
AI-Generated Programming Solutions: Impacts on Academic
Integrity and Good Practices

Chung Man Tang1 a, Vanessa S. C. Ng1 b, Henry M. F. Leung1 c and Joe C. H. Yuen2 d
1School of Computing and Information Science, Anglia Ruskin University, Cambridge CB1 1PT, U.K.

2School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, U.K.

Keywords: AI-Powered Chatbots, Academic Integrity, ChatGPT, Assessment, Educational Technology.

Abstract: As AI-powered chatbots, notably ChatGPT, gain widespread popularity, their integration into academic
settings raises concerns about preserving academic integrity. Students increasingly employ these chatbots to
generate answers for assignments and, notably, programming problems. Existing countermeasures, such as
plagiarism checkers equipped with AI writing detection capabilities, struggle to detect AI-generated computer
programs. To thoroughly examine this challenge, we conducted an experiment, presenting diverse
programming problems to ChatGPT. Alarming findings revealed its remarkable proficiency in generating
correct solutions across various topics, complexities of problems, and programming languages. To explore
the implications, we engaged a focus group of programming teachers, resulting in the identification of key
practices and strategies to respond to AI-generated work. These insights provide valuable guidance for
educators seeking to maintain integrity while adapting to the evolving role of AI in education.

1 INTRODUCTION

In recent years, AI-powered chatbots, particularly
exemplified by ChatGPT, a Large Language Model
(LLM), have surged in popularity. These intelligent
conversational agents have demonstrated remarkable
capabilities and the potential to enhance work
efficiency across various domains (Baidoo-Anu &
Ansah, 2023; Deng & Lin, 2022; Kalla & Smith,
2023). However, their widespread adoption has not
been without consequences, especially in the
academic realm (Hong, 2023; Rasul et al., 2023).

One of the striking developments is the utilization
of ChatGPT by students to facilitate their academic
work (Cotton, Cotton, & Shipway, 2023; Lo, 2023).
Beyond simple text-based assistance, students have
been found employing ChatGPT for generating
answers to assignments, essays, and more. In a rather
concerning trend, ChatGPT have even ventured into
the realm of computer programming, providing
solutions to a variety of programming problems
(Rahman & Watanobe, 2023; Surameery & Shakor,

a https://orcid.org/0000-0003-2842-6196
b https://orcid.org/0000-0002-2972-530X
c https://orcid.org/0000-0002-7753-0136
d https://orcid.org/0000-0001-9346-4987

2023). This has implications for academic integrity,
raising questions about how to combat academic
misconduct when AI-generated work becomes
indistinguishable from genuine student efforts
(Ventayen, 2023).

To tackle this pressing issue, some
countermeasures have emerged (Gao et al., 2022),
such as plagiarism checkers equipped with AI writing
detection capabilities (Turnitin, 2023). These tools
can detect and flag essays that appear to be generated
by AI. While they have been effective in handling
written assignments, they still fall short when it
comes to detecting AI-generated computer programs.

In light of these challenges, this paper embarks on
a comprehensive investigation to ascertain the extent
of ChatGPT’s proficiency in generating accurate
program solutions for programming assignments. To
achieve this, we collected a diverse set of
programming problems from textbooks available in
our university library, covering topics commonly
taught in elementary programming courses. Some
require code creation from scratch, while others

478
Tang, C., Ng, V., Leung, H. and Yuen, J.
AI-Generated Programming Solutions: Impacts on Academic Integrity and Good Practices.
DOI: 10.5220/0012563600003693
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Computer Supported Education (CSEDU 2024) - Volume 2, pages 478-485
ISBN: 978-989-758-697-2; ISSN: 2184-5026
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

demand the debugging or enhancement of provided
code. We also ensured diversity by soliciting
solutions for generic programming topics in widely
adopted languages like C/C++, Java, and Python, as
well as for language-specific problems.

Our findings were striking and, in some ways,
alarming. ChatGPT demonstrated the ability to
generate correct solutions for the majority of the
programming problems we presented, regardless of
the topic, language, coding requirements, or
complexity of the problem descriptions. To further
explore the implications and gather expert insights,
we presented our experimental process and results to
a focus group consisting of staff members who
specialize in teaching programming courses.

