Scriptless Testing for an Industrial 3D Sandbox Game

Fernando Pastor Ricés!©?, Beatriz Marin! @, Tanja Vos'?©¢, Joseph Davidson® and Karel Hovorka®

Keywords:

Abstract:

YWniversitat Politécnica de Valéncia, Valéncia, Spain
2Open Universiteit, The Netherlands
3GoodAl Prague, Czechia

Computer Game Testing, Autonomous Agents, Scriptless Testing, Exploratory Testing, Automated Testing.

Computer games have reached unprecedented importance, exceeding two billion users in the early 2020s. Hu-
man game testers bring invaluable expertise to evaluate complex games like 3D sandbox games. However, the
sheer scale and diversity of game content constrain their ability to explore all scenarios manually. Recogniz-
ing the significance and inherent complexity of game testing, our research aims to investigate new automated
testing approaches. To achieve this goal, we have integrated scriptless testing into the industrial game Space
Engineers, enabling an automated approach to explore and test sandbox game scenarios. Our approach in-
volves the development of a Space Engineers-plugin, leveraging the Intelligent Verification and Validation
for Extended Reality-Based Systems (IV4XR) framework and extending the capabilities of the open-source
scriptless testing tool TESTAR. Through this research, we unveil the potential of a scriptless agent to explore
3D sandbox game scenarios autonomously. Results demonstrate the effectiveness of an autonomous scriptless
agent in achieving spatial coverage when exploring and (dis)covering elements within the 3D sandbox game.

1 INTRODUCTION

Computer games are dynamic and interactive systems
designed to immerse and entertain users in captivating
virtual environments. In the early 2020s, the video
game industry surpassed 2 billion players worldwide,
generating an impressive revenue of 120 billion dol-
lars. This remarkable trend is anticipated to experi-
ence substantial growth in the future (Cooper, 2021).

Game testing predominantly relies on game
testers, who invest significant manual effort and time
verifying that user interactions within virtual scenar-
ios yield the intended outcomes (Politowski et al.,
2021). However, as industrial games grow in com-
plexity, companies face the inherent limitations of hu-
man game testers’ efforts. Automated approaches are
needed to support game testers’ manual efforts with
complementary testing approaches (Pascarella et al.,
2018). However, due to the intricate nature of games,
which surpasses traditional software in complexity
(Santos et al., 2018), the field of game systems lacks
standardized frameworks to facilitate test automation.

Sandbox 3D games, such as the industrial game
Space Engineers developed by Keen Software House
and GoodAl companies, emphasize the freedom and

https://orcid.org/0000-0002-5790-193X
@ nttps://orcid.org/0000-0001-8025-0023
¢ https://orcid.org/0000-0002-6003-9113

Pastor Ricds, F., Marin, B., Vos, T., Davidson, J. and Hovorka, K.
Scriptless Testing for an Industrial 3D Sandbox Game.

DOI: 10.5220/0012599400003687

Paper published under CC license (CC BY-NC-ND 4.0)

creativity of users in virtual scenarios. Players are
given a wide range of tools and resources to shape
the game scenarios according to their preferences and
playstyle. The testing team of Space Engineers com-
prises ten game testers who excel in assessing func-
tionality to create, destroy, modify, or interact with in-
game objects, verify visual aspects, and manage game
scenarios. Nevertheless, despite the testers are dedi-
cated to performing numerous daily manual tests, the
extensive range of in-game elements constrains their
time for exploring and testing unforeseen scenarios.

This study evaluates the scriptless testing tech-
nique with the industrial sandbox game Space Engi-
neers. Scriptless testing automatically generates test
sequences at run-time to explore the System Under
Test (SUT) by selecting and executing the available
actions in the discovered states (Pastor Ricds, 2022).
While this approach appears well-suited for 3D sand-
box games, existing scriptless testing tools are primar-
ily designed for desktop, web, and mobile applica-
tions. Adapting these techniques for game testing re-
quires addressing distinctive 3D game features, such
as precise position and orientation data for character
movements and properties of interactive elements.

To bridge the gap between scriptless testing
tools and technologies capable of discerning a
game’s states, we leverage the Intelligent Verifica-
tion/Validation for Extended Reality Based Systems

51

In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 51-62

ISBN: 978-989-758-696-5; ISSN: 2184-4895

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.



ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

(1v4XR) framework (Prada et al., 2020).

In this paper, we extend the previous experiences
of using the IV4XR framework (Prasetya et al., 2022).
The research contributions are:

1. Advancements in Scriptless Game System
Testing. This research provides insights into
the Iv4XR framework and scriptless testing tools
components, contributing to the landscape of
scriptless and game testing methodologies.

2. Empirical Evaluation with an Industrial
Game. Through empirical evaluation, this study
demonstrates the benefits of effective spatial
coverage by developing sophisticated decision-
making algorithms in autonomous scriptless
agents to test the industrial Space Engineers
game system.

These contributions are valuable for researchers
and game development practitioners since they show-
case how integrating autonomous exploratory agents
can enable automated navigation and game testing.

The paper is structured as follows: Section 2
presents related work. Section 3 outlines the Space
Engineers game and testing challenges. Section 4
details the integration within the Iv4XR framework.
Section 5 describes the extension of the scriptless test-
ing tool TESTAR for games. Section 6 presents the
empirical evaluation, and Section 7 concludes.

