusted to mini-
mize Problems (1) and (2), and the experiment with
LangChain SQLQueryChain with GPT-4 was re-
executed. The accuracies thereby obtained were in-
deed much better than those reported in Table 5 for
this strategy. For example, the accuracy of simple NL
questions improved from 0.27 to 0.48, which reflects
the adjustments of the ground truth.

However, an accuracy of 0.48 for simple NL ques-
tions over IndDB is still much lower than the accu-
racy of 0.82 that this strategy obtained for simple NL
questions over Mondial, reported in Table 4. Since
the Mondial relational schema uses familiar table and
column names, this observation suggests that problem
(3) may be blamed for the lower accuracy of IndDB.

The traditional approach to avoid problem (3) is
to create views over the relational schema and care-
fully select view and column names that better match
user terms. However, this approach faced restrictions
to be implemented on IndDB, which is a production
database, and it could not be tested in the experiments.

Problems (4) and (5) were expected since the ex-
periments aimed at stressing the text-to-SQL strate-
gies with a large schema and complex questions.

6 CONCLUSIONS

The experiments with Mondial indicated that C3 with
GPT-4 had the best overall accuracy. However, C3 in-
curred higher costs, longer runtime, and more output
tokens. SQLQueryChain with GPT-4 proved more
effective, concerning token cost and execution time.
In general, passing the entire schema to the LLM
achieved better results than filtering the schema and
passing just a few tables, but this approach is limited
by the number of tokens the LLM allows, especially
for complex schemas, such as that of Mondial.

Regarding IndDB, DANKE had the best overall
accuracy, closely followed by “Manual prompt chain
+ DANKE” with GPT-4, albeit both results were low.
This suggests that the NL questions defined for In-
dDB were quite challenging. All other strategies had
an overall accuracy of less than 15%, which is very
low. They correctly processed only those NL ques-
tions over IndDB that mapped to a single table SQL
queries.

C3+DIN did not have good performance. It in-
herited the problems of C3 and DIN, such as a high
table and column recall time and large prompt sizes,
but generated fewer input tokens than DIN, as it did
not use all DIN modules.

The specific goal of this paper, to use an LLM-
based text-to-SQL tool to construct a Natural Lan-
guage Interface for IndDB as an alternative to
DANKE, therefore, failed for the list of text-to-SQL
strategies tested, even though this list includes some
strategies that ranked high in familiar leaderboards,
and a model fine-tuned for the text-to-SQL task, with
a reported very good performance. In general, the
poor performance of text-to-SQL strategies for the
large, complex databases typical of real-world indus-
trial applications calls for different alternatives and
this is the take-home lesson of this paper.

Text-to-SQL Meets the Real-World

69

Future work will consider three alternatives for
text-to-SQL, which are not mutually exclusive.

The first alternative will explore a combination of
a question-and-answer interface and database views.
As hinted at the end of Section 5, the view defini-
tions will: (1) create a vocabulary that better matches
user terms; (2) predefine frequently required joins. A
user session will start with a step-by-step NL ques-
tion specification to cope with any mismatch between
the user terms and the view vocabulary, and to disam-
biguate term usage. After this step, the interface will
select a few views to apply a text-to-SQL strategy.

The second alternative will consider fine-tuning a
locally stored LLM specifically for a given database
with a large schema. The training dataset can be quite
laborious to create, but GPT-4 may come in hand to
augment the training set from a seed set of NL ques-
tions and their SQL translations.

Suppose that a reasonable set P of pairs (S′,Q′),
consisting of an NL question S′ and its SQL transla-
tion Q′, can indeed be generated for a given database
D. A third alternative would be to sample P to con-
struct a set E of pairs (S′,Q′) such that S and S′ are
similar, for a given NL question S. Then, a text-
to-SQL strategy would pass E to the LLM to help
translate S, as already used in a limited form in the
LangChain strategies with samples.