The consensus among the focus group members
was unequivocal: AI-generated programming
solutions pose a significant challenge to academic
integrity, and no easy solution exists to tackle this
issue within the specifications of programming
problems. While program descriptions alone couldn’t
sufficiently challenge ChatGPT, the focus group
engaged in an insightful discussion, resulting in the
identification of a list of good practices and strategies
to address the issue of AI-generated work.

In this paper, we will detail our experimental
methodology, present our findings, and discuss the
practical recommendations that have emerged from
the deliberations of our focus group. These
recommendations hold the potential to offer a way
forward in maintaining the integrity of programming
assignments while acknowledging the growing
influence of AI technologies in academia.

2 AI IN PROGRAM ASSESSMENT

In the ever-evolving landscape of science and
technology education, attaining proficiency in
programming skills stands as a paramount pursuit for
students in computer science and other fields.
Programming assignments and exercises play a
pivotal role in honing these skills, demanding
students to apply problem-solving techniques and
unleash their creativity (Krathwohl, 2002). They also
serve as vital assessment tasks for teachers to evaluate
students’ proficiency and provide constructive
feedback for improvement. However, this integral
aspect of learning programming poses challenges for
both students and teachers.

Students often grapple with intricate problems,
investing substantial time and effort in deciphering
and addressing programming challenges.
Simultaneously, teachers, burdened with assessing

numerous programming exercises and assignments,
encounter a time-consuming and potentially error-
prone process (Tang, Yu, & Poon, 2009). Traditional
methods, such as visually inspecting source code or
manually testing programs with predefined cases,
contribute significantly to the workload of
programming teachers.

Recognizing the imperative for efficiency and an
enriched learning experience, several universities
have embraced automated program assessment
systems over the past decades (Ala-Mutka, 2005;
Tang, Yu, & Poon, 2023). These systems not only
alleviate the workload for teachers but also provide
students with immediate feedback (Lee et al., 2018),
fostering a more engaging and interactive learning
environment.

A significant development in these automated
systems is the integration of plagiarism checkers (Ng,
Li, & Ngai, 2004; Yu, Poon, & Choy, 2006).
Plagiarism has historically been a concern, and these
checkers, designed to identify code similarity within
a batch of submissions, have proven effective in
curbing academic malpractice (Yu, Poon, & Choy,
2006).

Figure 1: Program source code generated by ChatGPT.

However, the landscape is evolving with the
advent of AI in recent years. A concerning trend is

AI-Generated Programming Solutions: Impacts on Academic Integrity and Good Practices

479

emerging, where students leverage AI tools to
effortlessly generate solutions for their programming
assignments. Figure 1 illustrates an instance where
ChatGPT swiftly generates source code for a task
like, “Write a C program that determines the type of
a triangle given the lengths of three sides.” The allure
of eliminating effort, with ChatGPT providing a
solution in seconds along with relevant comments,
poses a temptation for students to bypass the rigor of
genuine problem-solving.

Unlike conventional plagiarism checkers that
compare submitted code against the other
submissions in the pool or existing solutions, the
randomness inherent in AI-generated programs
complicates detection. Each generation may yield
different source code, rendering traditional methods
inadequate. While there have been advancements in
detecting AI-generated essays (Turnitin, 2023), the
lack of semantic meaning in program source code
impedes the application to function in the
programming domain.

As the academic community grapples with this
new challenge, it becomes imperative to explore
immediate solutions to address the current situation.
While researchers work towards identifying ways to
deter AI-generated programs, educators and
institutions must navigate the evolving landscape,
considering strategies to uphold academic integrity
and ensure a fair and rigorous evaluation of students’
programming abilities. More importantly, we should
explore the potential and power of AI in enhancing
the quality of teaching and learning, and assessments,
rather than merely considering it as a threat to
academic integrity (Rahman & Watanobe, 2023).

In conclusion, integrating AI tools into
programming education presents opportunities and
challenges (Meyer et al., 2023). Balancing the use of
AI for educational enhancement while safeguarding
the learning process integrity is crucial in adapting to
this technological shift.

