
Requirements for an Online Integrated Development Environment for
Automated Programming Assessment Systems

Eduard Frankford a, Daniel Crazzolara b, Clemens Sauerwein c, Michael Vierhauser d

and Ruth Breu e

University of Innsbruck, Institute of Computer Science, Technikerstraße 21a, 6020 Innsbruck, Austria

Keywords: Programming Education, Automated Programming Assessment Systems, Integrated Development
Environments, Requirements, Online IDE.

Abstract: More and more introductory programming courses are being held online, using Automated Programming
Assessment Systems (APASs). Some APASs provide online editors where students can solve and submit their
exercises, because some course teachers want to avoid that students have to set up an Integrated Development
Environment (IDE) on their PCs, fearing that this could increase the entry barrier to the course. However,
most of the available online editors for APASs only provide rudimentary programming support, making it
harder to write code and, therefore, have the undesired side effect of increasing the entry barrier to learning
programming. To gain a better understanding of the requirements of an online IDE for APASs, we conducted
a survey asking 48 APASs users to give their opinions on the importance of different online IDE features.
Based on their responses we derived a set of main requirements for an online IDE within APASs. The survey
was complemented by a tool review of state-of-the-art online IDEs, to see whether existing online IDEs meet
the requirements. Finally, we evaluated whether the online IDEs can be integrated within APASs. This
study establishes a framework for online IDEs tailored to APASs, creating the foundation for subsequent
improvements.

1 INTRODUCTION

Automated assessment of exercises in programming
courses is becoming more and more important (Barra
et al., 2020). Particularly, in large introductory pro-
gramming courses, the number of participants can
exceed several hundred or even thousands of stu-
dents, making it infeasible to grade all exercises by
hand. Furthermore, recent developments related to
the COVID-19 pandemic, or the popularity of massive
open online courses (MOOCs) have resulted in a shift
towards virtual teaching and learning (Mekterović
et al., 2023). As a result, APASs have emerged to sup-
port course instructors in handling these large number
of students (Mekterović et al., 2023). APASs allow
students to submit their exercises online, which are
then automatically evaluated, using a build pipeline

a https://orcid.org/0009-0005-5959-4936
b https://orcid.org/0009-0007-3548-4665
c https://orcid.org/0009-0009-9464-5080
d https://orcid.org/0000-0003-2672-9230
e https://orcid.org/0000-0001-7093-4341

to execute predefined test cases on the students’ code
(Krusche and Seitz, 2018). Afterwards, the stu-
dents receive the test results as feedback, which they
can use to further improve their submissions. Most
APASs use version control systems combined with
continuous integration servers to handle submissions
(Chen et al., 2020). This introduces an entry bar-
rier to novice programmers, as most beginners are not
yet familiar with version control systems. As a re-
sult, some APASs already provide the ability for stu-
dents to solve the exercises in a built-in online editor
(Krusche and Seitz, 2018) (Mekterović et al., 2023).
However, currently, most of these editors lack im-
portant IDE features, such as Syntax Highlighting,
Auto-Completion, or Key Shortcuts, to name but a
few. This makes programming in APASs unneces-
sarily difficult and puts additional burden on students
yet again raising the entry barrier. To establish the
theoretical foundations to evaluate and improve on-
line IDEs, we seek to address the following research
questions:

• RQ1. What are the most important requirements
for online IDEs as perceived by students?

Frankford, E., Crazzolara, D., Sauerwein, C., Vierhauser, M. and Breu, R.
Requirements for an Online Integrated Development Environment for Automated Programming Assessment Systems.
DOI: 10.5220/0012556400003693
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Computer Supported Education (CSEDU 2024) - Volume 1, pages 305-313
ISBN: 978-989-758-697-2; ISSN: 2184-5026
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

305

• RQ2. To what extent do existing online IDEs
meet these requirements?