2 RELATED WORK

Compared to desktop (Pezze et al., 2018), web
(Garcfa et al., 2020), and mobile (Kong et al., 2018)
applications, for complex 3D game systems, there
are no highly adopted automation framework or tools
suitable to implement automated testing approaches.
ICARUS framework (Pfau et al., 2017) trains Re-
inforcement Learning (RL) agents to complete a 2D
linear adventure game. In (Rani et al., 2023), an RL-
BGameTester model was used to detect screen errors
in a 2D Atari game. However, 2D games have simpler
visuals and mechanics than 3D games. The absence
of the third dimension eliminates complexities such
as physics intended to simulate real-world scenarios.
Various RL approaches have been researched with
diverse demo or gym-training 3D games. In (Gordillo
et al.,, 2021), curiosity-driven RL agents move and
jump in a self-crafted 3D game map to enhance spatial
coverage and detect areas that stuck players. For gym-
training semi-realistic games like ViZDoom (Kempka
et al., 2016), the study (Ariyurek et al., 2022) use
RL to train agents that simulate different personas to
discover alternative play-style trajectory paths. Simi-

52

larly, in (Sestini et al., 2022), a curiosity and imitation
RL approach is used to train agents that explore game
areas while uncovering collision bugs and glitches.
For Unreal Engine sample games, a pixel-based agent
called Inspector (Liu et al., 2022) is employed to ex-
plore the game space using curiosity-based RL, re-
sulting in the detection of two potential bugs.

Meanwhile, initial studies are using approaches to
test open-source Virtual Reality (VR) Unity projects.
The VRTest framework (Wang, 2022) streamlines the
integration of various testing techniques using rota-
tion, movement, and click trigger events. In (de An-
drade et al., 2023), metamorphic tests and RL are used
to identify collision and camera faults when moving
the game character. Nevertheless, both approaches re-
quire further work to support wide types of events and
to be evaluated with SUT not based on Unity.

In contrast to the previously mentioned studies,
Space Engineers is a complex industrial 3D sandbox
game in the market that involves a wide range of func-
tional blocks and items with diverse properties.

RiverGame framework (Paduraru et al., 2022)
uses various Al techniques to test visual, physical,
and sound game aspects. The accuracy of visual Al
techniques has been validated with demo and open-
source games, and the voice testing detection rate ap-
proach with an industrial game. In contrast, our re-
search evaluates the effectiveness of exploring an in-
dustrial 3D sandbox game while assessing the func-
tional aspects of in-game objects.

Wuji framework (Zheng et al., 2019) uses evolu-
tionary Deep RL to improve state exploration while
accomplishing missions in 2D and 3D online com-
bat games. Its effectiveness was demonstrated by de-
tecting real injected bugs from previous versions and
uncovering 3 new bugs. However, despite the avail-
ability of the Wuji open-source classes, the project
lacks the documentation details necessary for seam-
less integration with other game systems and has had
no recent activity since June 8, 2020.

In summary, some studies explored scriptless
techniques to train RL agents for playtesting demo or
gym-training games. Scriptless RL agents have been
applied to real games in a few cases. Still, there is a
lack of standardized open-source frameworks able to
effectively identify the states of complex 3D games,
which is essential to streamline test automation pro-
cesses. Thus, our proposal goes beyond the state of
the art in two key aspects: (i) We establish a connec-
tion to the game environment for robust observation
of internal game objects and execution of actions that
control the agent using game functions by leveraging
the Iv4XR open-source framework; (ii) We integrate
an autonomous scriptless testing agent within a real



3D sandbox game that employs intelligent run-time
algorithms to simulate the exploration experiences of
real players and does not require pre-executing train-
ing iterations to learn how to play the game.

3 SPACE ENGINEERS

Space Engineers! is a sandbox 3D game developed by

Keen Software House and GoodAl companies. The
game is coded in C#, started its alpha release in 2013,
transitioned to beta in 2016, and was officially re-
leased in 2019. In 2022, Space Engineers had an
average of 5,000 players with peaks of more than
9,000 concurrent players. Between 2013 and mid-
2023, the game has evolved over nearly 596 game
build changes. The game is available on Steam and
console platforms and has sold around 5 million units.

The Space Engineers game simulates realistic
open-world 3D scenarios. Due to the nature of the
sandbox game, there is no specific objective to finish
the game. Users can explore planets in space, portray
their idealistic spatial constructions, play challenging
scenarios to survive, or collaborate and compete with
other players.

3.1 Game Mechanics

In Space Engineers, all game objects reside in a posi-
tion and orientation of a three-dimensional world and
have properties that indicate the object name, velocity,
and unique identifier inside the game environment.

The astronaut is a playable game character that al-
lows users to be part of and interact with the game
environment. The astronaut has various characteris-
tics such as energy, hydrogen, oxygen, and health, and
capabilities like flying using the jet-pack. Due to the
game recreating an open space world, the astronaut
can move, fly, and rotate in 3D scenarios.

The game has atomic Block objects with proper-
ties representing attributes like type, integrity, vol-
umetric physics, mass, inertia, and velocity. These
blocks can be categorized into functional and struc-
tural blocks. Functional blocks have the capability of
executing a task. For instance, this functional task can
be producing energy for power blocks or restoring the
character characteristics for life support blocks such
as a medical room block. Structural blocks do not
execute a task on their own but are used to build con-
structions. For example, armor structural blocks are
used to build the floor and walls of space stations.

Constructions are known as Grid objects. A grid

Uhttps://www.spaceengineersgame.com/

Scriptless Testing for an Industrial 3D Sandbox Game

can be as simple as a set of structural blocks that con-
stitute the floor of a space station or a complex engine
that extends the task capabilities of functional blocks.
For example, a medical room that restores the astro-
naut’s health can be connected with an O2/H2 gener-
ator to additionally restore the astronaut’s oxygen.

