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Abstract: Our previously developed Lane Departure Detection and Warning System (LDWS) used a standard GPS 
receiver and two algorithms to detect an unintentional lane departure. The first algorithm generated the Road 
Reference Heading (RRH) from a vehicle’s past trajectories, while the second algorithm predicted lane 
departure in real time using RRH. A significant limitation of this system is the dependency on past trajectories. 
A vehicle must travel on the road at least once in the past to use that trajectory for RRH generation needed 
for future lane departure detection. To avoid dependency on past trajectories, this work uses Google routes 
instead of past trajectories to extract the RRH of any given road. We also compared the RRH generated from 
a Google route with that of a past trajectory and found both RRHs to be comparable indicating that our LDWS 
does not need to rely on RRH from past trajectories. To evaluate the accuracy of lane departure detection 
using Google RRH, we performed many field tests on a freeway. Our field test results show that our LDWS 
can accurately detect all lane departures on long straight sections of the freeway irrespective of whether the 
RRH was generated from a Google route or past trajectory. 

1 INTRODUCTION 

According to the World Health Organization (WHO) 
report, roughly 1.3 million people die yearly from 
road traffic crashes (Road Traffic Injuries, n.d.). A 
survey that examined the national sample of US 
crashes from 2005 to 2007 identified driver error as 
the critical reason contributing to 94 percent of 
crashes (Singh, 2015). Advanced driver assistance 
systems (ADAS) (Antony & Whenish, 2021) 
facilitate drivers to make well-informed decisions and 
consequently help them avoid collisions. The recent 
advancements in ADAS technologies have increased 
safety for both drivers and pedestrians. The analysis 
of a study that estimated the safety benefits of in-
vehicle lane departure warning (LDW) and lane-
keeping aid (LKA) systems in reducing relevant car 
injury crashes demonstrated that such systems 
reduced head-on and single-vehicle injury crashes by 
53% at a 95% confidence interval on Swedish roads 
within a specific speed limit range and road surface 
conditions (Sternlund et al., 2017). Most Lane 
Departure Warning Systems (LDWSs) depend on 
image processing and use cameras, infrared, or laser 
sensors to estimate a vehicle’s lateral shift within a 
lane to detect an unintentional lane departure (An et 

al., 2006, Baili et al., 2017, Chen & Boukerche, 2020, 
Hsiao and Yeh 2006, Jung et al., 2013, Leng & Chen, 
2010, Lindner et al., 2009, Yu et al., 2008). Vision-
based LDWSs face challenges adapting to diverse 
weather conditions, handling light changes, and 
mitigating shadow effects. Blockage of lane markings 
by other vehicles in LDWS images can also cause 
detection failures. Real-time processing of captured 
images is crucial for vision-based LDWS, 
necessitating synchronous image processing speed to 
ensure timely and safe detection (Chen et al., 2020). 
Gamal et al. (2019) also propose a real-time, 
calibration-free lane departure warning system 
algorithm utilizing Gaussian pyramid preprocessing 
and Edge Drawing Lines algorithm, achieving high 
accuracy (99.36%) and fast processing (80 fps), 
suitable for integration into self-driving systems in 
OEM cars, outperforming existing algorithms.  

Although advanced image processing techniques 
work well in diminished lighting scenarios (Dobler et 
al., 2000, McCall & Trivedi, 2006), many of today’s 
commercially available image processing-based 
LDWSs have performance issues under unfavorable 
weather or road conditions like fog, snow, or worn out 
road markings potentially leading to inaccurate lane 
detection or overlooking genuine lane markings.  To 

238
Tasnim, N., Zaman, A. and Hayee, M.
Real-Time Lane Departure Detection Using Google Routes.
DOI: 10.5220/0012557000003702
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2024), pages 238-248
ISBN: 978-989-758-703-0; ISSN: 2184-495X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