3 ChatGPT EXPERIMENT

The experimental design we implemented comprises
a systematic evaluation of ChatGPT’s ability to
generate programming solutions. To commence the
experiment, we acquired a comprehensive set of
practice exercises from computer programming
textbooks, covering a wide range of elementary
programming topics. These exercises served as the
foundational elements for evaluating ChatGPT’s
performance. Our methodology involved inputting
these exercises into ChatGPT, guiding the model to

generate solution programs for each exercise in single
or multiple prominent programming languages:
C/C++, Java, and Python. This multilingual
evaluation was intentionally designed to assess the
model’s proficiency across varying programming
paradigms. After generating the solution programs,
we performed an exhaustive analysis to assess their
correctness. This scrutiny specifically targeted the
functional accuracy of the solution programs,
evaluating how well they aligned with the specified
requirements of the exercises. The findings were
subsequently presented to a focus group comprising
experienced programming teachers. Leveraging their
extensive expertise, we facilitated a thorough
discussion to gather valuable insights and
recommendations. This discourse, extending beyond
the evaluation of ChatGPT’s performance, included
proposals for refining the design of programming
problems and suggesting best practices for addressing
assessment challenges. In the subsequent subsections,
we delve into the specifics of our experiment design.

3.1 Exercise Acquisition

The exercises sourced from textbooks cover various
topics. Our selection criteria were twofold: exercises
had to produce tangible program source code
outcomes, and these outcomes needed to be
assessable (Tang, Yu, & Poon, 2023). Our staff
members, drawing on collective experience and
professional judgment, meticulously curated the
exercises to ensure their suitability and alignment
with specific learning outcomes (Biggs, 2003).

We carefully selected 50 programming exercises
from reputable textbooks (Deitel & Deitel, 2012 &
2016; Heathcote, 2017; Malik, 2013) with an
emphasis on diversity. Within this set, 30 exercises
presented concise problem descriptions, each focused
on a single programming problem within specific
topics. Covering fundamental concepts in elementary
programming courses, these exercises were evenly
distributed across four categories: fundamentals (e.g.,
variables, data types, operators, and expressions),
control structures (e.g., loops and conditionals), data
structures (e.g., arrays, lists, stacks, and queues), and
algorithms (e.g., searching, sorting, and recursion).
Importantly, these categories were language-
independent, allowing solutions in C/C++ (referred to
as C++ hereafter for simplicity), Java, and Python.
Each category comprised 5 exercises, totaling 20
exercises and 60 program solutions across three
languages. We also introduced two language-specific
categories: low-level memory manipulation (e.g.,
manual memory allocation/deallocation, pointers,

CSEDU 2024 - 16th International Conference on Computer Supported Education

480

value and reference semantics) exclusively designed
for C++, and Object-Oriented structures (e.g.,
classes, objects, inheritance, polymorphism, and
encapsulation) tailored for both C++ and Java. Each
language-specific category included 5 exercises,
contributing to a total of 10 exercises.

In addition to exercises with concise descriptions,
we introduced 10 exercises with more extensive
problem statements, addressing multiple problems
across various topics, primarily in the programming
languages of C++ and Java.

Beyond the aforementioned code-from-scratch
exercises, we included 10 exercises where the source
code was provided, requiring students to modify the
existing code. Notably, the source code for these
exercises was written in C++, chosen due to its
availability in our textbook collection.

Table 1: A summary of the selected exercises.

Exercise Type / Topic Prog.
Lang.

Ex.
Qty.

Result.
Progs.

Short exercises
– Programming basics C++ &

Java &
Python

5 15
– Control structures 5 15
– Data structures 5 15
– Algorithms 5 15
– Memory manipulation C++ 5 5
– O-O structures C++/Java 5 5
Long exercises C++ 8 8
 Java 2 2
Modifying existing code C++ 10 10

Total 50 90

In summary, our exercise sampling strategy
underwent a thorough selection process, guided by
criteria ensuring assessability and alignment with
learning outcomes. The outcome is a diverse
collection of exercises designed to address various
programming concepts and languages. An overview
of the selected exercises, detailing topics, languages,
quantities for exercises and resulting programs, can
be found in Table 1, with comprehensive details for
each exercise included in Appendix.