To construct blocks or sustain functional tasks, the
astronaut needs so-called Items like: Tools used to in-
teract with blocks and game mines; Ores mined from
planets or asteroids using drill tools; Materials refined
from ores into useful ingots; Components crafted
from materials and required to construct blocks.

Figure 1 shows a Space Engineers scenario with
a functional medical room connected to a functional
O2/H2 generator via structural conveyor blocks. The
O2/H2 generator can refine ice ores and supply oxy-
gen to the connected medical room. This allows the
astronaut to restore oxygen when interacting with the
medical panel. However, if the integrity of the O2/H2
generator is less than 80%, the ice ores cannot be re-
fined, and the oxygen will not be supplied.

Conveyor blocks—|

Figure 1: Space Engineers game scenario.

Space Engineers scenarios can be launched in cre-
ative and survival modes. Creative mode makes the
astronaut invulnerable. His health, oxygen, hydrogen,
and energy statistics will not decrease when resources
are spent. Moreover, the astronaut can build blocks
without the need to have the correct components in
the inventory. In contrast, in survival mode, oxygen
decreases over time, energy reduces with activity, hy-
drogen is spent when the jet-pack is used, and the as-
tronaut can die if he/she loses its health points.

The variety of blocks and items, the diverse pos-
sible constructions to build with them, the scenar-
ios game modes, and the 3D open-world movements
make Space Engineers a highly complex game to test.

3.2 Development & Manual Testing
Cycle

A typical Space Engineers game development cycle
takes about 3 or 4 months, depending on the extent

53



ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

of game changes. This cycle involves two primary
teams: developers and testers. The developers design
and implement new game features and fix bugs re-
ported by the testers during the release of new game
versions. As developers finalize these changes, they
open Jira tickets (Fisher et al., 2013) to point testers
to the features that require testing.

In turn, testers process developers’ Jira tickets
to verify the functionality of new or updated game
features and validate potential bug fixes. Addition-
ally, they assist the game community in verifying and
documenting possible problems that users encounter
when crafting specific scenarios. The testers team
comprises ten members with different expertise roles
that include: console port (testing features in con-
sole); scene and world creation (ensuring scenarios
can be created, saved, and loaded); surround sound
(checking sound volume in scenarios); player support
(simplifying bug reproduction steps reported by com-
munity users to assist developers in resolving issues).

Testers’ proficiency in understanding game me-
chanics from players’ perspectives is crucial to ac-
curately reproduce scenarios during sandbox game
feature validation. As a result, manual testing re-
mains essential to ensure comprehensive game test-
ing. However, testers lack sufficient time to man-
ually test the extensive and diverse combinations of
entity interactions in the game. Manually exploring
blocks and items to reach spatial coverage can be
prohibitively costly and time-consuming. In light of
these challenges, it becomes relevant to investigate
scriptless testing as an automated solution.

3.3 Scriptless Testing

Traditional testing approaches, such as manual test-
ing, focus on evaluating specific scenarios by interact-
ing with and verifying the expected behaviors of SUT
elements. However, these approaches may not cap-
ture the full range of interactions and emergent behav-
iors that can emerge during gameplay. Scriptless test-
ing techniques do not rely on explicit test case instruc-
tions. Instead, they employ algorithms to dynamically
generate non-sequential actions during run-time, en-
abling them to explore and discover SUT objects au-
tonomously. This introduces randomness and vari-
ability, which helps to complement traditional test-
ing by uncovering unexpected issues and performing
unanticipated combinations of interactions (Jansen
et al., 2022; Bons et al., 2023).

Existing scriptless testing tools rely on different
Graphical User Interface (GUI) technologies to detect
the interactable elements. For example, TESTAR
(Vos et al., 2021; Jansen et al., 2022) uses UTAutoma-

54

tion, WebDriver, Java Access Bridge, and Appium,;
Murphy (Aho et al., 2014) relies on UlAutomation
and image recognition; GUI Driver (Aho et al., 2011)
uses Jemmy Java library, Crawljax/ATUSA (Mesbah
and Van Deursen, 2009) and Webmate (Dallmeier
et al., 2012) use WebDriver; GUITAR (Nguyen et al.,
2014) uses Java Accessibility, WebDriver, and UNO
Accessibility; AUGUSTO (Mariani et al., 2018) and
AutoBlackTest (Mariani et al., 2011) use IBM Func-
tional Tester and Selenium.

For traditional GUI applications, the aforemen-
tioned technologies suffice with the identification of
GUI elements that can be interacted with through key-
board and mouse inputs. However, these technologies
fall short of meeting the necessary requirements for
games. Game environments demand additional infor-
mation to accurately identify their respective states,
such as positional or orientation vectors for move-
ments or properties associated with the objects be-
ing interacted with. Consequently, prior to employing
scriptless testing for games, it becomes imperative to
establish a connection between this testing approach
and technologies capable of detecting the interactive
elements within a game. We used the TV4XR frame-
work described below to establish this connection.