tackle the limitations posed by adverse weather 
conditions and degraded road markings on the 
performance of image processing-based LDWSs, 
recent advancements have emerged. For instance, 
Son et al. (2015) have introduced a lane departure 
warning system specifically designed to combat 
illumination challenges prevalent in driving 
environments. This system demonstrates a 93% 
detection rate, surpassing traditional approaches, 
even in scenarios with blurred lane markings or low 
sun angles. Furthermore, Sang et al. (2024) have 
developed a self-tuned algorithm that integrates fuzzy 
logic-based adaptive functions with edge 
identification and line detection modules. This 
algorithm aims to enhance image quality in 
challenging weather conditions, although it may have 
limitations in handling multiple and curved lines. To 
address some of these performance issues, Global 
Positioning System (GPS) technology is integrated 
within vision-based LDWS. To estimate a vehicle's 
lateral movement in its lane, such systems employ 
differential GPS (DGPS) technology (Bajikar et al., 
1997) and/or inertial navigation and/or odometry 
sensors (Toledo-Moreo & Zamora-Izquierdo, 2009) 
in addition to high-resolution digital maps, making 
them challenging to deploy and expensive (Clanton et 
al., 2009). Weon et al. (2021) propose a lane 
departure detection algorithm for vehicles using 
Geographic Information System (GIS) and DGPS 
data with high positioning accuracy under 20 cm. It 
calculates lane segment distances based on vehicle 
position, utilizing Bezier curves for curved sections. 
Although GPS is a very helpful tool for navigation, 
there are situations in which signal interference, 
multipath effects, or complex road networks may 
make it less reliable in streets and urban areas. Rose 
et al. (2014) demonstrate how combining vision, 
height measurements, and a lane map can 
significantly reduce drift when a GPS signal is lost, 
such as in dense foliage or urban environments. By 
utilizing existing sensors in commercial vehicles, the 
system achieves submeter accuracy in lateral distance 
measurement. 

Our previously developed LDWS system was 
based on a standard GPS receiver without using any 
image processing or optical scanning devices, or 
high-resolution digital maps. To detect a lane 
departure, our developed LDWS system estimated 
lateral vehicle shift using standard GPS technology. 
The lateral vehicle shift was estimated by comparing 
the vehicle trajectory acquired by a standard GPS 
receiver with a Road Reference Heading (RRH), 
which was obtained using a newly developed 
algorithm (Shahnewaz Chowdhury & Hayee, 2021). 

Our Lane Departure Detection (LDD) algorithm 
accumulated instantaneous vehicle lateral shifts to 
detect an unintentional lane departure in real-time 
(Faizan et al., 2019). 

One major limitation of the previously developed 
LDWS system is the dependency on past trajectories. 
To detect an unintentional lane departure of any 
vehicle in real-time on a given road, the vehicle must 
have traveled on the same road at least once in the 
past to use that trajectory for RRH generation. During 
the subsequent trips on the same route, the system can 
detect a potential lane departure using already 
generated RRH to warn the driver. To avoid 
dependency on past trajectories, this work utilizes 
Google routes from Google Maps instead of past 
trajectories to extract the RRH of any given road. 
RRH can be extracted from various GPS navigation 
systems offered by companies such as Waze, Garmin, 
TomTom, Sygic, and Apple, among others. However, 
we opted for Google Maps as it is a widely recognized 
and popular option. Google routes are available for all 
roads within the US through Google Maps as 
navigational routes.We have used the navigational 
route on any given road provided by Google Maps as 
a Google route to extract the RRH of that road using 
our RRH generation algorithm. The extracted RRH 
from Google routes was used to detect an 
unintentional lane departure in real-time and alert the 
driver with an audible warning. We also compared the 
lane departure detection results using Google RRH to 
that of the past trajectories and found that lane 
departure detection resulting from Google RRH and 
RRH from the past trajectories are comparable. We 
also performed field tests to evaluate the results 
showing that our system can accurately detect lane 
departure on long straight sections of the freeways. 
This shows the potential of our LDWS to be used for 
all US roads without the dependency on past 
trajectories. 

The rest of the paper is organized as follows. 
Section 2 describes the architecture of the system, 
followed by section 3, which describes RRH 
generation from Google routes. Section 4 discusses 
the field tests and results, followed by conclusions in 
Section 5. 

