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Abstract: Although studies have emphasized that generating test cases with respect to data-flow coverage is a highly
effective approach to ensure software quality, there is still a lack of appropriate tooling. We contribute to
this by extending the open source dynamic data-flow analysis and visualization tool Dacite with symbolic
execution using the open source tool Mulib. Thereby, given a Java program and JUnit test cases, the covered
data flow cannot only be identified but the user is able to receive feedback about the data flow not covered
by existing test cases and can automatically generate test cases for those. This is especially suited for unit
testing and early integration testing. Furthermore, to enhance the comprehensibility the identified data flow is
visualized for the user with an integrated visualization using the Language Server Protocol.

1 INTRODUCTION

Software testing is one of the most widely adopted
techniques for assuring high-quality of software sys-
tems (Bluemke and Rembiszewski, 2009; Ribeiro
et al., 2019; Su et al., 2015). To assess the quality
of test cases so that a test suite with higher quality
detects more faults, test adequacy criteria are used
(Ribeiro et al., 2019). For this, different criteria exist
such as control-flow coverage and data-flow coverage
(Frankl and Weiss, 1993). While control-flow cover-
age criteria examine the execution flow of test cases,
e.g., measuring which lines were covered, data-flow
coverage focuses on the flow of value definitions and
usages through the program (Allen and Cocke, 1976;
Ribeiro et al., 2019). Even though it has been shown
that data-flow-based criteria are more effective than
control-flow-based criteria in exposing errors (Frankl
and Weiss, 1993; Hemmati, 2015; Ribeiro et al.,
2019), control-flow coverage is more commonly used
in practice.

One reason for this is the lack of appropriate data-
flow coverage tools. Hence, a prototype called Dacite
(DAta-flow Coverage for Imperative TEsting) (Troost
and Kuchen, 2022) was developed. In contrast to most
other tools for data-flow analysis that employ a static
analysis, Dacite dynamically identifies the reachable
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data flows of a given Java program and its JUnit test
cases. During this execution, it considers challenges
such as aliasing and inter-procedural data flows that
are hard to solve statically (Troost and Kuchen, 2022).
Moreover, it provides an integrated visualization of
the identified data flow for common Integrated Devel-
opment Environments (IDEs) based on the Language
Server Protocol (LSP) (Troost et al., 2023). However,
as the data flow is derived during the execution, only
the passed data flow is identified with no indication of
which data flow was not covered yet which is crucial
during the test development.

For this reason, this paper proposes the combi-
nation of Dacite with the symbolic execution engine
Mulib (Winkelmann and Kuchen, 2022). The idea is
that by executing the program symbolically, all paths
are systematically traversed, and thus, all reachable
data flow is derived. This way, the user can receive
feedback about which data flow was not covered yet
by the existing test cases regarding the coverage cri-
teria all-uses which requires the coverage of all defi-
nition and usage combinations (Frankl and Weyuker,
1988). The main contributions are:

1. We integrated the data-flow visualization tool
Dacite with the symbolic execution engine Mulib.

2. By tracking the data flow during the symbolic ex-
ecution and comparing it to the data flow covered
by existing test cases, it is derived which data flow
is not accounted for yet.
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3. To facilitate comprehensibility the unaccounted-
for data flow is visualized to the user adhering to
the LSP approach so that the existing IDE integra-
tions are extended with minimal effort.

4. By utilizing input-output mappings which are de-
rived from the symbolic execution, test cases cov-
ering the unaccounted-for data flow are automati-
cally generated and suggested to the user.

5. To be able to symbolically execute the program,
a driver method initializing the symbolic values
is necessary. This is automatically generated and
suggested to the user to increase the usability.

Our approach is mainly suited for unit testing and
early integration testing involving a small number of
classes. For system testing, the symbolic execution
might take too long.

After explaining the concepts of data-flow analy-
sis and Dacite in Section 2, Section 3 describes sym-
bolic execution using Mulib. We then describe im-
plementation aspects in Section 4. Therefore, first,
the workflow between the user and the components is
illustrated. Afterwards, the adaptations necessary to
Dacite and Mulib for combining the data-flow analy-
sis with symbolic execution are elaborated. Next, the
test case generation and extensions to the visualiza-
tion are described. In Section 5, the results are eval-
uated and validated given benchmark examples. Sec-
tion 6 summarizes the related work concerning data-
flow analysis in combination with symbolic execution
and Section 7 concludes the results of this paper.

2 DYNAMIC DATA-FLOW
ANALYSIS WITH DACITE

Before describing the implementation of combining
Dacite’s data-flow analysis with the symbolic execu-
tion of Mulib, the following sections aim to explain
the general concepts of data-flow analysis and the
Dacite prototype first.

2.1 Concept of Data-Flow Analysis

The concept of data flow considers the flow of def-
initions and usages of data through the program.
In Dacite, these are represented as definition-usage
chains (DUCs) (Troost and Kuchen, 2022; Troost
et al., 2023). A DUC relates each variable usage to
its most recent definition. In this context, a defini-
tion (def ) is made when a variable receives a new
value and a usage (use) when this value is referred
to (de Araujo and Chaim, 2014; Troost et al., 2023).

Consider the data flow of the program in Listing 1.
The program calculates the factorial of a given num-
ber.