4 SPACE ENGINEERS IN THE
iv4dXR FRAMEWORK

IV4XR is a Java framework with a plugin architec-
ture that provides a set of interfaces that can be im-
plemented to connect, get information, and interact
with game objects. The Entity interface represents
the existing game objects and their properties. The
Environment interface allows connecting with game
scenarios, observing the defined entities, and defin-
ing the actions that can be executed in the game. The
agent can be any automated software testing tool that
uses the environment to connect with the game and
takes the role of a playable entity to observe the game
entities, execute game actions, and apply test oracles.
These Tv4XR interfaces streamline the develop-
ment of game plugins. The development of the
1IV4XR Space Engineers-plugin® enables access to
the internal data and functions of the game. In Space
Engineers, the agent takes the role of the astronaut.
The Space Engineers-plugin consists of server and
client components. The server-side is implemented in
C#, has 8462 lines of code (LOC), and allows the con-
nection with the game by defining the properties and
controller functions of game objects. The client-side

Zhttps://github.com/iv4xr-project/iv4xr-se-plugin



Scriptless Testing for an Industrial 3D Sandbox Game

Observe:
- obtain the
-— entities

CharacterController

Space Engineers iv4XR plugin

Block MovementDirection

o B information Pose

Entity CubeGrid RotationDirection

Position

OrientationUp

OrientationForward

Type TurnOnJetpack
BeginUsingTool

Id Integrity 1.n 1| List<Block>
{~— Name [~ Size —— Mass
Velocity Functional Parked

—>

Move,
use item,

\ or place
= block

ItemsController

0.n

SetToolbar
1 Equip
Observation(range)

Character

Health
Oxygen
SuitEnergy

Character
List<CubeGrid>

BlockPlacer

PlaceBlock

Figure 2: Space Engineers-plugin overview.

is written in Kotlin to ensure interoperability between
the C# game and the Java IV4XR framework, has a
size of 17671 LOCs, and provides classes that grant
access to game data and logical functions like naviga-
tion for the agents. Figure 2 shows an overview of the
plugin classes, which are discussed below.

4.1 Space Engineers-Plugin Entities

In the Space Engineers environment, each game ob-
ject is represented as an Entity that stands in a spe-
cific Pose. The Pose denote their position and orien-
tation within the game, and the Entity properties indi-
cate each object’s identifier, name, and velocity.
Block extends Entity with properties that indicate
the block’s type, integrity, and size, together with an
attribute that indicates if the block is of the func-
tional category (e.g., power block or medical room).
CubeGrid contains the list of blocks that compose a
grid (e.g., a spaceship grid is composed of a cock-
pit, thruster, and power blocks), and properties repre-
senting the grid mass and if the grid is parked (e.g., a
spaceship is parked or is being controlled). The Char-
acter entity extends Entity properties with the astro-
naut’s characteristics of health, oxygen, energy, etc.

4.2 Space Engineers-Plugin
Observation

The agent connects with the Character through the
Space Engineers-plugin to Observe the Space Engi-
neers environment. The Character is always present.
The existence of CubeGrid and Block entities depends
on a configurable observation range of the agent and
its distance from the game objects. Figure 3 shows
how the observation range, a 3D sphere, works in the
Space Engineer’s environment. The agent observes
itself, the main platform grid, and one spaceship grid.
As we have explained, the grids are composed of a
set of block entities. The spaceship grid is composed
of a cockpit block, thruster block, power block, etc.
The grid platform is composed of a group of structural

ArmorBlock representing the floor of the scenario, to-
gether with functional MedicalBlock and PowerBlock.

4.3 Space Engineers-Plugin Actions

The Space Engineers-plugin allows the agent to con-
trol the Character to interact with the game. The
plugin controllers call internal game functions to
move or rotate the character, turn on/off the jet-pack,
equip/unequip an item, place a block, etc. To invoke
these controls, the agent executes commands.
Observing the entity’s data within the game envi-
ronment and executing commands by invoking game
controls make the Iv4XR Space Engineers-plugin a
more robust approach compared to the usage of key-
board and mouse inputs or visual recognition tools
that lack access to the internal game data. However,
commands are insufficient even to accomplish simple
tasks such as grinding a block. It is necessary to group
sequences of commands in actions. For example, an
action to grind a block is composed by the commands:
Find the grinder tool, equip the grinder, aim the block,
start using the grinder, and stop using the grinder.

4.4 Space Engineers-Plugin Navigation

Moving the agent within the game is a complex task,
as it requires the agent to perceive which positions are
obstructed/walkable to determine a path of positions
to reach the desired entity. In the Iv4XR framework,
this functionality is known as navigation.

Some game engine platforms, such as Unity, can
automatically build a navigation mesh? that contains
the walkable positions of the game by using the vir-
tual objects geometry. Pathfinding algorithms can
then optimize the traversal of these navigable mesh
nodes to reach a desired position (Cui and Shi, 2011).

The 1v4XR framework provides an A* pathfind-
ing algorithm to efficiently find the best path between
two nodes within a navigation mesh. Nonetheless,
the initial version of the Space Engineers-plugin did

3https://docs.unity3d.com/es/Manual/Navigation.html

55



ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

Position

Orientation
Character Oxygen
Agent Hydrogen
Jetpack

etc.

Figure 3: Space Engineers observed environment by the agent.

Posit —T1—T1— ArmorBlock ... — Position
o:/llellt;z @@@ - Orientation
Name Platflorm = MedicalBlock _—Isqtegnty
Parked grid @_, C Fome
I~ Functional
etc. PowerBlock ... L etc.
Position —~ CockpitBlock... [~ Position
Mass j - Orientation
Name Space | ThrusterBlock—:ISr}fsmy
\._N Paf';?: ship { @i - Functional
. - C——— PowerBlock... Letc.

not have the capability to create a default navigation
mesh (Prasetya et al., 2022). Instead, it constructed
a navigation graph on-the-fly using the geometry in-
formation of observed entities. This approach has
drawbacks, as it incurs a significant time cost after
each game exploration movement and is not robust in
three-dimensional space, where the agent could dy-
namically change its orientation.