2 SYSTEM ARCHITECTURE 

The previously developed LDWS system has been 
enhanced to work for both past vehicle trajectories 
and Google routes as shown in Figure 1a. The 
enhanced LDWS can either generate RRH using past 
trajectories or from Google routes obtained from 
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Google Maps. In the updated LDWS, we have 
incorporated necessary modifications and 
enhancements of the RRH generation algorithm to 
accommodate RRH generation from Google routes. 
With this additional feature of extracting RRH, our 
LDWS is capable of detecting lane departures of a 
vehicle in real-time on any road, regardless of 
whether the vehicle has traveled on that road in the 
past. Our LDWS compares the vehicle trajectory in 
real-time with the RRH of that road to detect a lane 
departure using our LDD algorithm as depicted in 
Figure 1b where a vehicle trajectory with a lane 
departure (red dotted line) can be compared with the 
RRH (blue dotted line) obtained from the Google 
route (blue solid line) or from one of the past 
trajectories (not shown in Figure 1b) to determine 
lane departure using our LDD algorithm (Faizan et 
al., 2019). 

We have also made enhancements to our LDD 
algorithm to detect lane departure more efficiently. 
However, this paper is more focused on the details of 
the new feature of extracting RRH from Google 

routes obtained from Google Maps. To evaluate the 
effectiveness of lane departure detection using RRH 
from Google routes, we have compared the results of 
lane departure detection using RRH from both 
Google routes and past trajectories, which will be 
described in more detail in the field tests and results 
section. 

3 RRH GENERATION FROM 
GOOGLE ROUTE 

We have developed a backend browser-based 
application where we can specify the start and end 
points of the desired route on a Google map to obtain 
the RRH from the Google route on almost any road 
within the US. The user specifies the start and end 
location points in the Google map to define the 
Google route necessary for RRH generation. Our 
backend browser application accesses Google Maps’ 
API for turn-by-turn directions between the start and  
 

 

 
Figure 1: (a) Architecture of the LDWS system. (b) Conceptual diagram demonstrating that RRH (blue dotted line) can be 
generated from a Google route (blue solid line, where points A and B are the start and end points, respectively) to detect an 
intentional lane change from right to left (red dotted line). The road illustrated in this figure is a 4-lane road with the Google 
route shown in the middle. 

(1b) 

(1a) 
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end points of the route and returns an array of 
locations with latitudes and longitudes. In this array 
of locations provided by Google Maps, there are more 
location points on a curve segment of the road as 
compared to a straight segment of the road. This array 
of latitudes and longitudes represents the Google 
route from which RRH is generated.  

We preprocess the array of location points to 
obtain a uniform distance resolution before applying 
our RRH generation algorithm. To obtain a uniform 
distance resolution, we have to access Google Maps 
API a few times between intermediate location points 
in the array until we get the desired resolution so that 
every two consecutive points in the Google Maps 
array of locations have the same distance as the 
desired resolution typically in 1 to 3 m range. We 
have to do more iterations on straight sections in the 
array as compared to a curve section because there are 
fewer number of points on a straight section as 
compared to a curve section.  

Our developed RRH generation algorithm 
characterizes a typical road segment into straight and 

curve sections, as any typical road can have a 
combination of straight and curve portions. However, 
the roads do not curve abruptly; therefore, the section 
between a straight and a curve is characterized as a 
transition section by the algorithm. Our algorithm 
generates an RRH from the pre-processed Google 
route (uniform array of locations) for any given 
portion of the road in three major steps. 

1) Identification: In the first step, all straight, 
curve and transition sections are identified on that 
road. 

2) Characterization: After identification, each 
section is characterized with a set of optimized 
parameters that determines the RRH value at any 
given point on that road. Every straight section is 
characterized by a Path Average Heading (PAH), as 
the heading remains constant for the entire length of 
a straight section. Since the heading of a curve section 
varies uniformly with distance, it is characterized by 
a Path Average Heading Slope (PAHS) and an initial 
heading (IH), where IH is the heading at the  
 

 

 
Figure 2: (a) Browser application user interface showing the user-specified route on the Google map to initiate RRH 
generation from the Google route. Points A and B indicate the start and end location of the desired route, respectively. (b) 
Google route superimposed on the generated RRH with straight, curve and transition sections indicated by red, blue, and 
green colors along the route. 

(2a) 

(2b) 
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beginning point of the curve section. Each transition 
section is characterized the same way as a curve 
section. 