• RQ3. To what extend, and with what effort can
existing online IDEs be integrated within APASs?
Based on these research questions, our initial step

involved conducting a comprehensive analysis of fea-
tures provided by various well known desktop IDEs.
Using this foundational analysis, we surveyed APASs
users to gain insights about their preferences regard-
ing different IDE features. Based on these derived
preferences, we evaluated existing online IDEs to cre-
ate an extensive list showcasing which requirements
are fulfilled and which programming languages are
supported by these IDEs. In a third step, we evalu-
ated whether these tools are available as open-source
or if they are of a proprietary nature. This helps to get
a complete picture of the online IDE landscape.

The remainder of this paper is structured as fol-
lows: Section 2 provides an overview of related work.
Section 3 elaborates on the research methodology.
Section 4 presents the main findings of this study,
which are further discussed in Section 5. Section
6 outlines potential constraints of this study, and we
conclude in Section 7, summarizing the main insights
and reflecting on the broader implications of this re-
search.

2 RELATED WORK

(Kusumaningtyas et al., 2020) compared several on-
line IDEs, specifically evaluating their internet data
usage and the availability of supporting libraries.
Eleven online IDEs that support Python program-
ming, offer free access, and do not require to login
were examined. The analysis revealed that Replit,
Codechef, and Ideone have the most comprehensive
library support. Notably, Replit was found to require
the least data transfer, offering a user-friendly inter-
face that effectively organizes code and output, and
is free from distracting advertisements. Thus, Replit
is recommended for users with limited internet re-
sources, especially for learning computer program-
ming during the pandemic.

(Sinanaj et al., 2022) compared ten online com-
pilers, assessing their service offerings and execu-
tion performance. The following service offerings
were analyzed: (1) Open Source, (2), Personal Ac-
count, (3), Cloud Storage, (4) Size Cloud Storage, (5)
File Size, (6) Programming Language Supported, (7)
Choice Compiler Version, (8) Intellisense, (9) Collab-
orative Real-Time, (10) Permalink Share Code and
(11) Debugging Code. Findings showed that On-
lineGDB, JDoodle, Replit, and Paiza.IO offered the

most services, with JDoodle, CodeInterview, Ideone,
WandBox, OnlineGDB, Judge0, and Replit leading in
performance. Based on a combined assessment of ser-
vices, performance, and user-friendliness, JDoodle,
OnlineGDB, and Replit were recommended as the top
choices for beginners, students, and teachers.

(Satav et al., 2011) presents a comparative study
of various desktop IDEs for C, C++, and Java, with
the goal of identifying key specifications for develop-
ing a comprehensive and optimal IDE. The findings
indicate that more popular IDEs tend to offer better
user support and provide many features to assist the
creation of source code.

(Hausladen et al., 2014) developed an online IDE
for embedded systems and defined the following
functional requirements: (1) Project and version man-
agement capabilities, (2) Control over the build pro-
cess including configuration of compilers, (3) Abil-
ity to download or flash the binary to the target hard-
ware connected to the client’s computer, (4) Debug-
ging capabilities, such as controlling the flow of exe-
cution with breakpoints, and inspecting variables and
memory locations, and (5) Standard source code edit-
ing features like syntax highlighting and code inden-
tation. Additionally, they defined the following non
functional requirements: (1) Stability and responsive-
ness, (2) Intuitive user interface and (3) Extensibility
regarding plugins.

(Tran et al., 2013) developed Ideol, an IDE that
significantly focuses on collaborative programming
and learning features. Key features include a real-
time interactive editor for simultaneous multi-user
editing and instant change viewing, a real-time dis-
cussion board with enhanced tagging and comment-
ing capabilities. Furthermore, it allows debugging,
along with an interactive execution tool to provide
support for C/C++ programming. Designed for a
wide range of users, from beginners to experts, Ideol
offers a user-friendly interface and is compatible with
HTML5-supported browsers on various platforms, in-
cluding partial tablet support.

The related work shows that few scientific re-
search has been conducted regarding the definition
of requirements of online IDEs. We found that some
developers of online IDEs defined specific functional
and non functional requirements for their developed
IDEs. Additionally, online IDEs have only been com-
pared regarding their internet data usage, availabil-
ity of libraries, performance and specific offered ser-
vices. However, a scientific requirements definition
and a detailed comparison of IDE features focusing
on supporting novice programmers is missing. We
seek to address this gap by first creating a require-
ments checklist for online IDEs including common

CSEDU 2024 - 16th International Conference on Computer Supported Education

306

IDE features and then conducting a tool review to an-
alyze what existing tools fulfill which requirements.