3.2 Program Solution Generation

In the process of soliciting solutions from ChatGPT
for programming problems, we presented the
questions as chat queries. The specific version of
ChatGPT employed in this experiment was the latest
GPT-3.5. It’s worth noting that we consider the
results independent of the browser and platform used.

To preserve the authenticity of the exercises, we
directly incorporated most of them from the original
textbooks. Our modifications were limited to

essential changes, like adjusting references to
additional information. For instance, we altered
phrases such as “modify the program in Figure X...”
to “modify the following program...” and “use the
provided function in Example Y...” to “use the
provided function below...,” ensuring clarity while
maintaining the core content.

To guide ChatGPT in generating solutions in
various programming languages, we incorporated
specific instructions within the exercises. Language
directives such as “in C” or “Write a [Python]
program” were inserted to prompt the model’s
language-specific responses. For example, the
prompt “Write a Java program to calculate and print
a list of all prime numbers from 1 to 100” indicates
the addition of the programming language “Java” to
prompt the generation of a Java program. Although
ChatGPT has the capability to generate new
responses if the user is not satisfied, our experiment
specifically focused on analysing only the initial
response produced by ChatGPT.

Following the generation of responses (solutions),
we documented and presented them to two
programming teachers for evaluation. The assessment
process involved visually inspecting the source code
and, in certain cases, executing the programs for
testing. The assessment outcomes were categorized as
“correct” if the program met all requirements,
“partially correct” if it fulfilled major requirements
but wasn’t entirely correct, or “incorrect” if it failed
to satisfy major requirements. The judgments were
based on the professional expertise of the staff. In
cases where there was a discrepancy in the
assessment results between the two assessors, a
moderation process was implemented to reconcile
and establish a consensus.

3.3 Results

Our assessment results reveal that ChatGPT
demonstrates a notably high proficiency in generating
accurate program solutions, surpassing our initial
expectations. While we expected effectiveness in
simpler exercises, our findings reveal its competence
extends to more complex tasks.

Table 2 provides a concise summary of the
assessment results. The first column categorizes
exercises and topics. In the second column, the
number of solutions under assessment is displayed,
while the third to fifth columns detail the assessment
outcomes. Specifically, the column marked with “”
signifies the count of correct solutions, the column
marked with “” indicates the count of partially
correct solutions, and the column marked with “”

AI-Generated Programming Solutions: Impacts on Academic Integrity and Good Practices

481

represents the count of incorrect solutions. For
detailed assessment outcomes of each individual
exercise, refer to the Appendix.

Table 2: Assessment results for the generated solutions.

Exercise Type / Topic Assessed   
Short exercises
– Programming basics 15 15 0 0
– Control structures 15 15 0 0
– Data structures 15 15 0 0
– Algorithms 15 15 0 0
– Memory manipulation 5 5 0 0
– O-O structures 5 5 0 0
Long exercises 10 6 4 0
Modifying existing code 10 7 3 0

Total 90 83 7 0
Note:  = correct;  = partially correct;  = incorrect.

Remarkably, for all short exercises, ChatGPT
consistently produced correct solutions across all
programming languages. This suggests its capability
to generate solutions spans various programming
topics and languages.

For longer questions, ChatGPT achieved correct
solutions for 6 out of 10 exercises and partially
correct solutions for the remaining 4 exercises,
without generating any outright incorrect solutions.
This prompts an exploration into factors contributing
to ChatGPT’s generation of partially correct
solutions, revealing potential implications for
refining exercise design to pose challenges for the
model. Two identified causes include ChatGPT’s
tendency to provide a “best solution” based on its
knowledge, potentially overlooking nuanced details
in complex exercise requirements. Additionally, the
absence of prior knowledge to exercise requirements
poses a challenge, as some exercises rely on applying
knowledge gained in previous exercises or examples.
ChatGPT, lacking such context initially, responds
based on its existing knowledge, which may not align
with exercise expectations.

On the positive note, to rectify solutions that are
not entirely correct, students are required to engage in
a critical evaluation of AI-generated solutions. They
need to discern the factors contributing to the inability
to generate a completely correct solution and
subsequently provide additional or rectify missing
information to guide ChatGPT in producing accurate
solutions. This iterative process not only prompts
students to adopt a bug-fixing approach but also
cultivates higher-order thinking skills, representing a
substantial educational benefit (Krathwohl, 2002).