3) Aggregation: Finally, all the individual 
road sections are combined to obtain a composite 
RRH for that road to be used with the LDD algorithm 
for lane departure detection. 

The process of generating RRH from the Google 
route using the browser application is illustrated in 
Figure 2. Our browser application lets the user specify 
the start and end points on a given road on Google 
Maps, as shown in Figure 2a, where points A and B 
are the start and end points, respectively. After the 
user specifies the start and end points, our browser 
application runs our RRH generation algorithm and 
converts the Google route to RRH consisting of all 
sections of the road, as shown in Figure 2b, where the 
red, blue, and green colors along the Google route 
indicate straight, curve and transition sections, 
respectively. Our browser application also generates 
a corresponding datafile containing all the relevant 
information of all the sections of RRH within the 
Google route. The information in this datafile 
contains the start and end points of each section 
(straight, curve and transition) and the relevant 
parameter values characterizing each section to 
determine the RRH value for any point on the road. 
Using this information, an RRH value can be 
calculated on any given point of the road between the 
start and end points specified by the user. 

3.1 Algorithm and Parameter 
Optimization 

The implementation steps of our RRH generation 
algorithm are as follows: 

1) First, the Google route is obtained from the 
browser application containing the array of 
points in terms of longitude and latitude for 
each point. The Google route is then pre-
processed for uniform distance resolution so 
that each of the two consecutive points has a 
constant distance between them (1-3 m 
range), as explained earlier. 

2) Then, the heading between two consecutive 
points is calculated from the longitude and 
latitude of those points (Shahnewaz 
Chowdhury & Hayee, 2021). The heading 
array is then filtered with a lowpass filter 
having a corner frequency of 20 Hz 
(cycles/m) and a total stop frequency of 125 
Hz (cycles/m). The filtering is done to 
smoothen the heading array obtained from 
Google Maps. The choice of corner and stop 

frequencies is made to ensure the removal of 
undesired ripple effects from the heading 
array. 

3) Next, differential headings per meter are 
calculated from the filtered heading array. 
The differential heading is then smoothened 
to further minimize undesired ripples. The 
smoothening is obtained by averaging 
differential heading at each point over 40 
meters, i.e., ± 20m on either side of the given 
point. 

4) The average differential heading array is 
then used to identify the straight sections 
using a threshold of 0.002 deg/m, i.e., any 
consecutive portion with a differential 
heading of less than the threshold of 0.002 
deg/m will be considered a straight section 
(Shahnewaz Chowdhury & Hayee, 2021). 
This step will generate the start and end 
points of each of the straight sections present 
in the Google route. Please note that we 
combined two consecutive straight sections 
that are not too far apart from each other 
because a road cannot curve abruptly. For 
that purpose, we are using a range of 75-100 
m as a parameter to combine two 
consecutive straight sections. Straight 
sections are then characterized by 
calculating a PAH between the start and end 
points of each straight section. 

5) After identifying and characterizing straight 
sections, curve sections are identified and 
characterized. For this purpose, any portions 
of the Google route between two 
consecutive straight sections are considered 
curve sections, i.e., any contiguous portions 
on the Google route having a differential 
heading above the average differential 
heading threshold of 0.002 deg/m. A PAHS 
value for each of the curve sections between 
two consecutive straight sections is then 
calculated from the average differential 
heading. The beginning and end points of 
each of the curve sections are identified 
where the average differential heading is 
closest to the calculated PAHS on that curve 
section. The heading at the beginning point 
of each curve section becomes the IH for that 
curve section. 

6) The above method of identifying the start 
and end points of the curve section tends to 
make the transition sections longer for those 
curves which have a higher value of PAHS. 
Therefore, for such curves which have a 
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PAHS value of >0.02 deg/m, we apply 
selective thresholding to reduce the lengths 
of the transition sections and increase the 
lengths of the adjacent straight sections 
while keeping the curve section length the 
same. To achieve this, we increase the 
threshold of 0.002 deg/m (as in step 4) to 
0.01 deg/m (5 times the original threshold) 
only for those curves which have a PAHS 
value of >0.02 deg/m. 