3 METHODOLOGY

To address the aforementioned research questions (cf.
Section 1), we employed a two-stage approach: first,
we collected requirements from APASs users, and
second, we conducted a systematic tool review. In the
following, we provide a detailed description of each
step.

3.1 Requirements Specification

In order to gain an overview of the main requirements
for an online IDE in context of APASs, we first con-
ducted a survey asking APASs users to rate the im-
portance of common (non-online) IDE features and
to mention whether they are missing some features.
The survey was distributed to APAS users from the
following universities: University of Innsbruck, Jo-
hannes Kepler University Linz and Paris Lodron Uni-
versity Salzburg. To reach as many participants as
possible, the survey was carried out online, and was
promoted directly on the APAS Artemis hosted at the
University of Innsbruck 1. The survey was designed
to be completely anonymous using the LimeSurvey
tool2.

3.1.1 Survey

The survey was divided into three parts. First, we
asked participants about their familiarity and experi-
ences in using APASs (P). Second, we asked them to
rate IDE features with regards to their perceived im-
portance (F), and finally, two open-ended questions
concluded the questionnaire (O).

For the first part, we asked participants the follow-
ing questions, with the main intention to collect initial
information about the participants of the survey

• P1: In which semester are you currently in?
• P2: In how many university courses (including

current ones) did you use Artemis?
• P3: What did you use to solve the programming

exercises in Artemis?
(Single choice regarding five options ranging
from “online editor only” to “local IDE only”)

In the second part, the survey included a list of
IDE features and participants were able to rate these

1https://github.com/ls1intum/Artemis
2https://www.limesurvey.org

regarding their perceived importance. The partici-
pants were asked to rate each of the listed features us-
ing a 5-point Likert scale ranging from “Very Impor-
tant” (1) to “Very Unimportant” (5). Each feature in-
cluded a brief description and screenshot to assist the
participants in understanding its functionality. Such a
description is depicted in Figure 1.

The following list shows all the features we eval-
uated and the corresponding descriptions displayed in
the survey:

• F0: Syntax Highlighting - distinguishes various
parts of source code using colors.

• F1: Debugger / Breakpoints - provides the ability
to pause code execution at a given line of code
and inspect the initialized variables.

• F2: Auto-completion / Code Suggestions - dis-
playing potential code completion / suggestions
based on the currently typed code.

• F3: Syntax Error Highlighting - underlining po-
tentially incorrect code leading to syntax errors.

• F4: Brace Matching Highlighting - highlights the
matching brace in code to improve the visibility of
its scope.

• F5: Key Shortcuts - integrated basic shortcuts
(e.g. copy, paste, cut, find etc.

• F6: Compiler / Interpreter (Run Button) - possi-
bility to compile/run the code without executing
related tests.

• F7: Dedicated Shell Console - access to a con-
sole where code can be run manually (e.g. using
custom arguments or properties).

Finally, in the last part of the survey, we asked
two open-ended questions to collect additional fea-
tures and requirements we might have missed.

• O1: Do you have any further suggestions on how
the editor could be improved?

• O2: Are there any other highly important features
a code editor should have, in order to support you
in writing code?

3.2 Systematic Tool Review

Complementing the survey, to better understand the
state-of-the-art online IDEs, we conducted a system-
atic tool review. For this purpose, we searched three
digital libraries: IEEE Explore3, ACM Digital Li-
brary4 and Springer5.

3http://ieeexplore.ieee.org
4http://dl.acm.org
5https://link.springer.com/

Requirements for an Online Integrated Development Environment for Automated Programming Assessment Systems

307

Figure 1: Example of a feature description and screenshot provided to the survey participants.

The scope covered all publications from 2013 un-
til 2023 using the following search term: “online code
editor” OR “online IDE” OR “web-based IDE” OR
“browser-based IDE” OR “cloud IDE” OR “online
compiler”.