Listing 1: An implementation of the factorial calculation
with the data flow for n.
1 p u b l i c i n t f a c t o r i a l ( i n t n ){
2 i n t r e s u l t = 1 ;
3 i n t i = 1 ;
4 whi le ( i <= n ){
5 r e s u l t = r e s u l t * i ;
6 i = i + 1 ;
7 }
8 re turn r e s u l t ;

use

def

9 }

There are 11 DUCs in this program as follows,
six chains for the variable i, four for the variable
result, and one for the variable n in the form of a
triple (variable,de f inition,usage):

(i, int i = 1, while(i <= n))
(i, int i = 1, result = result ∗ i)
(i, int i = 1, i = i+1)
(i, i = i+1, while(i <= n))
(i, i = i+1, result = result ∗ i)
(i, i = i+1, i = i+1)
(result, int result = 1, result = result ∗ i)
(result, int result = 1, return result)
(result, result = result ∗ i, result = result ∗ i)
(result, result = result ∗ i, return result)
(n, f actorial(int n), while(i <= n))

Listing 1 illustrates the reachable data flow for
variable n. Supposing that the function factorial
was called externally, i.e., from a class that should not
be analyzed, the parameter definitions of this method
are considered to be variable definitions (Troost et al.,
2023). With the definition in line 1, the usage of vari-
able n in line 4 can be reached. Analogously, the
data flows of i and result can be illustrated but were
omitted for the sake of clarity.

Since DUCs utilize information on the association
of definition and usage, they often are found to be
more effective in exposing errors when compared to
other control-flow metrics e.g. line coverage (Frankl
and Weiss, 1993; Ribeiro et al., 2019). It has been
shown that it can increase fault detection up to 79%
in comparison to common control-flow metrics (Hem-
mati, 2015). However, on the other hand, due to its in-
creased complexity, it is more expensive to derive the
corresponding information which may be one reason
why control-flow metrics are more commonly used
in practice (Hemmati, 2015; Ribeiro et al., 2019; Su
et al., 2015). Another reason is the lack of appropriate
tools for tracking the data flow of a program. Hence, a
prototype called Dacite (DAta-flow Coverage for Im-
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perative TEsting) was developed (Troost and Kuchen,
2022).

2.2 Dacite

Dacite is an open-source tool1 that dynamically iden-
tifies reachable data flows in Java programs and visu-
alizes them within code editors.

Most existing tools derive the data flow by stat-
ically analyzing the program. This approach has
some severe limitations in distinguishing reachable
and non-reachable DUCs or identifying aliases, i.e.,
two variables pointing to the same object (Pande et al.,
1994; Denaro et al., 2014). To overcome these issues,
Dacite dynamically analyzes the program by instru-
menting Java programs using the open source frame-
work ASM2 based on Java Virtual Machine (JVM)
bytecode (Troost and Kuchen, 2022). With this,
Dacite is able to modify the bytecode of analyzed
classes before they are loaded into the JVM (Troost
et al., 2023). Consequently, whenever a definition or
usage occurs within the program, methods are auto-
matically added to the source code to collect and an-
alyze the data-flow information during the execution.
These methods are executed along with the program.
All definitions and subsequent usages of variables that
were passed during the execution and the relevant in-
formation are forwarded to an analyzer class. In this
analyzer class, this information is combined to derive
passed DUCs (Troost and Kuchen, 2022).

By utilizing this dynamic approach, aliases can be
directly identified during the execution. Thus, they
are taken into account for the association of a usage
to its most recent definition. Additionally, in contrast
to other tools, Dacite analyzes the data flow in de-
tail, i.e., it considers DUCs over boundaries of meth-
ods and classes and the precise treatment of array el-
ements and object fields (Troost and Kuchen, 2022).
Due to the identification of DUCs during the execu-
tion, only those DUCs that were passed during the
execution are identified. This prevents the static prob-
lem of identifying DUCs that are not executable or
reachable. However, even though the information of
passed DUCs is useful when comparing JUnit test
cases, users do not yet receive feedback about DUCs
that were not covered by tests. This would be espe-
cially valuable in the testing context.

To increase the comprehensibility of the identi-
fied data-flow information, the data flow is visualized
within the editor during the test development. To mit-
igate the development effort for implementing differ-
ent IDE integrations, common and IDE-independent

1https://github.com/dacite-defuse/DynamicDefUse
2https://asm.ow2.io

functionalities are extracted into a separate compo-
nent denoted language server. This is then reused
for different IDEs using the Language Server Pro-
tocol (LSP) which provides a standardized commu-
nication protocol via JSON (Microsoft Corporation,
2023a). For Dacite, next to the language server con-
taining functionalities such as executing the analysis
and deriving the source code positions of DUCs, there
exist two IDE integrations at this point, IntelliJ and
Visual Studio Code (VS Code) utilizing this approach
(Troost et al., 2023).

Given the factorial example in Listing 1 and the
JUnit test case calculating the factorial of 5 (see Fig-
ure 1), Figure 2 demonstrates the visualization of
Dacite’s data-flow analysis in IntelliJ based on this ex-
ample. The Dacite visualization includes an expand-
able tree-like list of all identified DUCs covered by
the given test sorted by their class, method, and vari-
able. This is shown on the right-hand side of Figure
2 in form of the 10 DUCs covered by the test case.
Notice that the DUC (result, int result = 1,
return result) is not shown, since it is not cov-
ered by this test case. To increase the comprehensibil-
ity, the identified DUCs can be highlighted within the
code editor using the checkboxes. Distinctive colors
are utilized to enable the differentiation of variables
from each other (see Figure 2 on the left).