In conclusion, although ChatGPT exhibits
impressive capabilities in generating accurate
programs, our study highlights opportunities to

enhance exercises for better challenging the model.
Moreover, it emphasizes the pedagogical value for
students in critically evaluating and refining AI-
generated solutions.

4 DISCUSSIONS

The findings of our experiment were meticulously
presented to a focus group comprising four lecturers
and senior lecturers experienced in teaching computer
programming courses. The objective of this
comprehensive deliberation was to rigorously analyse
the outcomes of the experiment and explore their
potential implications on academic integrity and
assessment strategies within the field of computer
programming education.

To foster a purposeful exchange of ideas, we
initiated the discussion with structured questions
encompassing three key aspects:
1. Perception and Awareness:

• How do you perceive the role of AI,
specifically ChatGPT, in generating correct
solutions for programming exercises?

2. Challenges to Academic Integrity:
• In your opinion, what challenges does the

capability of AI in generating correct
solutions pose to academic integrity in
computer programming courses?

3. Impact on Assessment Strategies:
• How might the use of AI in generating correct

solutions influence your current assessment
strategies for programming assignments?

Due to space constraints, the fully transcribed
discussion summary, guided by the above questions,
couldn’t be fully included in this paper. Here are the
concise conclusions that emerged:

Participants unanimously agreed that AI
introduces challenges in discerning the authenticity of
program solutions. The impressive proficiency of
ChatGPT in generating solutions for intricate
exercises highlights the difficulty in crafting
exercises meant to challenge AI-generated solutions.
Nevertheless, the excessively “perfect” nature of AI-
generated solutions, particularly those utilizing
advanced practices and features, may serve as a
distinguishing factor from those of average
elementary programmers.

Acknowledging the proficiency of AI in
generating accurate solutions, participants expressed
heightened concerns about the potential exacerbation
of academic misconduct. The dependency on AI
inhibits the cultivation of essential problem-solving
skills, resulting in disparities in skill development

CSEDU 2024 - 16th International Conference on Computer Supported Education

482

among students. Assessments face accuracy
challenges, making it difficult to assess students’
genuine understanding and comprehension of
underlying concepts, thereby biasing the feedback
loop in facilitating effective learning. The widespread
use of AI may erode trust between teachers and
students, ultimately impacting the authenticity of
individual efforts.

In response to these challenges, participants
reached a consensus on the imperative to reassess
exercise design and assessment strategies to address
potential risks associated with the misuse of AI. This
shift in assessment focus emphasizes the need for a
deeper understanding of the problem-solving process,
necessitating comprehensive documentation and
explanation of students’ approaches. The inclusion of
coding interviews or presentations becomes crucial,
providing educators with opportunities to scrutinize
students’ genuine understanding of their solutions.
This dynamic approach ensures assessments not only
gauge correctness but also delve into the intricacies
of the process involved in arriving at a solution,
fostering active learning, and contributing to
assessment for learning.

Participants collectively acknowledged ChatGPT
as a robust tool with the inherent potential to enhance
the learning experience. For example, students can
utilize ChatGPT for immediate clarification on
programming concepts, syntax, and problem-solving
approaches. Additionally, ChatGPT’s availability
round the clock ensures students have continuous
access to assistance and information as needed. These
aspects echo the findings of Rahman & Watanobe
(2023) regarding threats and opportunities,
highlighting the potential for further exploration.

5 RECOMMENDATIONS

Based on in-depth focus group discussions, we offer
concise recommendations specifically centered on
exercise design practices and assessment strategies.
Broader topics such as curriculum design, policy, and
ethics are reserved for future exploration.

5.1 Exercise Design Practices

The focus group has outlined four essential exercise
design practices. First and foremost, they recommend
the creation of unique and open-ended problems. This
involves developing tailored programming exercises
that transcend generic responses by incorporating
real-world scenarios or specific requirements.
Utilizing open-ended questions prompts students to

provide comprehensive explanations and reasoning
alongside their code submissions. This approach
actively discourages reliance on AI code generation
and fosters a deeper understanding of programming
concepts, encouraging students to articulate the
intricate thought processes behind their code.