The search term was carefully chosen to include a
wide variety of IDE synonyms used in research. Be-
fore finalizing the search term, we conducted a pilot
search. This initial search helped to test the adequacy
and appropriateness of the chosen search string. Like
this we were able to verify that the used terms were
resulting in relevant literature. Additionally, this pi-
lot search resulted in insights into the volume and na-
ture of the available literature, which helped in defin-
ing the scope of the review, including defining which
databases to search and what time frame to consider.

In total we found 39 results in IEEE Explore, 243
results in the ACM Digital Library and 122 results in
the Springer database. On these results, we used the
following inclusion and exclusion criteria:

Table 1: Inclusion and Exclusion criteria.
Inclusion Criteria Exclusion Criteria
Papers Accessible in Full text Non-english articles
Presenting a new online IDE Not presenting an online IDE
Focusing on supporting programming Not focusing on code
Available to test online or open source Not available to test.

Based on the results we created a list of tools, and
prepared a checklist that includes the feature set as
proposed by the survey respondents. Following this,
each tool was tested, and a comprehensive list of the
provided features was extracted. In addition to the
provided features, the supported programming lan-
guages, as well as the integrated editor on which the
tool relied on, were noted down in the same docu-
ment. This review was conducted to find commonly
offered and practically implementable features. It
also enabled a comparative evaluation of integrated
editors across various platforms, providing a broad
view of their strengths and weaknesses.

4 RESULTS

In the following, we present the results of the con-
ducted survey and tool analysis analysis.

4.1 Requirements for an Online IDE

For the survey that has been displayed in the APAS
Artemis we received 48 valid responses of mainly first
year computer science students. In the following the
results will be presented.

4.1.1 Demographics

The preliminary questions revealed that the APAS is
primarily utilized by students in the initial stages of
their university journey, with a significant concentra-
tion of users in their first semester. The results fur-
ther show that around 60% of participants mostly use
GIT combined with a local IDE when solving pro-
gramming exercises. Only, approximately 20% of the
respondents use mainly the online editor and the re-
maining 40% use both equally. The exact distribution
can be seen in Figure 2. The substantial reliance on
external tools, like local IDEs and GIT, suggests the
need for improvement of the online code editor used
in the APAS, as this would help beginner program-
mers get started without having to learn GIT and in-
stall an IDE first. This validates the necessity of this
study, aiming to understand the requirements for on-
line IDEs for APASs in general.

Figure 2: Preferred tools for solving programming exer-
cises.

CSEDU 2024 - 16th International Conference on Computer Supported Education

308

4.1.2 Features’ Importance Questions

Following the methodology outlined in Section 3, par-
ticipants were asked about the significance they place
on various features offered by online IDEs.

The prioritization of IDE features according to the
participants’ responses is as follows:

• Syntax Highlighting: This feature has received the
highest number of “Very Important” ratings, mak-
ing it the most valued feature among the surveyed
participants. Syntax highlighting is crucial be-
cause it allows developers to quickly distinguish
elements of the code, such as variables and func-
tions, which can enhance readability and reduce
the likelihood of errors.

• Syntax Error Highlighting: Similarly to syntax
highlighting, syntax error highlighting is consid-
ered very important. It provides immediate feed-
back on errors, without the need to compile or ex-
ecute the code, which is essential for learning and
improving code.

• Compiler / Interpreter (Run Button): The feature
is considered important, reflecting its role in the
actual running and testing of the code. This in-
dicates that a seamless transition from coding to
execution is valued by users.

• Auto-completion / Code Suggestions: Rated as
very important, this feature suggests that users
value assistance in coding for speed and effi-
ciency. It helps in reducing typos and understand-
ing available functions and methods.

• Debugger / Breakpoints: This feature is highly
rated, but already more on the lower end of re-
garding the importance compared to other fea-
tures. Indicating that beginner programmers
might not directly realize the importance of de-
bugging to understanding code flow and identify-
ing bugs.

• Brace Matching Highlighting: This feature is im-
portant but has a slightly lower rating compared
to other features. It helps users in navigating com-
plex code blocks, which is useful in understanding
and maintaining code structure.