3 SYMBOLIC EXECUTION WITH
MULIB

Symbolic execution is a well-known technique for au-
tomated software verification and test case generation
(Cadar and Sen, 2013). Mulib is an open-source sym-
bolic execution engine for programs compiled to Java
bytecode (Winkelmann and Kuchen, 2022).3 It is ca-
pable of handling symbolic primitive values and sym-
bolic arrays (with primitive or reference-typed ele-
ments) (Winkelmann and Kuchen, 2022; Winkelmann
et al., 2021; Winkelmann and Kuchen, 2023). In the
following, first, it is described how symbolic execu-
tion works and how it can be used to generate test
cases. Thereafter, the concept of driver methods is
explained in the context of Mulib.

3.1 Symbolic Execution for Test Case
Generation

In symbolic execution (Cadar and Sen, 2013), vari-
ables and fields are not limited to holding concrete
values, such as, e.g. the value int i = 42;. Instead,

3https://github.com/NoItAll/mulib
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Figure 1: Screenshot of the JUnit test case used to execute
the Dacite Analysis.

symbolic values are allowed. Symbolic values are not
limited to a concrete value and rather describe a whole
domain of values. During symbolic execution these
domains are restricted via constraints. Constraints,
on the other hand, are generated, e.g., whenever a
symbolic value is part of the condition of a condi-
tional jump. Again, consider the iterative formula-
tion of computing a factorial known from Listing 1.
A potential symbolic value might be the parameter n.
For each evaluation of the while-condition i <= n,
(line 4), a choice point with two choice options is cre-
ated. Here, the constraints would be 1 <= n and 1 >
n, where n holds the symbolic value, since it is the
first iteration of factorial. Such a choice option is
a representation of nondeterminism: The first choice
option considers the case where 1 <= n is true. If this
choice option is evaluated, first, the new constraint
is pushed onto a constraint stack, and the constraint
stack is evaluated in terms of its satisfiability. If the
constraint system is found to be satisfiable, symbolic
execution enters the body of the while-loop (lines 5
and 6) assuming in the following that the symbolic
value of n is larger than or equal to 1. It then would
loop back, check the while-condition (line 4) and en-
counter another choice point with the choice options
2 <= n and 2 > n. Consider the case where now the
second choice option with the constraint 2 > n is as-
sumed to be true. In this instance, symbolic execution
would not enter the while-loop and instead return the
result.

When symbolic execution terminates, it is possi-
ble to assign concrete values to the symbolic values
by picking a value that satisfies all constraints us-
ing the constraint solver. For the exemplified con-
straint stack 1 ≤ n ∧ 2 > n, the value 1 would be
assigned to n, yielding an input-output mapping of
n = 1,return = 1. Such an input-output mapping can
then be transformed into an executable JUnit test case.
After completing this instance of execution, symbolic
execution checks for other, unevaluated choice op-
tions, here, 1 > n or 2 <= n. It backtracks and re-

Figure 2: Exemplary screenshot of the Dacite visualization
in IntelliJ based on given test.

sets the constraint system to the state when encounter-
ing the respective constraint and, if the new constraint
stack is satisfiable, spawns a new execution instance.
This execution would then assume the respective con-
straint to be true. If the accumulated constraints are
not satisfiable, the current execution is discarded and
a remaining choice option is tried.

The decision on which choice option to evalu-
ate next is subject to a search algorithm, such as,
for example, Depth-First Search (DFS), Breadth-First
Search (BFS), or Iterative Deepening Depth-First
Search (IDDFS), and potential budgets, such as a time
budget, a maximal number of choice points to con-
sider during symbolic execution, etc.

In conclusion, symbolic execution can be used
to systematically traverse the execution paths of a
Method Under Test (MUT). The initial downside
of Dacite, mentioned in Subsection 2.2, can be rec-
tified by a symbolic execution that finds the reach-
able DUCs. In theory, by systematically traversing all
executable paths, Mulib is able to find all reachable
DUCs. However, in case that Mulib is stopped due to,
e.g., an exhausted (time) budget, it may happen that
not all traversable paths are traversed and some DUCs
are not found. Nevertheless, in practice, Mulib offers
developers important insights into uncovered behav-
ior (see Section 5).

3.2 Driver Methods for Symbolic
Execution

To generate test cases for an MUT using symbolic ex-
ecution, Mulib encloses it in a search region via a so-
called driver method (Winkelmann et al., 2022). A
search region comprises all code that shall be symbol-
ically executed. The driver method sets up the, poten-
tially symbolic, inputs, executes the MUT using these
inputs, and records the output of the MUT. Consider
Listing 2 for an exemplary driver method.
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Listing 2: A driver method for initializing the context in
which an MUT test is called.
1 s t a t i c i n t d r i v e r F a c t o r i a l ( ) {
2 F a c t o r i a l f a c = new F a c t o r i a l ( ) ;
3 Mulib . remember ( fac , ” a rg0 ” ) ;
4 i n t n =
5 Mulib . r e m e m b e r e d F r e e I n t ( ” a r g1 ” ) ;
6 i n t r e s u l t = f a c . f a c t o r i a l ( n ) ;
7 re turn r e s u l t ;
8 }

In the driver, the inputs with which the MUT
is called are constructed. Since factorial is not
static, an object of the class defining the method, here
Factorial is generated (line 2). This object is re-
membered in its current state (line 3). If factorial
had a state that would be mutated by the MUT, the
state before executing fac.factorial(n) could be
retrieved later on, using the name it was remembered
by. This functionality is needed in order to keep
track of previous values in case of destructive updates
(Visser et al., 2004). Thereafter, a symbolic value of
type int is generated (lines 4 and 5) and used to call
the MUT (line 6). Afterwards, the result is returned
from the driver method. More details on the inner
workings of Mulib are given in Subsection 4.2.