7) Similarly, some of the curves with a small 
PAHS may be falsely accounted for as curve 
sections because their PAHS value is only 
slightly higher than the threshold (0.002 
deg/m) to be identified as curve sections to 
begin with. To identify and eliminate such 
false curve sections, the PAHS value for 
each of the curve sections is recalculated by 
dividing the difference of the PAH of the 
two surrounding straight sections by the 
distance between them. If such a revised 
PAHS turns out to be smaller than 0.002 
deg/m (original threshold), then that curve is 
absorbed in the surrounding straight 
sections. 

8) The characterized parameters for each 
straight and curve section are then optimized 
to minimize the differential heading error 
(Shahnewaz Chowdhury & Hayee, 2021) 
between the RRH and Google route heading 
over the entire portion of each of the straight 
and curve sections. 
9) In the end, transition sections are 
identified and characterized. Any portion of 
the Google route between a curve and a 
straight section is marked as a transition 
section. The heading at the start point of the 
transition section becomes the IH of the 

transition section. The PAHS of the 
transition section is calculated from the 
difference in headings between the start and 
end points of the transition section divided 
by the distance between them. 

To see the effectiveness of the RRH generated 
from the Google route, we have plotted the Google 
route heading (green solid line) and the RRH (black 
solid line) with respect to distance as shown in Figure 
3.  To identify straight, curve and transition sections 
on the RRH, a mask with a black dotted line is also 
shown in Figure 3. The mask has fixed but different 
heading values for straight, curve and transition 
sections to distinguish them from each other. The 
straight sections have a fixed mask value of 252.5o 
(almost in the middle of Figure 3). For each of the 
curve and transition sections, two different mask 
values are attributed to each curve or transition 
section depending on the PAHS. The mask value for 
the curve section is either 275o or 230o, depending on 
whether the PAHS is positive or negative, 
respectively. Similarly, the mask value for the 
transition section is 263.75o or 241.25o, depending on 
whether the PAHS is positive or negative. Please note 
that specific mask values are chosen to mark the 
difference between the straight, curve and transition 
sections within the RRH for the Google route in 
Figure 3. 

The RRH values (black solid line) match pretty 
well with the Google route heading (green), 
especially for straight sections (Figure 3). The match 
between the RRH and the Google route varies for 
curve sections and we noticed that for one of the 
sharper curve sections between 1500 m and 2200 m, 
the match is not as good as for the other portions 
(Figure 3). This can be improved by tweaking the 
conditions of the RRH generation algorithm in the  
 

 
Figure 3: Google route heading (green) and corresponding RRH (solid black) vs. distance. A mask (black dotted line) is drawn 
to indicate the straight, curve and transition sections. 
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Figure 4: A past trajectory heading (green) and corresponding RRH (solid black) vs. distance. A mask (black dotted line) is 
drawn to indicate the straight, curve and transition sections. 

future. However, our main goal is that the RRH 
values for the straight sections are reliable so that 
unintentional lane departure on long stretches of the 
straight sections can be successfully detected. 

We also wanted to compare the accuracy of the 
Google RRH with the RRH obtained from the past 
trajectories. Therefore, we applied the modified RRH 
generation algorithm to one of the past vehicle 
trajectories obtained on the Interstate I-35 
southbound which is the same portion of I-35 for 
which the Google route was used to extract RRH. The 
trajectory length was a little shorter than 12 km 
covering almost the same portion as the Google route 
in Figure 3. The trajectory heading vs. distance is 
plotted in Figure 4. For reference, an RRH obtained 
from this trajectory is also shown in Figure 4. The 
same mask as in Figure 3 is also used in Figure 4 to 
differentiate among straight, curve and transition 
sections of the RRH. Figure 4 shows that the 
generated RRH (black solid line) follows the vehicle 
trajectory heading (green) fairly well, indicating that 
the modified RRH generation algorithm also works 
well for the past trajectories. In fact, for a much 
sharper curve present in the trajectory (between 1500 
m and 2200 m range), the match between RRH and 
the past trajectory is much better (Figure 4), as 
compared to the similar match for the Google route 
(Figure 3). These discrepancies in Google RRH exist 
because sometimes the road width changes, i.e., the 
number of lanes cause abrupt heading deviations in 
the Google route. However, a more rigorous 
comparison of the RRH obtained from the Google 
route and that of the past vehicle trajectory will be 
made later by detecting lane departures using our 
LDD algorithm.  