• Key Shortcuts: This feature has the most neutral
ratings. It indicates that while some users find
shortcuts essential for faster coding, others may
not rely on them as much, which could depend
on the user’s familiarity with the IDE or personal
coding habits.

• Dedicated Shell Console: Although it has re-
ceived a significant number of negative ratings, it
still has enough positive responses to suggest that

for certain tasks or users, a dedicated shell con-
sole within the IDE is an essential feature. This
might be more important for those who work with
command-line interfaces or scripting.

The aggregate data suggests that while some fea-
tures are universally acknowledged as critical (like
syntax highlighting and error detection), others are
subject to more personal preference (like key short-
cuts and shell consoles). This emphasizes the need
for customizable online IDEs that allow users to tai-
lor their environment to their personal workflow and
the tasks at hand. In Figure 3 we ordered the results
with the most important feature being Syntax High-
lighting and the least important being Dedicated Shell
Console using a weighted sum.

For the open questions, students frequently high-
lighted the need for enhanced compilation perfor-
mance in the Artemis platform. Currently, Artemis
does not support direct code compilation. Instead,
upon submission, the Artemis Platform runs all prede-
fined test cases in the CI environment to validate the
solutions, leading to longer wait periods for students
to see whether their solution compiles or not. This
concern was raised four times, with students specifi-
cally suggesting the implementation of a “Run-only”
button to allow code compilation without executing
tests. Additionally, there was a strong desire, men-
tioned five times, for increased editor pane size or the
introduction of a presentation mode to improve the
user interface. The improvement of the editor’s intel-
lisense, particularly for code completion and file ex-
plorer functionality, was highlighted twice. Further-
more, there were individual requests for the integra-
tion of a debugger and enhancements to the feedback
mechanism provided by the APAS.

Main Findings for RQ 1

Based on the survey responses we could derive the
following ranking for requirements of an online
IDE: Syntax Highlighting, Syntax Error Highlight-
ing, Compiler and Interpreter, Auto-completion
and Code Suggestions, Debugger and Breakpoints,
Brace Matching Highlighting, Key Shortcuts and a
Dedicated Shell Console .
The answers to the open ended questions indicated
a strong demand for improved compilation speed
in Artemis, with students proposing a “Run-only”
button to bypass test runs during compilation. Ad-
ditionally, improving the user interface via larger
editor panes or a presentation mode was a notable
request.

Requirements for an Online Integrated Development Environment for Automated Programming Assessment Systems

309

Figure 3: The detailed feelings of students about different IDE features.

4.2 State of the Art Solutions

The results of the systematic tool review are shown
in Table 2, showcasing a total of 15 analyzed online
IDEs, along with their features, supported program-
ming languages, used editors and whether they are
available open source or not.

From this analysis, it is evident that three promi-
nent editors dominate as a basis for online IDEs: (1)
Monaco (2) ACE and (3) CodeMirror. The Monaco
editor stands out as being the basis for more than 50%
of the tools. Furthermore, we found that the sup-
port for various programming languages is extensive
across the board, with most tools catering to a vast
majority of the selected languages. Tools utilizing the
Theia framework, which builds on the ’Monaco’ ed-
itor, tend to offer the most comprehensive IDE fea-
ture set compared to other editors. Notably, the fea-
tures, syntax error highlighting and auto-completion
are only found in tools using the Monaco editor, with
the exception of ’Online-ide’ that uses the ’ACE’ ed-
itor and provides auto-completion for a subset of the
languages.

Last but not least, Table 3 also shows that
Codespaces and Gitpod, fulfill all the requirements
we have defined in this study. Proving that it is possi-
ble to create a complete online IDE.

Main Findings for RQ 2

Based on the systematic tool review we found that
the online IDEs Gitpod and Codespaces already
fulfill all of the defined requirements. Proving that
it is possible to create a functional online IDE.