To enhance game navigation, the Space Engineers
team introduced automatic graph calculation for each
CubeGrid entity. This calculation generates a list of
positions the agent could reach without obstructions.
In Figure 4, the agent observes the navigable posi-
tions, allowing him to create actions with a path of
command movements to reach the interactive entities.

MedicalBlock
k

i - =

Figure 4: Navigable actions to reach interactive entities.

S TESTAR FOR GAME TESTING

Once the 1v4XR Space Engineers-plugin resolves
the technical prerequisites necessary for detecting the
state, it is necessary to integrate this capability into a
scriptless automation tool. We select the TESTAR
tool (Vos et al., 2021) since it already initiated the
integration process with the Iv4XR framework (Pas-
tor Ricds, 2022; Prasetya et al., 2022), making it a
fitting choice to continue the integration efforts.
TESTAR is an open-source tool for scriptless
GUI testing that automatically obtains the state of
desktop, web, and mobile applications, derives and

56

executes GUI interactions such as click, type, or drag,
and applies oracles to check if the system responds
correctly. To be able to interact with the Space Engi-
neers game, TESTAR has been extended to integrate
the Iv4XR Space Engineers-plugin from Fig. 2.
TESTAR launches the Space Engineers game as
a Windows executable, then connects to it using the
Space Engineers-plugin and loads the desired sce-
nario. Subsequently, it starts a cyclic flow that can
generate multiple test sequences of various actions
until a STOP condition is met (e.g., perform a maxi-
mum number of actions). The operational flow steps
of the TESTAR agent are shown in Figure 5:
e First, it observes the entities that constitute the
game state.
e Second, it derives all the available actions that can
be executed for each entity.
e Third, based on the available derived actions, it de-
cides what to do next? by selecting one of the derived
actions using an Action Selection Mechanism (ASM).
e Fourth, it executes the selected action and applies a
series of oracles to verify the robustness of the system
and the functional aspects of the game entities.
TESTAR has a Java class called protocol that
contains the methods corresponding to each of these
four steps. A tester can, for example, change the ASM
by plugging a different one into that Java protocol.

5.1 TESTAR Agent: Game State

The TESTAR agent employs the Space Engineers-
plugin to actively Observe all the game entities that
reside in the observation range area. Each game en-
tity contains a set of aforementioned properties, such
as position and orientation for all entities; health and
oxygen for the Character entity; and type and in-
tegrity for Block entities. Together, these observed
entities and their properties constitute the game state.



Scriptless Testing for an Industrial 3D Sandbox Game

Integrity increases / decreases correctly

1A. Observe all available
entities (state)

Test
est...

Scriptless Exploratory
Test Agent

2B. Derive all available actions:
Navigate to entities and interact
Navigate to explore positions

4D. Execute Action and
Apply Game Oracles:

Verify Entities properties

Verify Astronaut properties

3C. Action Selection Mechanism:
What to do next ?

Figure 5: TESTAR operational flow with Space Engineers.

5.2 TESTAR Agent: Derived Actions
and Navigation

Depending on the type and other entity properties,
the TESTAR agent derives all the available actions
that can be executed for each entity. For example, to
grinder or welder all non-structural ArmorBlock enti-
ties, or to interact with MedicalBlock or CockpitBlock
functional blocks to restore oxygen.

A distinctive characteristic between testing tradi-
tional GUI software and games is the need to reach the
desired entity to interact, as well as explore through
states where no functional blocks exist in the observed
area to potentially discover new game entities. While
the Space Engineers-plugin’s navigation graph and
the A* pathfinding algorithm provided by the IV4XR
framework facilitate finding the optimal movement
path between initial and destination nodes, there is a
necessary decision-making step at the top level to de-
termine which action to derive and select during the
exploration process.

To reach the desired Block to interact, the TES-
TAR agent exploits the navigation capabilities of the
Space Engineers-plugin to observe the unobstructed
floor spaces and calculates if there is a navigable path
of positions that can be followed to reach the Block.
If so, TESTAR derives an action that navigates the
path, rotates to aim the Block, and interacts with the

Block using a Tool. However, if the Block is not reach-
able, TESTAR does not even try to derive an interac-
tion with the Block action.

To potentially discover new game entities, the
TESTAR agent not only considers deriving actions
that interact with observed reachable Blocks but also
derives actions that explore unobstructed positions.
To do this, TESTAR’s protocol has been extended
so that after deriving all available interaction actions
with unobstructed Blocks, it also derives all available
exploration actions to unobstructed positions.

5.3 TESTAR Agent: Action Selection
Mechanism

After deriving all available actions, the TESTAR
agent uses, by default, a random ASM to decide
which action to execute next. Although random
ASMs have proven practical for traditional software
(Vos et al., 2021), for exploring 3D sandbox games, it
is necessary to research on more sophisticated ASMs.

Let us consider the example in Figure 5. First, the
TESTAR agent observes 3 functional blocks (Cock-
pit, Medical, and Power) and derives 3 different ac-
tions for each block to navigate and interact with.
This computes a total of 9 navigate and interact ac-
tions with functional blocks. Second, because there
are 30 unobstructed positions in the observation area

57



ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

(e.g., imagine there are 30 purple dots), the TESTAR
agent derives other 30 available exploration actions.
A random ASM will have less than 25% proba-
bility of selecting one of the 9 available interaction
actions from the 39 total actions. This increases the
chance of selecting an exploration action to more than
75%. Moreover, within the set of available explo-
ration actions, selecting remote areas that remain un-
explored can potentially allow the TESTAR agent the
discovery of new entities. To enhance the exploration
of unexplored areas, we have developed the so-called
Interactive Explorer ASM depicted in Algorithm 1.