Secondly, they recommend adopting Test-Driven
Development (TDD) (Janzen & Saiedian, 2005). This
method prompts students to write tests before coding,
fostering critical thinking in problem-solving. TDD
guides students to address smaller problems first,
ensuring code correctness and cultivating a deep
understanding of the problem domain. This approach
nurtures an analytical problem-solving mindset,
steering students away from predetermined solutions
and reducing reliance on AI assistance.

The third recommendation involves the use of
versioned assignments. They suggest mandating the
use of version control systems, such as Git,
particularly for larger assignments. This entails
requiring students to submit their work incrementally
and commit their source code at different stages of
development. The purpose is to promote continuous
engagement with the artifact and make it challenging
for students to rely solely on AI-generated solutions
for the entirety of the assignment.

Lastly, peer collaboration is encouraged as a key
exercise design practice. This entails fostering
collaborative learning through group assignments in
pairs or small groups while maintaining a focus on
individual accountability. Such an environment
facilitates active discussions and the sharing of ideas,
code, and problem-solving approaches among
students. Beyond enriching the learning experience,
this collaborative approach acts as a deterrent to
copying solutions, cultivating a shared understanding
and responsibility among students.

5.2 Assessment Strategies

In addition to exercise design practices, the focus
group has introduced assessment strategies tailored to
the integration of AI. Foremost among these
strategies is the endorsement of live coding
assessments. This approach requires students to
actively solve programming problems during their lab
or practical classes, thereby showcasing their coding
proficiency and problem-solving skills to their
programming teachers. The inherent nature of live
assessments renders them inherently less susceptible
to plagiarism and AI assistance, particularly within a
closely monitored environment. This format also
serves as an optimal platform for teachers to provide

AI-Generated Programming Solutions: Impacts on Academic Integrity and Good Practices

483

immediate feedback, facilitating assessment for
learning efficiently.

Building upon the efficacy of live coding
assessments, the next recommended strategy involves
the incorporation of viva voce presentations. Verbal
explanations necessitate a profound understanding of
students’ programs. Even when presented with an AI-
generated solution, students must delve into an
intensive examination of the code to comprehend the
underlying operations and theories. This exemplifies
how AI can serve as a powerful learning tool.
Simultaneously, viva voce assessments empower
teachers to accurately measure the depth of a
student’s comprehension and evaluate their ability to
articulate and elucidate their thought processes.

In addition to the above strategies, we advocate
for the implementation of portfolio-based
assessments. Students are encouraged to curate and
maintain a coding portfolio throughout the course,
with assessments grounded in the progression and
improvement demonstrated within this evolving
portfolio. This multifaceted strategy adds an
additional layer of complexity, creating a more
challenging environment for students to rely on
external AI-generated solutions. This approach aligns
with our commitment to ensuring assessments
authentically reflect the unique learning journeys of
individual students.

Collectively, these practices and strategies are
designed to foster genuine assessment for learning,
discourage plagiarism, and ensure that assessments
accurately reflect the skills and understanding
acquired by students in programming courses.

6 CONCLUSIONS

The recent decades have witnessed a significant leap
in computer technology, with AI emerging as
transformative forces that permeate our daily lives.
This relentless progression signifies not merely a
passing trend but an irreversible evolution, poised to
reshape educational landscapes and assume a pivotal
role in the realm of teaching and learning.

While the integration of AI introduces a
conundrum of challenges, particularly in preserving
academic integrity, it also holds the promise of
enhancing educational experiences. This study,
delving into the success of AI in generating precise
solutions for programming exercises and
assignments, underscores the undeniable influence of
these technologies on academic pursuits. The
challenge lies not just in acknowledging this

influence but in navigating its intricacies and
mitigating potential pitfalls.

The insights gleaned from our focus group
discussions have culminated in a robust set of
recommendations designed to address the nuances of
AI-generated work. These guidelines serve as a
proactive response, offering strategies to maintain
academic integrity while harnessing the potential of
AI in educational settings.