Such driver methods can be custom-tailored to the
search region at hand. For instance, symbolic values
can be restricted to reduce the run time of the sym-
bolic execution. Consider, for instance, Listing 1: If
n is not restricted, the loop in lines 4–7 potentially
is executed indefinitely. By restricting n to, e.g., to
all values n < 5, the search space is pruned. Further-
more, complex input objects can be constructed while
accounting for their invariants and potentially restrict-
ing only parts of the inputs to be symbolic. In con-
sequence, if driver methods are being restricted, this
must be done carefully to still allow for discovering
all DUCs.

For the given example, a call to Mulib.get-
PathSolutions(Factorial.class, "driver-
Factorial", mb) executes this driver method until
either a budget has been reached or all possible choice
options have been evaluated. mb is a configuration
builder in which various budgets can be set. In Mulib,
the remembered values, as well as the return value
are contained in Solution objects which are part of
the output.

4 IMPLEMENTATION

To be able to derive which DUCs are not covered yet
by given JUnit test cases regarding the coverage cri-
teria all-uses which requires the coverage of every
existing DUC (Frankl and Weyuker, 1988), the dy-

namic data-flow analysis of Dacite needs to be com-
bined with the symbolic execution of Mulib. More-
over, based on the symbolic execution, input and out-
put values can be determined for an MUT which can
be used for the test case generation. Consequently, for
each identified unaccounted-for DUC, a test case can
be generated covering this chain. This test case then
is suggested to the user.

To facilitate these functionalities, both tools need
to be adapted to be able to interact with one another.
Subsection 4.1 first presents the interaction workflow
between the user, Dacite, and Mulib. Afterwards,
given the concepts of Mulib in Section 3, Subsec-
tion 4.2 outlines the necessary adaptations and exten-
sions of Mulib in more detail. Then, the adaptations
to Dacite and the visualization for the derived DUCs
are elaborated in Subsection 4.3 while Subsection 4.4
provides more details on the test case generation.

4.1 Workflow

As mentioned before, Dacite and Mulib need to inter-
act in order to derive unaccounted-for DUCs. More-
over, the user interacts with Dacite via its IDE inte-
gration e.g. into Intellij IDEA. Figure 3 illustrates this
interaction.

After using Dacite to identify all passed DUCs
as shown in Figure 2, the user can start the process
of deriving the unaccounted-for DUCs by pressing a
corresponding button. To be able to execute the pro-
gram symbolically, a driver method is required to set
up the symbolic inputs, execute the MUT, and record
the output (see Subsection 3.2). Hence, when the user
starts the process, first a driver method is automati-
cally generated by Dacite and shown to the user. This
allows the user to make adaptions to the driver. For
instance, the domains of values might be restricted,
e.g., the length of a symbolic array might be limited.

After the user has finished adapting the driver
method, they can press a button to start the symbolic
execution. For this, Dacite first instruments the pro-
gram classes to be able to derive DUCs during the
symbolic execution as described in Subsection 2.2 for
the dynamic analysis analogously. Afterwards, the
Mulib process of symbolic execution is triggered with
the given driver method. For this purpose, Mulib first
loads the classes with the Dacite instrumentation and
transforms them to enable symbolic execution. In-
structions from Dacite are not transformed (see Sub-
section 4.2). Then, the classes adapted by both Dacite
and Mulib are executed. During this process due to
the Dacite instrumentation, DUC information is for-
warded to the analyzer class whenever a usage or
definition occurs. This information is utilized to de-
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User Dacite Mulib

start Process
generate driver

display driver

start symbolic
execution

instrumentation

transformation

symbolic execution

DUC information

Solutions

derive DUCs

compare DUCs

not covered DUC

generate test cases

TCG

executable test
cases

display test cases

optopt

Figure 3: Sequence diagram illustrating the interaction be-
tween the user and the components, Dacite and Mulib.

rive the corresponding DUCs. Moreover, Solution
objects containing concrete input and output values
for the current execution path are forwarded to the
analyzer class whenever the symbolic execution has
reached a leaf node of the search tree. This infor-
mation is necessary for the test case generation later
on and is related to the identified DUCs on this path.
This process of the symbolic execution is indepen-
dent of the previously executed dynamic analysis of
Dacite as described in Subsection 2.2 to derive the
passed DUCs. However, when the symbolic execu-
tion finishes, Dacite compares the symbolically de-
rived DUCs with the passed DUCs from the original
analysis to derive differences, i.e., DUCs that were
not passed by the given JUnit test cases. These DUCs
are then forwarded and displayed to the user.

Lastly, after receiving feedback about the DUCs
that are not covered yet by the given JUnit test cases,
the user has the option to receive automatically gen-
erated test cases for them. Therefore, Dacite displays

a button which when pressed by the user invokes the
corresponding methods in Mulib to generate test cases
for the given Solution objects. The executable test
cases are returned to Dacite and displayed to the user
in a new class. In our running example, a JUnit test
case for factorial(0) would be generated with ex-
pected result 1. This test case covers the last and cur-
rently uncovered DUC (result, int result = 1, return
result).