4.3 Online Ides’ Usability Within
APASs

For an online IDE to be usable within APASs it has
to be either open source or has to offer an API to
which to connect to. However, connecting an APAS
via an API to an external online IDE is not recom-
mended, because it introduces complexities in main-
taining consistent and secure data exchange, poten-
tial latency issues and can significantly increase de-
pendency on the external service’s uptime and relia-
bility, which usually does not align with the APAS’s
operational requirements and standards. Therefore,
we mainly concentrated on whether the source code
of an online IDE is available as open source during
this review. Based on this we found that only three
tools were available as open source: (1) Artemis,
(2) Coderunner and (3) Exercism. Inspecting these,
we found that they offer important features like: (1)
Syntax highlighting, (2) Compiler / Interpreter, (3)
Brace matching highlighting, (4) Line numbers, (5)
Key shortcuts, (6) File navigation tools and (8) Line
numbers. However, important features are missing.
Among others, the following: (1) Debugger, (2) Auto-
completion / suggestions, (3) Syntax error highlight-
ing and (4) Dedicated shell console.

Main Findings for RQ 3

There are open source online IDEs like the built-
in editor of the APAS Artemis or Coderunner’s
and Exercism’s online IDEs that can be easily in-
tegrated within APASs. However, all only provide
partial feature support. In order to create an on-
line IDE that fulfills all the requirements defined in
this study it seems that improving Artemis’ editor
should be the recommended path to follow because
the editor is already integrated into an open source
automated assessment system.

CSEDU 2024 - 16th International Conference on Computer Supported Education

310

Table 2: Systematic Tools Review.

Tool name Provided features (ta-
ble 3)

Supported lan-
guages (table 3)

Base Editor
used

Open Source

Artemis 1,2,6,8 1,3,4,5 Monaco Yes
Codeboard 1,2,3,7,8,(9) 1,2,3,4,5 ACE No
Coderunner 1,3,7,8,(9) 1,2,3,4,6 ACE Yes

Codebyte-editor 1,2,3,7,8,9 1,2,3,4,6 Monaco No
Exercism 1,2,3,7,8,9 1,2,3,4,5,6 CodeMirror Yes
Sololearn 1,3,7,8,9 1,2,3,4,6 Monaco No

Replit 1,2,3,4,(5),6,7,8,9,10 1,2,3,4,5,6 Monaco No
Codesandbox 1,2,5,7,8,9,(10) 6 Monaco No
W3schools 1,3,(9) 1,2,3,4,6 CodeMirror No
Codewars 1,3,7,(9) 1,2,3,4,5,6 CodeMirror No
Online-ide 1,2,3,(5),7,8,9 1,2,3,4 ACE No
Onlinegdb 1,(2),3,4,7,8,(9) 1,2,3,4,6 ACE No

Codespaces 1,2,3,4,5,6,7,8,9,10 1,2,3,4,5,6 Theia
(Monaco)

No

Gitpod 1,2,3,4,5,6,7,8,9,10 1,2,3,4,5,6 Theia
(Monaco)

No

Codeanywhere 1,2,3,4,5,6,7,8,9,10 1,2,3,4,6 Theia
(Monaco)

No

(#) means partially supported

Table 3: Reviewed features and languages.

Features # Programming languages
1 Syntax highlighting 1 C
2 File navigation tools 2 C++
3 Compiler / Interpreter 3 Java
4 Debugger 4 Python
5 Auto-completion / suggestions 5 Haskell
6 Syntax error highlighting 6 JavaScript
7 Brace matching highlighting
8 Line numbers
9 Key shortcuts
10 Dedicated shell console

5 DISCUSSION

In this study we found that first-semester computer
science students prioritize online IDE features as fol-
lows: (1) Syntax Highlighting, (2) Syntax Error High-
lighting, (3) Compiler / Interpreter (Run Button), (4)
Auto-completion / Code Suggestions, (5) Debugger
/ Breakpoints, (6) Brace Matching Highlighting, (7)
Key Shortcuts, and (8) Dedicated Shell Console. The
preference for syntax highlighting and error high-
lighting aligns with the expectations for beginner pro-
grammers, who often have problems with understand-
ing the syntax and structure of code. These fea-
tures provide immediate visual cues that can help be-
ginners identify and correct errors more efficiently,
thereby enhancing their learning experience and re-
ducing frustration. The preference for a compiler or