Embracing the power of AI, rather than resisting
it, can herald a new era in education. By leveraging
the capabilities of these technologies, we can sculpt
an educational landscape that is not just adaptive but
transformative. The journey ahead involves a delicate
balance—navigating challenges while harnessing the
boundless potential of AI to foster a future of enriched
and innovative education. As we step into this
transformative era, it becomes imperative to stay
proactive, ensuring that AI becomes an ally in the
educational journey rather than a hindrance.

REFERENCES

Ala-Mutka, K.M.(2005). A survey of automated assessment
approaches for programming assignments. Computer
Science Education, 15(2), 83-102.

Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the
era of generative artificial intelligence (AI):
Understanding the potential benefits of ChatGPT in
promoting teaching and learning. J. of AI, 7(1), 52-62.

Biggs, J. (2003). Aligning teaching for constructing
learning. Higher Education Academy, 1(4), 1-4.

Cotton, D. R., Cotton, P. A., & Shipway, J. R. (2023).
Chatting and cheating: Ensuring academic integrity in
the era of ChatGPT. Innovations in Education and
Teaching International, 1-12.

Deitel, P. & Deitel, H. (2012). Java how to program,
Pearson. 9th Edition.

Deitel, P. & Deitel, H. (2016). C How to program with an
introduction to C++, Pearson, 8th Edition.

Deng, J., & Lin, Y. (2022). The benefits and challenges of
ChatGPT: An overview. Frontiers in Computing and
Intelligent Systems, 2(2), 81-83.

Gao, C. A., Howard, F. M., Markov, N. S., Dyer, E. C.,
Ramesh, S., Luo, Y., & Pearson, A. T. (2022).
Comparing scientific abstracts generated by ChatGPT
to original abstracts using an artificial intelligence
output detector, plagiarism detector, and blinded human
reviewers. BioRxiv, 2022-12.

Heathcote, P. M. (2017). Learning to program in Python,
PG Online Limited, 1st Edition.

Hong, W. C. H. (2023). The impact of ChatGPT on foreign
language teaching and learning: opportunities in
education and research. Journal of Educational
Technology and Innovation, 5(1).

CSEDU 2024 - 16th International Conference on Computer Supported Education

484

Janzen, D., & Saiedian, H. (2005). Test-driven
development concepts, taxonomy, and future
direction. Computer, 38(9), 43-50.

Kalla, D., & Smith, N. (2023). Study and analysis of
ChatGPT and its impact on different fields of
study. International Journal of Innovative Science and
Research Technology, 8(3).

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy:
An overview. Theory into practice, 41(4), 212-218.

Lee, V. C., Yu, Y. T., Tang, C. M., Wong, T. L., & Poon,
C. K. (2018). ViDA: A virtual debugging advisor for
supporting learning in computer programming
courses. Journal of Computer Assisted Learning, 34(3),
243-258.

Lo, C. K. (2023). What is the impact of ChatGPT on
education? A rapid review of the literature. Education
Sciences, 13(4), 410.

Malik, D. S. (2013). C++ programming: from problem
analysis to program design, Cengage Learning, 6th Ed.

Meyer, J.G., Urbanowicz, R.J., Martin, P.C., O’Connor, K.,
Li, R., Peng, P.C., ... & Moore, J.H. (2023). ChatGPT
and large language models in academia: opportunities
and challenges. BioData Mining, 16(1), 20.

Ng, S. C., Li, T. S., & Ngai, H. S. (2004). Plagiarism
detection in programming assignments, in Murphy, D.,
Carr, R., Taylor, J., & Wong, T. M. (Eds), Distance
Education and Technology: Issues and Practice, Open
University of Hong Kong Press, 2004, pp. 366-377.
ISBN: 962-7707-47-3

Rahman, M. M., & Watanobe, Y. (2023). ChatGPT for
education and research: Opportunities, threats, and
strategies. Applied Sciences, 13(9), 5783.

Rasul, T., Nair, S., Kalendra, D., Robin, M., de Oliveira
Santini, F., Ladeira, W. J., ... & Heathcote, L. (2023).
The role of ChatGPT in higher education: Benefits,
challenges, and future research directions. Journal of
Applied Learning and Teaching, 6(1).