4.2 Adaptations to Mulib

Since the JVM does not account for symbolic values
by itself, Mulib transforms the driver method and all
code used within it and generates partner classes for
the classes used in the search region (Winkelmann and
Kuchen, 2022). For this, similar to Dacite, Mulib uses
the bytecode library Soot (Vallée-Rai et al., 2010).
A partner class represents the original class in the
search region and has been adapted so that symbolic
execution is accounted for. For instance, calls to in-
dicator methods, such as Mulib.rememberedFree-
Int(...) are replaced with method calls that return
a Sint-typed value. Sint is a library class of Mulib
that can represent symbolic expressions. These li-
brary types reference the symbolic execution engine
of Mulib which is capable of performing search as
was exemplified in Subsection 3.1. For instance, in-
stead of comparing two integer numbers, e.g., i0 < i1,
a method is invoked that checks whether there is a
symbolic value involved in the if condition and if
there is, which choice point should be evaluated, e.g.,
i0.ltChoice(i1, se). se here is a facade for con-
tacting the symbolic execution engine. For more de-
tails, see (Winkelmann and Kuchen, 2022). One par-
ticularity of Mulib is that, during this program trans-
formation, special cases can be defined that are ex-
empt from said transformation. Mulib thus is able
to ignore method calls added by the instrumentation
of Dacite while transforming the remaining search re-
gion. While, in the past, approaches to record DUCs
in symbolic execution relied on a very tight inte-
gration between the symbolic execution engine and
the DUC analyzer (Winkelmann et al., 2022), by ex-
cluding the functionality of an instrumentation-based
stand-alone DUC analyzer from the program transfor-
mation in Mulib, minimal adaptations are necessary.

For the purpose of remembering objects at a spe-
cific state, a new type of constraint, a Partner-
ClassObjectRememberConstraint has been imple-
mented. There are two cases. Either we know the
contents of a (implicitly) remembered array or other
object, or it is symbolic and not yet lazily initial-
ized. Lazy initialization is a technique for symbol-
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ically representing objects (Khurshid et al., 2003):
When symbolically initializing an object, the fields
of this object are set to symbolic values. In conse-
quence, object-typed fields are set to symbolic object
references that, in turn, are initialized symbolically.
Since class graphs oftentimes have circular dependen-
cies, generating a symbolic instance of an object with
an object-typed field might lead to a an endless re-
cursion. To circumvent the eager initialization of the
respective circular object graph, fields are only initial-
ized when a field access occurs. In consequence, if a
remembered object either was initialized by executing
a constructor, or is symbolic and was already lazily
initialized, a deep-copy of it is stored in the aforemen-
tioned constraint. If, while executing the MUT, the
object is altered, a copy of the state before executing
the MUT can still be used for recreating the inputs for
a test case. However, if the object is symbolic and was
not already lazily initialized, we instead store an iden-
tifier for the object and record all subsequent accesses
such as loads from an array or retrieving a value from
an object’s field. Loads of reference-typed values are
represented by loading the identifier of the element
(see (Winkelmann and Kuchen, 2023) for more infor-
mation). These accesses, up until a write access, are
used to label the object, thus recreating its initial state.

Finally, callback methods were added to Mulib:
Every time the driver method is exited, either because
a result was found, a budget was exceeded, or we
backtrack due to the chosen search strategy, we pro-
vide the option to specify a callback. This is required
to deal with potential DUCs, as is explained in Sub-
section 4.3.

4.3 Adaptations to Dacite’s Analysis

To support the process depicted in Figure 3, two adap-
tions are necessary for Dacite’s analysis, first, the gen-
eration of the driver method and second, the handling
of the symbolic execution.

Concerning the former, the symbolic execution
with Mulib expects a driver method as shown in List-
ing 2. However, developing such a method requires
domain knowledge about the methods of Mulib and
its symbolic execution. To facilitate users without this
knowledge to derive which DUCs are not covered by
the given JUnit test cases, this driver method is auto-
matically generated by Dacite. For this, a static anal-
ysis using ASM was carried out based on a specified
test case in order to derive the MUT, its input and
output values, and their types. Methods called in this
test case that stem from classes within defined pack-
ages are considered to be MUTs and are extracted.
With this information, driver methods are automati-

cally generated containing a default setup initializing
the symbolic inputs that can be adapted if needed (see
Subsection 3.2).

The second adaptation of Dacite concerns how
DUCs are derived during symbolic execution. First,
in contrast to the original dynamic analysis the in-
strumented .class-files are saved so that Mulib
will load the already instrumented classes instead
of the original ones. Afterwards, a call to
Mulib.getPathSolutions(...) starts the sym-
bolic execution within Mulib. During this, the DUC
information is collected within the analyzer class. To
derive which definition belongs to a variable usage
next to the variable name and its index with which it
is stored within the bytecode variable table, the vari-
able value is utilized. The runtime value of a variable
is necessary to uniquely map a usage to its definition.

When dealing with symbolic values, assigning a
variable usage to its last definition is not always di-
rectly possible as it is not clear whether the definition
and usage concern the same value and thus, form a
DUC. For instance, consider two symbolic variables
of the class Sint, n1 and n2. Both have a set of con-
straints e.g. n1 < 2 but no concrete values. One pos-
sible scenario is that after resolving the constraints af-
ter terminating an execution path, n1 and n2 have the
same value e.g. 1. But it is also possible that they
have a different value, e.g. n1 = 1 and n2 = 0. This
poses the challenge that during the symbolic execu-
tion, not all variables can be immediately compared
to derive the corresponding DUCs. Hence, the DUCs
for those variables that cannot be compared can only
be derived at a later point when the symbolic values
have been labeled to concrete ones. Hence, a differ-
ent handling has to be implemented for such values
denoted here potential DUCs. Therefore, instead of
directly relating a usage to its definition as for con-
crete values (for more detail see (Troost and Kuchen,
2022)), symbolic usages and definitions are collected
separately. Only when a leaf node of the symbolic
execution is reached, the analyzer is called via a call-
back method of Mulib (see Subsection 4.2) to resolve
the symbolic values, map each usage to its last defini-
tion, and store the generated DUCs. Furthermore, for
all DUCs derived at this execution path, a Solution
object including the input and output values for this
path is added to account for the test case generation
later on. So for each DUC, a set of Solution objects
can be derived as a DUC can be covered by more than
one combination of input and output values and its
corresponding execution path. Moreover, vice versa,
for each Solution object it can also be derived which
DUCs are covered with this which is necessary for
the test case reduction later on (see Subsection 4.4).
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The result of the analysis is forwarded as an XML list
of derived DUCs and Solution objects to the lan-
guage server (see Subsection 2.2). There, it is com-
pared which DUCs were already identified during the
analysis of executing the existing JUnit tests. The dif-
ference, i.e., the DUCs which are not covered by the
existing tests, are stored and displayed to the user.