 

4 FIELD TEST AND RESULTS 

We performed many field tests to evaluate the RRH 
obtained from the Google route using our LDD 
algorithm. All the field tests were performed by 
driving a test vehicle multiple times on the same 12 
km segment of Interstate I-35 southbound, for which 
an RRH was extracted from the Google route as 
discussed earlier. Each of the test runs covered a 
portion of the 12 km road segment to ensure that the 
test vehicle remained on the same portion of the road 
for which an RRH was extracted earlier from the 
Google route. The test vehicle was driven at about the 
speed limit (70 MPH) on the 4-lane freeway (2 lanes 
each way) and many lane changes were made 
intentionally during the field tests. For safety reasons, 
intentional lane changes were made to test the 
accuracy of lane departure detection. The vehicle 
trajectory data for each of the test runs were collected 
and evaluated with our LDD algorithm to detect the 
start and end of the lane changes present in each 
trajectory. Four such trajectories (red, blue, purple & 
orange colors) from the test runs are shown in Figure 
5a, where vehicle heading vs. vehicle traveled 
distance is plotted. For reference, Google RRH (black 
solid line) is also shown on the same scale in Figure 
5a. In the first two trajectories (red and blue) shown 
in Figure 5a, a total of 4 lane changes were made, and 
in the third trajectory (purple), only 2 lane changes 
were made. There was no lane change made for the 
fourth trajectory (orange) to ensure that no false alarm 
was detected by our LDD algorithm.  All lane 
changes were made only on the straight portions of 
the road as unintentional lane departure is more 
relevant on longer stretches of straight portions of the 
road as discussed earlier. 
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Figure 5: (5a) RRH resulting from the Google route (black) along with the headings of four different trajectories (red, blue, 
purple & orange) on the same route vs. distance. A zoomed in portion of the Google RRH and 4 trajectories between the 3000 
m to 3500 m distance range is shown as an in-set in the figure. (5b) Vehicle accumulative lateral distance vs. traveled distance 
for four different driven trajectories (red, blue, purple & orange). The vehicle accumulative lateral distance is calculated using 
Google RRH. 

However, from the trajectories shown in Figure 
5a, lane changes cannot be visibly identified because 
there is a very small difference in the heading of a 
vehicle trajectory and the Google RRH. An example 
of a lane change is highlighted in a zoomed portion of 
Figure 5a between the 3000 m and 3500 m range to 
show that there is a lane change in two of the four 
trajectories (red and purple) in opposite directions 
indicated by the vehicle heading deviation in the 
opposite directions as compared to the Google RRH. 
Similarly, for the other two trajectories (blue and 

orange), there was no lane change for this portion, so 
no noticeable deviation was seen in vehicle heading 
as compared to the Google RRH. 

To evaluate the accuracy of the lane change 
timing and duration, the accumulative lateral distance 
of the vehicle for each trajectory vs. traveled distance 
is shown in Figure 5b. The colors of the accumulated 
lateral distance for each trajectory are kept the same 
as in Figure 5a. When the accumulative lateral 
distance exceeds a certain threshold (~1m) value on 
either side, it is considered a lane departure. All lane 
 

Zoomed-in 
portion 

(5a) 

(5b) 
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Figure 6: (6a) RRH resulting from one of the past trajectories (black) along with the headings of three different trajectories 
(red, blue & purple) vs. distance. (6b) Vehicle accumulative lateral distance vs. traveled distance for three different driven 
trajectories (red, blue & purple). The vehicle accumulative lateral distance is calculated using the RRH extracted from a past 
trajectory. 

changes were accurately identified by our algorithm 
indicating that the RRH obtained from Google route 
works well for detecting lane departures, either 
intentional (lane change) or unintentional. The start 
and stop of each of the lane changes are clearly 
identifiable in Figure 5b. For the orange trajectory, 
where there is no lane change, the accumulative 
lateral distance never exceeds the threshold of 1 m. 