Algorithm 1: Interactive Explorer ASM.

> List the interacted entities
> Area of explored position
> All available state-actions

Data: interacted
Data: explored
Data: actions

if actions contains entities that were not interacted then

-

2 nearEntity <— nearestEntity(actions) ;

3 a < select to navigate and interact with the
nearEntity ;

4 save nearEntity as interacted ;

s else if actions contains positions that were not explored
then

6 remotePos < remotePosition(actions) ;

7 a < select to navigate to explore the remotePos ;

8 save remotePos as explored ;
9

else
10 ‘ a < random selection from all actions ;
11 end

12 return a > Return the selected action

The Interactive Explorer ASM tracks a list
of interacted entities and an area containing the
explored positions. First, the ASM checks whether
the set of available actions contains an action that
interacts with a non-interacted entity (line 1). In
that case, because there can be several non-interacted
entities, it prioritizes choosing the nearest entity
(nearEntity) to the agent (line 2). Thus, the ASM se-
lects the action that navigates and interacts with the
nearEntity (line 3), saves this nearEntity as inter-
acted to not to be prioritized in the next iterations (line
4), and finally, returns the selected action (line 12).

Second, the ASM checks whether the set of avail-
able actions contains an action that explores a po-
sition out of the explored area (line 5). If so, be-
cause there can be several unexplored positions, it
prioritizes choosing the remote position (remotePos)
to the agent position (line 6). Consequently, the
ASM selects the action that navigates and explores
the remotePos (line 7) and includes the position in the
explored area to enhance selecting other unexplored
positions in the next iterations (line 8). Finally, the
ASM returns the selected action (line 12). In case the
actions do not contain a non-interacted entity or non-

58

explored position (line 9), the ASM selects (line 10)
and returns an action randomly (line 12).

Different ASMs can be configured in the Java pro-
tocol of TESTAR. This way, the game testers can ad-
just the decision-making of the agent based on the re-
quirements of different Space Engineers scenarios or
testing objectives.

5.4 TESTAR Agent: Oracles

TESTAR integrates generic oracles intended to ver-
ify the robustness of the SUT: detect if the process
has crashed or hung or if the state elements, or de-
bugging logs, contain suspicious exception messages.
Although these generic oracles are a good way to
start with automated scriptless testing, for Space En-
gineers, it is of paramount importance to test also the
functional aspects of the game entities.

Examples of oracles can be to check that the in-
tegrity of all blocks decreases after grinding or shoot-
ing or increases after welding; that the agent’s health,
oxygen, hydrogen, and energy are restored when in-
teracting with medical rooms or cockpits; or that the
jet-pack and the dampeners are not enabled automat-
ically without player activation after entering a cock-
pit, medical room, or interacting a ladder.

These oracles have been studied in (Prasetya et al.,
2022). In this paper, we apply oracles that validate the
integrity of blocks, but we mainly emphasize evaluat-
ing the effectiveness of ASMs exploration.

6 SCRIPTLESS GAME TESTING
EVALUATION

In order to assess the efficacy of scriptless testing for
exploring the Space Engineers game, we evaluate the
potential benefits of investing time and effort in devel-
oping ASMs for more sophisticated exploration tech-
niques. To accomplish this, we quantitatively mea-
sure the spatial coverage of discovered and interacted
entities and navigated positions within a randomly
generated scenario. To guide our study, we have for-
mulated a research question and null hypothesis:

RQ: How effective is spatial exploration in the Space
Engineers game when using different TESTAR ASMs?
Hy: The Interactive Explorer ASM is not more effec-
tive than a random ASM.

We designed a controlled experiment based on
Wohlin’s guidelines (Wohlin et al., 2012) and a
methodological framework specifically built to eval-
uate software testing techniques (Vos et al., 2012).

The experiment consists of running the ran-
dom default ASM and the more intelligent decision-



making Interactive Explorer ASM from Algorithm 1
that prioritizes the interaction with newly discovered
blocks and the exploration of remotely unexplored ar-
eas. Each trial measures spatial coverage of discov-
ered Space Engineers blocks and floor positions.

6.1 Space Engineers Generated
Scenario

A randomly generated Space Engineers scenario was
used to ensure that the evaluated ASMs were not bi-
ased. The scenario consists of a 100x100 map with
8157 navigable positions and obstructive walls that
TESTAR must navigate around to reach interactive
blocks. The number of interactive blocks is randomly
placed in a uniform distribution in various reachable
parts of the map. From the 62 blocks specified by
the company as fundamental for manual testing, we
chose 16 types of 1x1 blocks that were allowed to
be placed in the random scenario creation. Gravity
blocks are also included to simulate gravity, resulting
in 313 functional blocks of 17 different types.

6.2 Independent Variables

To focus on the exploratory capabilities of the ASMs
and prevent the agent from dying, we load the gener-
ated scenario in creative mode.

The TESTAR agent can use diverse tools and
weapons to test the integrity of blocks. However,
since this study focuses on spatial exploration, we ap-
plied the blocking principle (Wohlin et al., 2012) to
limit the TESTAR agent interactions to a grinder tool
that verifies that the integrity of functional blocks de-
creases and shooting one bullet at gravity blocks to
reduce their integrity without destroying their gravi-
tational functionality. We also limited the observation
range through the Space Engineers-plugin to encour-
age exploring and discovering new blocks.