interpreter with a simple ’Run’ button reflects the de-
sire for straightforward, immediate feedback on code
execution, which is particularly appealing for begin-
ners not yet comfortable with command-line inter-
faces or complex build processes. The appreciation
for auto-completion and code suggestions further in-
dicates the students’ need towards features that pro-
vide direct assistance and reduce the cognitive load
of remembering syntax and function names. By re-
ducing the cognitive load associated with understand-
ing syntax and executing programs, these features can
help mitigate early frustrations and enhance the over-
all learning experience. This is particularly relevant in
the context of APASs, where the immediate feedback
loop and the opportunity for iterative improvement
are key. The ability of an online IDE to provide clear,
instant feedback aligns with the key requirements of

Requirements for an Online Integrated Development Environment for Automated Programming Assessment Systems

311

APASs, facilitating a learning environment where stu-
dents can rapidly adapt and refine their code based on
automated assessments.

The mid-tier ranking of debugging tools might
initially seem surprising, given their importance in
the software development process. However, this
can be understood in the context of novice program-
mers’ limited exposure to and understanding of sys-
tematic debugging strategies. As students’ program-
ming skills evolve, they are likely to recognize the
value of these tools in diagnosing and resolving issues
more effectively.

Beside this, feedback from open-ended questions
in the survey brought to light additional desired fea-
tures, such as a presentation mode and a large edi-
tor pane, which are particularly relevant in an educa-
tional context where students often present their work.
The need for enhanced compilation performance, as
specifically mentioned in relation to the Artemis plat-
form, points to a broader requirement for more effi-
cient code execution within online IDEs. Students’
suggestions for a run button, to bypass full test exe-
cution for quicker compilation feedback, illustrates a
critical area for improvement in APASs.

The systematic review of online IDEs, empha-
sizing the robustness of editors like Monaco and
the comprehensive capabilities of Theia, provides a
roadmap for the development of APASs. However,
the challenge of balancing comprehensive feature sets
with resource efficiency remains vital, especially in
educational settings where scalability is key. Addi-
tionally, the systematic tool review allows educators
and alike to quickly decide on which tool to use de-
pending on the programming language and feature
support needed.

In summary, this study not only identifies the on-
line IDE features most valued by beginner program-
mers but also highlights the critical role these features
play in supporting the objectives of APAS by helping
to create an environment that reduces initial barriers
to learning programming.

6 LIMITATIONS

This study largely leaned on a survey and a system-
atic tool analysis. Regarding the survey, it might be
the case that we overlooked important online IDE fea-
tures. However, this threat to validity should be min-
imized by allowing the students to add missing fea-
tures via open-ended feedback.

In addition, the over representation of first-year
students to judge the most important features for an
IDE presents a potential limitation. These students,

due to their limited experience, might prioritize fea-
tures that offer immediate convenience and are easy
to understand over those that could provide signifi-
cant long-term benefits in learning and coding profi-
ciency. For instance, syntax highlighting, being an in-
tuitive feature, is easily appreciated by beginners for
its ability to improve code readability and reduce er-
rors. This direct and immediate benefit might lead
students to rate such features as highly important. On
the other hand, the utility of a debugging tool, which
is more complex and requires a deeper understanding
of programming concepts to use effectively, might not
be as readily apparent to them. Even-though, over
time, as students’ programming skills improve, the
ability to systematically diagnose and fix errors using
a debugger significantly enhances their productivity
and learning outcomes. Future work could involve
conducting a similar study with programming edu-
cators and more experienced programmers to gain a
broader perspective on the importance of various IDE
features. However, starting with students as the pri-
mary respondents was a deliberate choice, consider-
ing they are the main users of online IDEs in APASs
and as a results understanding their preferences and
immediate needs can provide valuable insights into
designing more accessible and user-friendly program-
ming environments.

Last but not least, in the systematic tool analysis,
we might have missed important online IDEs. How-
ever, the search string was developed with input from
two subject matter experts, aiming to encompass most
significant online IDEs. Despite this, the review pro-
cess could still be affected by subjective interpreta-
tions, even-though we used a systematic data extrac-
tion methodology to mitigate such biases.