4.4 Test Cases Generation

After symbolically executing the program, the user
can trigger the test case generation for the DUCs not
covered by the given test cases (see Figure 3). This is
performed by Mulib’s test case generator.

This test case generator transforms input-output-
relations into a String representation of an executable
JUnit test class calling the MUT with the specified
input and comparing the output to the expected one
from the relation. Before any String is generated, the
number of test cases is reduced. We strive for a loss-
less reduction with regards to some metric. While
Mulib itself is capable of collecting branch coverage
as a metric, in the given integration, the metric is the
all-uses coverage (Frankl and Weyuker, 1988), i.e.,
all DUCs that have not yet been covered by the pre-
existing test set should be covered.

To derive the test cases before the reduction, all
distinct Solution objects are collected from those
unaccounted-for DUCs, i.e., DUCs that were not cov-
ered using the initial test set. For each Solution object,
the set of unaccounted-for DUCs which were cov-
ered in the path of this solution or test case is derived.
Thus, the coverage is represented as a BitSet where
each set bit represents the unique identifier of one
those unaccounted-for DUC. Consequently, two test
cases covering the same DUCs have the same BitSet
and hence, can be reduced to one test case. We search
for a minimal subset of test cases so that the number
of set bits and thus, the number of covered DUCs, is
equal to the number of set bits in the overall set of
test cases. Since this is an instance of the NP-hard set
coverage problem, typically heuristics are employed
(Majchrzak and Kuchen, 2009). We employ a con-
figurable set of heuristics which are described in the
following.
1. The first strategy sequentially adds test cases to a

result set of the to-be-added test case increases the
cardinality of the overall bit vector (Winkelmann
et al., 2022).

2. The second strategy starts with a set of test cases
where each test case is included. Then, test cases
are iteratively removed if the overall cardinality of
the remaining test cases did not decrease (Winkel-
mann et al., 2022).

3. The third strategy starts out with an empty set of
test cases. It then greedily adds the test case that,
for the current result set of test cases, offers the
maximum increase in cardinality when added to
the result set.

These strategies offer a low run time and can be
combined either sequentially or compete with one an-
other. It is, for instance, possible, to first reduce a test
set via the first strategy and then forward the output to
the second strategy. It is also possible to specify that
multiple (combinations of) strategies should compete
with one another, where the smallest test set is chosen.

4.5 Extensions to the Visualization

As mentioned in Subsection 2.2, Dacite’s visualiza-
tion is based on the Language Server Protocol (LSP)
to mitigate the implementation effort for developing
integrations for different IDEs. In order to extend the
visualization to unaccounted-for DUCs and test case
generation, it is desirable to adhere to the existing ar-
chitecture (language server and client) and LSP stan-
dard message types (Microsoft Corporation, 2023b).

There are three different user interactions and vi-
sualizations necessary as depicted in Figure 3. First,
the user needs to start the process of generating a
driver method for the symbolic execution. This is dis-
played by the language client, e.g. IntelliJ, as a but-
ton within the tool window next to the list of covered
DUCs. This triggers the driver generation for the cur-
rent test case. After the generation, the driver method
within a driver class is created as a new file and is
displayed to the user.

Afterwards, the user requires an option for start-
ing the symbolic execution when they are finished
adapting or inspecting the driver method. This can
be displayed similarly to Dacite’s analysis trigger
with a LSP request Code Lens (Troost et al., 2023).
For these requests, the language server determines
whether the opened file the user is inspecting adheres
to the naming standard as described above and hence,
contains one or more driver methods. If that is the
case, the corresponding button is displayed to the user
by the client. The derived DUCs not covered by the
existing tests are visualized analogously to the cov-
ered DUCs as depicted in Figure 2. This gives the
user a structured collapsible list of the derived unac-
counted for DUCs sorted by the class, method, and
variable the value definition occurred for. To increase
the comprehensibility of this list, the DUCs can be
highlighted within the source code as well using the
color red to distinguish the DUCs covered and not
covered by the given tests. Figure 4 illustrates these
extensions for the IDE IntelliJ IDEA. Given the facto-
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Figure 4: Exemplary screenshot of the Dacite visualization extensions in IntelliJ.

rial example in Section 2 and a JUnit test calculating
the factorial for the number five, the symbolic execu-
tion was executed with the corresponding driver (see
Listing 2). Based on this test, one DUC can be identi-
fied which is not covered yet: (result, int result = 1,
return result). This is returned by the symbolic exe-
cution and can be seen on the right above the list of
covered DUCs in Figure 2. Using the checkbox, the
corresponding DUC is highlighted within the editor.