Surameery, N. M. S., & Shakor, M. Y. (2023). Use
ChatGPT to solve programming bugs. International
Journal of Information Technology & Computer
Engineering (IJITC) ISSN: 2455-5290, 3(01), 17-22.

Tang, C. M., Yu, Y. T., & Poon, C. K. (2009). An approach
towards automatic testing of student programs using
token patterns. In 17th International Conference on
Computers in Education, ICCE 2009 (pp. 188-190).

Tang, C. M., Yu, Y. T., & Poon, C. K. (2023). An
automated system with a versatile test oracle for
assessing student programs. Computer Applications in
Engineering Education, 31(1), 176-199.

Turnitin. (2023, November 11). Turnitin’s AI detector
capabilities.https://www.turnitin.com/solutions/topics/
ai-writing/ai-detector/

Ventayen, R. J. M. (2023). OpenAI ChatGPT generated
results: Similarity index of artificial intelligence-based
contents. Available at SSRN 4332664.

Yu, Y. T., Poon, C. K., & Choy, M. (2006, October).
Experiences with PASS: Developing and using a
programming assignment assessment system. In 2006
Sixth International Conference on Quality Software
(QSIC’06) (pp. 360-368). IEEE.

APPENDIX

A list of selected exercises from textbooks.
Ex.
No. Exercise Description Text-

book† Page Result*

Short exercise
Topic: Fundamentals
2.23 Largest and Smallest Integers C1 98 
10 Average score C2 118 

2.15 Arithmetic J 102 
2.18 Displaying Shapes with Asterisks J 103 

2 Circle’s area and circumference P 16 
Topic: Control structures
3.34 Floyd’s Triangle C1 142 
4.12 Prime Numbers C1 183 

6 Sum of evens and odds C2 330 
4.18 Credit Limits Calculator J 182 
4.22 Tabular Output J 183 

Topic: Data structures
6.14 Union of Sets C1 298 

12.10 Reversing the Words of a Sentence C1 544 
4 Counting scores in ranges C2 585 

22.11 Palindrome Tester J 970 
2 Student List P 36 

Topic: Algorithms
5.39 Recursive Greatest Common Divisor C1 241 
5.41 Recursive Prime C1 242 

18.17 Print an Array Backward J 832 
19.5 Bubble Sort J 862 

1 Anagram P 49 
Topic: Memory manipulation
12.8 Inserting into an Ordered List C1 544 

12.19 Depth of a Binary Tree C1 547 
12.20 Recursively Print a List Backward C1 548 

13 Circular linked lists C2 1148 
14.6 Dynamic Array Allocation C1 580 

Topic: Object-oriented structures
19.10 Account Inheritance Hierarchy C1 798 
20.16 CarbonFootprint Abstract Class:

Polymorphism
C1 843 

23.3 Operator Overloads in Templates C1 917 
9.8 Quadrilateral Inheritance Hierarchy J 429 
21.7 Generic isEqualTo Method J 939 

Long exercises
3.16 Mortgage Calculator C1 137 
5.36 Towers of Hanoi C1 240 
7.17 Simulation: The Tortoise and the Hare C1 353 
7.22 Maze Traversal C1 356 
7.32 Polling C1 363 

12.12 Infix-to-Postfix Converter C1 544 
15 Memory Game C2 588 
16 Airplane Seating Assignment C2 589 

16.5 Random Sentences J 748 
22.26 Insert/Delete Anywhere in a Linked List J 975 
Modifying existing code
3.27 Validating User Input C1 140 
4.15 Modified Compound-Interest Program C1 183 
4.22 Average Grade C1 185 
5.20 Displaying a Rectangle of Any

Character
C1 238 

5.33 Guess the Number Modification C1 240 
6.32 Linear Search C1 305 

12.16 Allowing Duplicates in a Binary Tree C1 547 
12.23 Level Order Binary Tree Traversal C1 548 
16.11 Modifying Class GradeBook C1 657 
17.13 Enhancing Class Rectangle C1 711 
†Textbooks: C1: Deitel & Deitel (2016); C2: Malik (2013);

J: Deitel & Deitel (2012); P: Heathcote (2017).
*Result:  = correct;  = partially correct;  = incorrect

AI-Generated Programming Solutions: Impacts on Academic Integrity and Good Practices

485