ACKNOWLEDGEMENTS

This work was partly funded by FAPERJ un-
der grant E-26/202.818/2017; by CAPES under
grants 88881.310592-2018/01, 88881.134081/2016-
01, and 88882.164913/2010-01; by CNPq under grant
302303/2017-0; and by Petrobras.

REFERENCES

Affolter, K., Stockinger, K., and Bernstein, A. (2019). A
comparative survey of recent natural language inter-
faces for databases. The VLDB Journal, 28:793–819.

Dong, X., Zhang, C., Ge, Y., Mao, Y., Gao, Y., lu Chen, Lin,
J., and Lou, D. (2023). C3: Zero-shot text-to-sql with
chatgpt. arXiv preprint arXiv:2307.07306.

Gao, D., Wang, H., Li, Y., Sun, X., Qian, Y., Ding, B.,
and Zhou, J. (2023). Text-to-sql empowered by large
language models: A benchmark evaluation. arXiv
preprint arXiv:2308.15363.

Garcı́a, G. M., Izquierdo, Y. T., Menendez, E., Dartayre,
F., and Casanova, M. A. (2017). Rdf keyword-based
query technology meets a real-world dataset. In Pro-
ceedings of the International Conference on Extend-

ing Database Technology, pages 656–667. OpenPro-
ceedings.org.

Izquierdo, Y. T., Garcia, G. M., Lemos, M., Novello,
A., Novelli, B., Damasceno, C., Leme, L. A. P. P.,
and Casanova, M. A. (2021). A platform for key-
word search and its application for covid-19 pandemic
data. Journal of Information and Data Management,
12(5):656–667.

Izquierdo, Y. T., Garcı́a, G. M., Menendez, E. S., Casanova,
M. A., Dartayre, F., and Levy, C. H. (2018). Quiow: a
keyword-based query processing tool for rdf datasets
and relational databases. In International Confer-
ence on Database and Expert Systems Applications
(DEXA), pages 259–269. Springer.

Katsogiannis-Meimarakis, G. and Koutrika, G. (2023). A
survey on deep learning approaches for text-to-sql.
The VLDB Journal, 32(4):905–936.

Kim, H., So, B.-H., Han, W.-S., and Lee, H. (2020). Natural
language to sql: Where are we today? Proc. VLDB
Endow., 13(10):1737–1750.

Li, J. et al. (2023). Can llm already serve as a database in-
terface? a big bench for large-scale database grounded
text-to-sqls. arXiv preprint arXiv:2305.03111.

Nascimento, E. R., Garcia, G. M., Victorio, W. Z., Lemos,
M., Izquierdo, Y. T., Garcia, R. L., Leme, L. A. P.,
and Casanova, M. A. (2023). A family of natural lan-
guage interfaces for databases based on chatgpt and
langchain (short paper). In Companion Proceedings
of the 42nd International Conference on Conceptual
Modeling: Posters and Demos co-located with ER
2023, Lisbon, Portugal, November 06-09, 2023, vol-
ume 3618 of CEUR Workshop Proceedings.

Ping, W. J. (2023). Open-sourcing sqleval: our framework
for evaluating llm-generated sql.

Pourreza, M. and Rafiei, D. (2023). Din-sql: Decomposed
in-context learning of text-to-sql with self-correction.
arXiv preprint arXiv:2304.11015.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E., Le, Q., and Zhou, D. (2023). Chain-
of-thought prompting elicits reasoning in large lan-
guage models. arXiv preprint arXiv:2201.11903.

Yu, T. et al. (2018). Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-sql task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium.

Yu, X., Cheng, H., Liu, X., Roth, D., and Gao, J. (2023).
Automatic hallucination assessment for aligned large
language models via transferable adversarial attacks.
arXiv preprint arXiv:2310.12516.

Zhong, V., Xiong, C., and Socher, R. (2017). Seq2sql: Gen-
erating structured queries from natural language using
reinforcement learning. CoRR, abs/1709.00103.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

70

APPENDIX

Table 4: Results for Mondial.

Text-to-SQL Meets the Real-World

71

Table 5: Results for IndDB.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

72