Lastly, the user requires an option to generate test
cases for the unaccounted-for DUCs. This is dis-
played by the language client analogously to the trig-
ger for the driver generation as a button within the
tool window which creates a new class containing the
generated test cases. By adhering to the existing ar-
chitecture and LSP requests, both IDE integrations,
IntelliJ and VS Code could be extended by these fea-
tures as shown exemplary in Figure 4 without much
further effort.

5 EVALUATION

In order to evaluate and demonstrate the derivation
of unaccounted-for DUCs based on the symbolic ex-
ecution with Dacite and Mulib, this approach was ex-
ecuted on a set of different examples. The major-
ity of examples are retrieved from the SV-COMP set
of software verification which is a publicly available
benchmark suite for verification and validation soft-
ware tools released from the annual competition for
software verification SV-COMP (Beyer, 2021).

Different types of algorithmic challenging exam-
ples were selected, e.g. recursive, sorting, searching,
and algorithms exhibiting large sequences of case dis-
tinctions, to demonstrate the wide applicability of this
approach. Next to the example presented in Section

2 and the algorithms for the Euclidean greatest com-
mon divisor, ten examples were retrieved from SV-
COMP. Besides different smaller well-known bench-
marks such as the recursive Fibonacci algorithm,
greatest common divisor, insertion sort, and recursive
algorithms checking whether a number is even or odd
or whether it is a prime number, we have also tested
larger and more complex examples. An implemen-
tation of the traveling salesperson problem, a wheel
brake system, which determines based on the envi-
ronment how much brake pressure should be applied,
an implementation of a complex alarm system and
the implementation of an infusion manager system are
utilized. Due to the exponential increase in possible
paths during symbolic execution, Glass-box test case
generation based on the code is mainly suited for unit
testing and for testing a small number of classes in
combination (Cadar and Sen, 2013). Hence, we have
focused on such scenarios in our experiments.

For each example, a basic JUnit test case was
added as a starting point for deriving DUCs that are
not accounted for by the given test e.g. considering
the factorial example in Listing 1 a test case execut-
ing the algorithm for the number five was added (see
Figure 1). Based on this, a driver method was auto-
matically generated using the approach explained in
Section 4. This can already be utilized to retrieve
results from the symbolic execution. However, in
order to generate better results, this driver method
was adapted. The set of examples and adapted driver
methods too are open source4.

Moreover, in order to avoid an enormous or even
infinite number of iterations of the symbolic execu-
tion especially for the more complex examples, the
execution time was restricted to 10 seconds. Note
that these 10s encompass the complete symbolic ex-

4https://github.com/dacite-defuse/examples
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Table 1: Executed examples with the LOC, the minimal/maximal run time in seconds, the number of covered DUCs, the
number of unaccounted-for DUCs by the initial test case, and the number of automatically generated and reduced test cases
covering these unaccounted-for DUCs with a symoblic execution limit of 10s.

Example LOC Min/Max run Covered Unaccounted- Reduced
time in s DUCs for DUCs Test Cases

Factorial 12 1.92/2.07 s 10 1 1
Fibonacci 14 1.93/2.19 s 2 2 1
EuclidianGcd 16 1.93/2.15 s 14 4 3
InsertionSort 17 1.92/2.20 s 36 6 2
RecursiveGcd 22 2.08/2.22 s 2 9 2
EvenOdd 27 2.00/2.16 s 3 3 1
Hanoi 35 2.40/2.77 s 5 3 1
Prime 50 1.96/2.52 s 3 0 0
TspSolver 78 5.20/5.52 s 21 34 2
WBS 241 2.75/2.95 s 41 55 5
Infusion 692 18.99/19.61 s 25 194 34
Alarm 1378 17.68/18.45 s 169 79 10

ecution started by Mulib until the derived DUCs are
identified (see the workflow of Mulib in Figure 3).
Although the execution time can oftentimes be re-
duced by providing more complex driver methods,
i.e., restricting the input space by employing knowl-
edge on the program, 10 seconds has been found to
be both acceptable in practice as well as covering
many unaccounted-for DUCs. As a search strategy,
we retrieve new choice options in an IDDFS fashion:
a choice option with the lowest depth in the search
tree is navigated to using symbolic execution. Then,
the search region is executed until either a budget is
reached or a path solution is found. To assure termi-
nation, the exploration of the search tree has been lim-
ited to a depth of 64. This limit has been determined
via experimentation.

Table 1 presents the results. For each example,
the number of executable Lines Of Code (LOC) ex-
cluding empty lines and comments was derived This
serves as an indicator of the method’s complexity.
Furthermore, the minimal and maximal overall exe-
cution time of symbolic execution out of five differ-
ent executions in seconds is given for each example.
The complete process of generating the driver and ex-
ecuting the symbolic execution until the test case gen-
eration is dependent on several user interactions (see
Figure 3) which impedes comparable run time mea-
surements. The time displayed in the table was mea-
sured from the moment the user starts the symbolic
execution (after the driver generation) until the delta
of DUCs which were not covered by the initial test
case is derived and visualized to the user (the second
process in Figure 3). This incorporates the main and
most expensive computations (the instrumentation by
Dacite, symbolic execution by Mulib, and transfor-
mation and visualization of the identified data flow)

and thus, presents a sufficiently comparable bench-
mark. In addition, the number of DUCs covered by
the initial JUnit test case, the number of DUCs de-
rived from the symbolic execution that are not ac-
counted for by the initial test case, and the number
of JUnit test cases, that were automatically generated
and reduced, covering those DUCs is also displayed
for each example.