7 CONCLUSION

This research aimed to identify and evaluate the
essential features required for an effective online IDE
in the context of APASs. Through a comprehensive
survey conducted among APASs users, primarily
composed of first-semester computer science stu-
dents, we gained valuable insights into the features
that are most valued in an online IDE. The ranking
of these features, led by Syntax Highlighting and
Syntax Error Highlighting, reflects the specific needs
and preferences of beginners in programming. This
ranking, complemented by the additional require-
ments identified through open-ended questions,
provides a clear direction for future development and
enhancement of online IDEs in educational contexts.

CSEDU 2024 - 16th International Conference on Computer Supported Education

312

The systematic review of existing online IDEs un-
derscored the prominence of the Monaco editor and
revealed the comprehensive feature set offered by the
Theia IDE. However, the resource-intensive nature of
Theia points to a need for further investigation into its
feasibility for widespread use. This study’s findings
also highlight a gap in the availability of open-source
online IDEs with only Artemis, Coderunner and Ex-
ercism, offering partial feature support.

Future research should on the one hand expand
the survey’s population to also include experienced
programmers and educators and on the other hand
explore the resource demands of comprehensive on-
line IDEs, like Theia, and investigate the feasibility
of developing open-source solutions that fully meet
the identified requirements.

In conclusion, this study contributes to the under-
standing of what constitutes an effective online IDE
for APASs. By prioritizing features according to user
preferences and exploring the current state of online
IDEs, we lay the basis for future advancements in this
area, ultimately aiming to improve the learning expe-
rience of programming students and the efficiency of
APASs.

ACKNOWLEDGMENTS

The CodeAbility Austria project has been funded by
the Austrian Federal Ministry of Education, Science
and Research (BMBWF).

REFERENCES

Barra, E., Lopez-Pernas, S., Alonso, A., Sanchez-Rada,
J. F., Gordillo, A., and Quemada, J. (2020). Auto-
mated assessment in programming courses: A case
study during the COVID-19 era. Sustainability,
12(18):7451.

Chen, H.-M., Nguyen, B.-A., Yan, Y.-X., and Dow, C.-R.
(2020). Analysis of learning behavior in an automated
programming assessment environment: A code qual-
ity perspective. IEEE Access, 8:167341–167354.

Hausladen, J., Pohn, B., and Horauer, M. (2014). A cloud-
based integrated development environment for em-
bedded systems. In Proc. of the 2014 IEEE/ASME
10th Int’l Conference on Mechatronic and Embedded
Systems and Applications, pages 1–5. IEEE.

Krusche, S. and Seitz, A. (2018). Artemis: An automatic
assessment management system for interactive learn-
ing. In Proc. of the 49th ACM Technical Symposium
on Computer Science Education, pages 284–289.

Kusumaningtyas, K., Nugroho, E. D., and Priadana, A.
(2020). Online integrated development environment
(ide) in supporting computer programming learning

process during COVID-19 pandemic: A comparative
analysis. International Journal on Informatics for De-
velopment, 9(2):66–71.

Mekterović, I., Brkić, L., and Horvat, M. (2023). Scaling
automated programming assessment systems. Elec-
tronics, 12(4):942.

Satav, S. K., Satpathy, S., and Satao, K. (2011). A compar-
ative study and critical analysis of various integrated
development environments of C, C++, and Java lan-
guages for optimum development. Universal Journal
of Applied Computer Science and Technology, 1:9–15.

Sinanaj, L., Ajdari, J., Hamiti, M., and Zenuni, X. (2022). A
comparison between online compilers: A case study.
In Proc. of the 11th Mediterranean Conference on
Embedded Computing, pages 1–6.

Tran, H. T., Dang, H. H., Do, K. N., Tran, T. D., and
Nguyen, V. (2013). An interactive web-based IDE to-
wards teaching and learning in programming courses.
In Proc. of 2013 IEEE Int’l Conference on Teach-
ing, Assessment and Learning for Engineering, pages
439–444. IEEE.

Requirements for an Online Integrated Development Environment for Automated Programming Assessment Systems

313