We also wanted to compare the accuracy of lane 
changes being identified correctly when the RRH was 
generated from a Google route as well as a past 
trajectory. We have used Trajectory 4 (orange) of 

Figure 5 to generate an RRH from it because it does 
not have any lane changes. The remaining three 
trajectories (red, blue & purple) from the test runs 
were used to detect lane changes in them using the 
RRH extracted from one of the past trajectories 
(Trajectory 4). The heading of the three trajectories 
(red, blue and purple) are shown again in Figure 6a, 
where vehicle heading is plotted with respect to 
traveled distance. As stated earlier, in two of these 
three trajectories (red and blue), a total of 4 lane 
changes were made in each, and in the third trajectory 
(purple), only 2 lane changes were made. For 

(6a) 

(6b) 
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reference, RRH extracted from Trajectory 4 has also 
been shown in Figure 6a. 

To evaluate the accuracy of the lane change 
timing and duration, the accumulative lateral distance 
of the vehicle for each of the three trajectories using 
the RRH from Trajectory 4 is calculated and is shown 
in Figure 6b vs. traveled distance. The colors of the 
accumulative lateral distance for each trajectory are 
kept the same as in Figure 6a. All lane changes were 
accurately identified by our algorithm showing the 
accuracy of the RRH obtained from a past trajectory 
using the modified RRH generation algorithm. The 
start and stop of each of the lane changes are clearly 
identifiable in Figure 6b. These results indicate that 
the lane departure can be accurately detected 
irrespective of whether the RRH is generated from a 
Google route or a past trajectory for straight portions 
of the road. 

5 CONCLUSIONS 

We have successfully developed and implemented 
the algorithm to extract RRH from a Google route to 
work with our previously developed LDWS to detect 
unintentional lane departures. We have evaluated the 
effectiveness of the RRH from the Google route by 
performing field tests and comparing the results with 
that of the RRH from a past trajectory. Our results 
indicate that our LDWS can accurately detect a lane 
departure irrespective of whether the RRH is 
generated from a Google route or a past trajectory for 
straight portions of the road. However, to ensure 
accurate lane departure detection on curved road 
sections, further refinement of the RRH generation 
algorithm is necessary to align the RRH with the 
trajectory. Although results have been reported from 
fourtrips of many along the same 12 km segment of 
the Interstate I-35 southbound route, it is worth 
mentioning that this is an ongoing work, and we are 
in the process of validating this approach with more 
data from different routes. 

ACKNOWLEDGEMENTS 

The authors wish to acknowledge those who made 
this research possible. This work was made possible 
by Minnesota cities and counties by the Local Road 
Research Board with support from MnDOT’s Office 
of Research & Innovation. 

REFERENCES 

An, X., Wu, M., & He, H. (2006). A novel approach to 
provide lane departure warning using only one forward-
looking camera. International Symposium on 
Collaborative Technologies and Systems (CTS’06), 
356–362. 

Antony, M. M., & Whenish, R. (2021). Advanced driver 
assistance systems (ADAS). In Automotive Embedded 
Systems: Key Technologies, Innovations, and 
Applications (pp. 165–181). Springer 

Baili, J., Marzougui, M., Sboui, A., Lahouar, S., Hergli, M., 
Bose, J. S. C., & Besbes, K. (2017). Lane departure 
detection using image processing techniques. 2017 2nd 
International Conference on Anti-Cyber Crimes 
(ICACC), 238–241. 

Bajikar, S., Gorjestani, A., Simpkins, P., & Donath, M. 
(1997). Evaluation of in-vehicle GPS-based lane 
position sensing for preventing road departure. 
Proceedings of Conference on Intelligent 
Transportation Systems, 397–402. 

Chen, W., Wang, W., Wang, K., Li, Z., Li, H., & Liu, S. 
(2020). Lane departure warning systems and lane line 
detection methods based on image processing and 
semantic segmentation: A review. Journal of Traffic 
and Transportation Engineering (English Edition), 
7(6), 748–774. 

Chen, Y., & Boukerche, A. (2020). A novel lane departure 
warning system for improving road safety. ICC 2020-
2020 IEEE International Conference on 
Communications (ICC), 1–6. 

Clanton, J. M., Bevly, D. M., & Hodel, A. S. (2009). A low-
cost solution for an integrated multisensor lane 
departure warning system. IEEE Transactions on 
Intelligent Transportation Systems, 10(1), 47–59. 