6.3 Dependent Variables

To answer our research question, we measured the
number of discovered and interacted blocks, and the
observed and walked positions. The Space Engineers
game stores the scenario data in local XML files. This
data contains information about the floor positions
and existing blocks, and we compare it with real-time
observations during the exploration process to obtain
spatial coverage. Using this data, we can generate a
2D map highlighting the covered space.

Figure 6 shows an example of one exploratory se-
quence of 500 actions in the experimental map. Re-
garding navigable positions, yellow squares represent

Scriptless Testing for an Industrial 3D Sandbox Game

floor positions, red squares obstructive walls, blue cir-
cles observed areas, and green dots walked positions.
Then, about interactive blocks, magenta dots repre-
sent not observed blocks, pink dots observed but not
interacted blocks, and orange dots interacted blocks.

Figure 6: Space Engineers spatial coverage map.

6.4 Design of the Experiment

We evaluate the random and the Interactive Explorer
ASMs by executing an exploration of 500 actions on
the generated scenario. We repeated the exploration
process 30 times for each ASM. For each new exe-
cution, we reload the same initial conditions in the
same Windows machine with 8§ CPU cores and 16 GB
RAM. We obtain independent spatial coverage met-
rics for each execution and accumulative spatial cov-
erage metrics for the 30 executions of the different
random and Interactive Explorer ASMs.

6.5 Results

We first present the spatial coverage achieved in the
30 independent runs. Next, we compare the accumu-
lative spatial coverage of the two ASMs. Finally, we
use the Wilcoxon test to determine whether there is a
significant difference between the ASMs. The exper-
iments were performed in Space Engineers v201.14.
The replication package can be found here *.

Figure 7 shows the results for the observed and in-
teracted blocks. Each line represents one of the 30 in-
dependent runs. The random ASM achieved a cover-
age ranging from 8% to 30% for observed blocks and

“https://doi.org/10.5281/zenodo. 10683676

59



ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

3% to 8% for total interacted blocks. In contrast, the
Interactive Explorer ASM achieved coverage ranging
from 54% to 82% for observed blocks and 52% to
77% for total interacted blocks.

Random ASM Prioritize ASM

Observed Blocks Coverage Percentage 0 Observed Blocks Covel

age Percentage

Figure 7: Observed and interacted blocks coverage.

Figure 8 shows the results for the observed and
walked floor positions. The random ASM achieved a
coverage ranging from 7% to 30% for observed posi-
tions and 4% to 12% for walked positions. In compar-
ison, the Interactive Explorer ASM achieved a cover-
age ranging from 54% to 77% for observed positions
and 21% to 24% for walked positions.

Random ASM

ved Positions Covel

Prioritize ASM
Percentage i Observed Positions Coverage Percentage

Walked Positions Coverage Percentage

o

Actions Actions

Figure 8: Observed and walked floor positions coverage.

Figure 9 compares the accumulative spatial cover-
age achieved by both ASMs over the 30 exploratory
runs. The Interactive Explorer ASM achieves over
95% of observed and interacted blocks and observed
floor positions around the 2000 executed actions, cor-
responding to the combination of 4 independent ex-
ecutions. At the end of the 30 exploratory runs, it
reached 88% of walked positions. In contrast, the ran-
dom ASM requires over 5000 actions to observe 50%
of the existing blocks and floor positions, over 12000
actions to interact with 50% of blocks, and achieves

60

only about 54% of walked floor positions at the end
of the 30 runs. Due to the random uniform distribu-
tion of blocks when creating the experimental map,
we can appreciate that the observed blocks and posi-
tions curves grew similarly during the exploration.

M Random ASM Prioritize ASM

Interacted Blocks Coverage Percentage

00 7500 9000 105! 15000 0 1500 3000 4500 6000 7500 9000 105
Actions Actions

Figure 9: Accumulative spatial coverage comparison.

The Interactive Explorer ASM outperforms the
random ASM by prioritizing interacting with newly
observed blocks and calculating efficient routes to un-
explored floor areas. Table 1 shows Wilcoxon test
results to verify a significant difference between the
two ASMs. We extracted values from the 30 differ-
ent runs when executing 100, 300, and 500 actions.
This means we calculate the significant difference in
3 different moments of the exploratory process. For
the observed and interacted blocks and the observed
and walked positions, the Wilcoxon test results show
a p-value of less than 0.05, indicating that the Interac-
tive Explorer ASM is statistically superior to the ran-
dom ASM. This allows us to reject Hy and confirm
that investing time and effort in developing intelligent
ASMs benefits TESTAR exploration effectiveness.

Table 1: Wilcoxon p-value significant difference.

Wilcoxon test p-values results
Executed actions Observed Interacted
Blocks Blocks
100 actions p=1.730e-06 p=1.718e-06
300 actions p=1.732e-06 p=1.734e-06
500 actions p=1.730e-06 p=1.729¢-06
Executed actions Observed Posi- | Walked
tions Positions
100 actions p=1.734e-06 p=1.733e-06
300 actions p=1.734e-06 p=1.732e-06
500 actions p=1.734e-06 p=1.734e-06

6.6 Threats to Validity

We discuss some threats to validity according to

(Wohlin et al., 2012; Ralph and Tempero, 2018).