All execution times range in seconds while the ex-
ecution time of the majority of examples remains un-
der the configured limit of 10s for the symbolic execu-
tion. This shows that the symbolic execution for these
examples was not aborted in the middle due to this
limitation. For the two larger examples (Infusion and
Alarm), in addition to the results in Table 1 the sym-
bolic execution was executed again with a higher limit
of 120 s to make sure that no DUCs were missed due
to the budget. The example Infusion did not identify
more DUCs with more time leading to the assumption
that all reachable DUCs were already identified. As
the Infusion but especially the Alarm example is con-
siderably larger and more complex in terms of con-
ditional statements than typical MUTs subject to unit
testing, it is reasonable that it requires more execution
time than the other examples. Increasing the sym-
bolic execution limit to 15 min has yielded that the
Alarm example has 253 DUCs, thus 84 unaccounted-
for DUCs. However, only a small amount of time al-
ready resulted in the identification of the majority of
unaccounted-for DUCs which would improve the test
coverage.

The results demonstrate that our approach is able
to identify missing DUCs for each example and is
able to generate tests covering these. It can be seen
that for the example Prime no further DUCs have
been identified. As the example given by SV-COMP
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contains an endless loop, only the already identified
DUCs are reachable. This further demonstrates that
the symbolic execution by Mulib is able to derive
only those DUCs that can be executed by the program.
To validate if all unaccounted-for DUCs were identi-
fied, the number of overall DUCs was derived for the
smaller examples manually due to the lack of a com-
parable data-flow analysis tool. For the more complex
examples, deriving all possible DUCs per hand is not
feasible as these consist of hundreds of chains (see
Table 1). However, due to the advanced visualization
and source code highlighting, provided by Dacite, the
data flow can be comprehended, and missing chains
are identified by a generated annotation. The gener-
ated test cases were validated by executing them with
the data-flow analysis in combination with the ini-
tial test cases to demonstrate that all unaccounted-for
DUCs are then covered.

With the scope of symbolic execution in mind, we
deem the results acceptable and usable in practice, in
particular for unit testing and early integration test-
ing. Our approach provides the largest benefit when
applied to algorithmically challenging applications,
since for such applications it is hard to reach data-
flow coverage by manually developed test cases.

6 RELATED WORK

There exist few approaches to aiding the data-flow
analysis by combining it with symbolic execution.
The majority focus on a static data-flow analysis
which implies the limitation that the identified DUCs
may not be reachable within the program (see Subsec-
tion 2.2). For this, Arzt et al. (Arzt et al., 2015) devel-
oped a tool for Java programs denoted TASMAN as a
separate post-analysis step based on symbolic execu-
tion to overcome this limitation. Via symbolic execu-
tion, the tool scans for contradictions on a data-flow
path and thus is only used to eliminate false positives
from the data-flow analysis. Further information to
generate test cases is not derived and a visualization
is not conducted (Arzt et al., 2015).

Su et al. (Su et al., 2015) combine symbolic exe-
cution with static analysis and model-checking for C
programs. A dynamic symbolic execution is utilized
to automatically generate test data based on the data
flow derived from a static analysis. For each iden-
tified DUC, the symbolic execution is started to find
test data covering this DUC based on a search strategy
that looks into the more promising control flow first.
To reduce the amount of time trying to cover an un-
reachable DUC, model-checking is used additionally
to identify unreachable DUCs (Su et al., 2015). How-

ever, by searching for every chain, paths are executed
multiple times even if the chains are covered by the
same input data. This is prevented by our approach of
deriving the data flow during the symbolic execution.
Moreover, Su et al. (Su et al., 2015) focus solely on
the test data creation and do not mention any test data
reduction approach or visualization.

In (Winkelmann et al., 2022), a dynamic data-flow
analysis is used as a means for test case reduction
for a test case generator based on symbolic execu-
tion. The data flow is tracked during the execution of
paths. However, the focus lies on the symbolic execu-
tion and test case generation so that the resulting data
flow is solely used for the reduction and not commu-
nicated or visualized to the user. Moreover, the data
flow is only derived for the symbolic execution and
not for existing test cases. In consequence, it is not
indicated which DUCs were already covered by the
existing test suite. Finally, the approach is hardwired
into a custom JVM that was adapted to allow for sym-
bolic execution. In contrast, both Mulib and Dacite,
are standalone tools. It was demonstrated that two
standard tools following the program instrumentation
and transformation paradigm can be integrated with
a relatively small amount of effort, without affecting
their generality.

7 CONCLUSION AND FUTURE
WORK

The dynamic data-flow analysis of Dacite is only able
to identify DUCs that were covered by the given tests
so far. In this paper, we have combined Dacite with
the symbolic execution of Mulib to derive DUCs that
have not been covered yet. To achieve this, a symbolic
driver is generated automatically based on given tests
and given to the user. With this driver, the symbolic
execution is triggered within Mulib, during which
DUCs are collected by Dacite. Both Dacite and Mulib
are adapted to facilitate the interactions without af-
fecting their generality. Moreover, the delta of derived
DUCs and already covered DUCs, the unaccounted-
for DUCs are visualized to the user integrated into
common IDEs. Additionally, test cases can be gener-
ated for those unaccounted-for DUCs.

In the future, we plan to further optimize the
symbolic execution for deriving the unaccounted-for
DUCs. One way would be to prune the search re-
gion based on the existing JUnit test cases and conse-
quently the already covered DUCs for those paths. If,
for instance, a region of the program cannot contain
any more DUCs, these paths do not need to be re-
garded any longer during symbolic execution. This
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serves as a countermeasure against the well-known
problem of path explosion (Cadar and Sen, 2013).
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