Dobler, G., Rothe, S., Betzitza, P., & Hartlieb, M. (2000). 
Vehicle with optical scanning device for a lateral road 
area. Google Patents. 

Faizan, M., Hussain, S., & Hayee, M. I. (2019). Design and 
development of in-vehicle lane departure warning 
system using standard global positioning system 
receiver. Transportation Research Record, 2673(8), 
648–656. 

Gamal, I., Badawy, A., Al-Habal, A. M., Adawy, M. E., 
Khalil, K. K., El-Moursy, M. A., & Khattab, A. (2019). 
A robust, real-time and calibration-free lane departure 
warning system. Microprocessors and Microsystems, 
71, 102874. 

Hsiao, P.-Y., & Yeh, C.-W. (2006). A portable real-time 
lane departure warning system based on embedded 
calculating technique. 2006 IEEE 63rd Vehicular 
Technology Conference, 6, 2982–2986. 

Jung, H., Min, J., & Kim, J. (2013). An efficient lane 
detection algorithm for lane departure detection. 2013 
IEEE Intelligent Vehicles Symposium (IV), 976–981. 

Leng, Y.-C., & Chen, C.-L. (2010). Vision-based lane 
departure detection system in urban traffic scenes. 2010 
11th International Conference on Control Automation 
Robotics & Vision, 1875–1880. 

Real-Time Lane Departure Detection Using Google Routes

247



Lindner, P., Richter, E., Wanielik, G., Takagi, K., & Isogai, 
A. (2009). Multi-channel lidar processing for lane 
detection and estimation. 2009 12th International IEEE 
Conference on Intelligent Transportation Systems, 1–6. 

McCall, J. C., & Trivedi, M. M. (2006). Video-based lane 
estimation and tracking for driver assistance: Survey, 
system, and evaluation. IEEE Transactions on 
Intelligent Transportation Systems, 7(1), 20–37. 

Road traffic injuries. (n.d.). Retrieved December 11, 2023, 
from https://www.who.int/news-room/fact-sheets/deta 
il/road-traffic-injuries 

Rose, C., Britt, J., Allen, J., & Bevly, D. (2014). An 
integrated vehicle navigation system utilizing lane-
detection and lateral position estimation systems in 
difficult environments for GPS. IEEE Transactions on 
Intelligent Transportation Systems, 15(6), 2615–2629. 

Sang, I. C., & Norris, W. R. (2024). A Robust Lane 
Detection Algorithm Adaptable to Challenging 
Weather Conditions. IEEE Access. 

Shahnewaz Chowdhury, M. T. H., & Hayee, M. I. (2021). 
Generation of Road Reference Heading using GPS 
Trajectories for Accurate Lane Departure Detection. 

Singh, S. (2015). Critical reasons for crashes investigated 
in the national motor vehicle crash causation survey. 

Son, J., Yoo, H., Kim, S., & Sohn, K. (2015). Real-time 
illumination invariant lane detection for lane departure 
warning system. Expert Systems with Applications, 
42(4), 1816-1824. 

Sternlund, S., Strandroth, J., Rizzi, M., Lie, A., & Tingvall, 
C. (2017). The effectiveness of lane departure warning 
systems—A reduction in real-world passenger car 
injury crashes. Traffic Injury Prevention, 18(2), 225–
229. 

Toledo-Moreo, R., & Zamora-Izquierdo, M. A. (2009). 
IMM-based lane-change prediction in highways with 
low-cost GPS/INS. IEEE Transactions on Intelligent 
Transportation Systems, 10(1), 180–185. 

Weon, I. S., Lee. S.G. & Woo, S. H. (2021). Lane Departure 
Detecting with Classification of Roadway Based on 
Bezier Curve Fitting Using DGPS/GIS. Tehnički 
vjesnik, 28(1), 248-255. 

Yu, B., Zhang, W., & Cai, Y. (2008). A lane departure 
warning system based on machine vision. 2008 IEEE 
Pacific-Asia Workshop on Computational Intelligence 
and Industrial Application, 1, 197–201. 

VEHITS 2024 - 10th International Conference on Vehicle Technology and Intelligent Transport Systems

248