Construct Validity. For the exploratory evaluation,
we use the information from the Space Engineers sce-
nario to design the concept of spatial coverage. Then,
we use this data to measure the effectiveness of the
random and Interactive Explorer ASMs. Although
this spatial coverage is a self-design benchmark, the
metrics come from the Space Engineers game’s data.
Content Validity. For the exploratory evaluation,
the spatial coverage measures the existing blocks and
floor positions over a 2D scenario space. Still, there
are various types of blocks, and the game environment
allows 3D motions. Although more sophisticated spa-
tial coverage metrics can be researched in the future,
the obtained 2D metrics allow us to measure the effec-
tiveness of the exploratory ASMs. Moreover, while
we did not encounter any bugs related to the integrity
of the functional blocks used, it’s important to empha-
size that our solution effectively covered the scenario
space. The lack of failure detection may be attributed
to the random distribution of the test scenario or the
absence of issues in the types of blocks utilized.
Internal Validity. For the exploratory evaluation,
we launched the Space Engineers scenario in creative
mode to avoid the astronaut dying and provide enough
ammo items to realize the shoot gun actions.
External Validity. The empirical study has been
realized with the highly complex Space Engineers
game. Even though we demonstrated that the TES-
TAR agent has exploratory capabilities to navigate
and test Space Engineers automatically, we consider
this to be a first step regarding game scriptless test
automation. Moreover, to facilitate the generaliza-
tion of our results, we use the architectural analogy
(Wieringa and Daneva, 2015) since we carefully de-
scribe the components of the case and the correspond-
ing interactions, such as the game system and the
scriptless tool with the corresponding configuration.
Conclusion Validity. Due to the degree of random-
ness in the action selection of the exploratory ASMs,
we cannot assume normal distribution in the experi-
ments (Arcuri and Briand, 2011). To address this, we
repeated the exploration 30 times and used Wilcoxon
statistical non-parametric tests on the results.

7 CONCLUSION

Computer 3D sandbox games, such as Space Engi-
neers, are complex games characterized by a multi-
tude of in-game features and entities. Manual test-
ing of these games poses challenges due to time and
resource constraints, especially when exploring and
testing unforeseen scenarios or large combinations of
gameplay interactions.

Scriptless Testing for an Industrial 3D Sandbox Game

In this paper, we have showcased the automated
scriptless exploration of an industrial 3D sandbox
game using TESTAR and 1v4XR. This work shows
the value of implementing TESTAR’s ASMs as re-
usable artifacts at a high abstraction level. These
ASMs prove to be effective in enhancing game nav-
igation and testing capabilities by guiding the agents
toward specific areas of the game. Our research show-
cases the advantages of using an intelligent ASM as a
powerful tool for optimizing spatial coverage. Imple-
menting different ASMs allows directing the agents
toward specific parts of the game to achieve more
comprehensive coverage and uncover potential issues
that might have been overlooked otherwise.

This paper demonstrates that with a dedicated
navigation layer, an autonomous scriptless agent can
effectively reach and test game entities, and it is pos-
sible to exercise automated exploration of scenarios
without training the agent to play the game.

We consider the integration of the TESTAR agent
as a first step in the inclusion of intelligent scriptless
testing agents for games. Future research is planned
to use high-level artifacts like ASMs to promote the
reusability and maintainability of the testing frame-
work. We plan to study if ASMs can be adapted to dif-
ferent scenarios, reducing the effort required to con-
figure the testing environment. Finally, we will con-
tinue the research with future experiments to extrapo-
late our results to other games in the market.

ACKNOWLEDGEMENTS

This work has been partially funded by the iv4XR
H2020 project and the ENACTEST project.

REFERENCES

Aho, P, Menz, N., Rity, T., and Schieferdecker, 1. (2011).
Automated java gui modeling for model-based testing
purposes. In 2011 8th ITNG, pages 268-273. IEEE.

Aho, P., Suarez, M., Kanstrén, T., and Memon, A. (2014).
Murphy tools: Utilizing extracted gui models for in-
dustrial software testing. In IEEE 7th ICST Work-
shops, pages 343-348.

Arcuri, A. and Briand, L. (2011). A practical guide for us-
ing statistical tests to assess randomized algorithms in
software engineering. In 33rd ICSE, page 1-10. ACM.

Ariyurek, S., Surer, E., and Betin-Can, A. (2022). Playtest-
ing: What is beyond personas. /EEE Transactions on
Games, pages 1-1.

Bons, A., Marin, B., Aho, P., and Vos, T. E. (2023). Scripted
and scriptless gui testing for web applications: An in-
dustrial case. Information and Software Technology,
158:107172.

61



ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

Cooper, K. M. (2021). Software Engineering Perspectives
in Computer Game Development. CRC Press.

Cui, X. and Shi, H. (2011). A*-based pathfinding in modern
computer games. International Journal of Computer
Science and Network Security, 11(1):125-130.

Dallmeier, V., Burger, M., Orth, T., and Zeller, A. (2012).
Webmate: a tool for testing web 2.0 applications. In
Workshop on JavaScript Tools, pages 11-15.

de Andrade, S. A., Nunes, F. L., and Delamaro, M. E.
(2023). Exploiting deep reinforcement learning and
metamorphic testing to automatically test virtual real-
ity applications. STVR, 33(8):e1863.

Fisher, J., Koning, D., and Ludwigsen, A. (2013). Uti-
lizing atlassian jira for large-scale software develop-
ment management. Technical report, LLNL, Liver-
more, CA (United States).

Garcia, B., Gallego, M., Gortazar, F., and Munoz-Organero,
M. (2020). A survey of the selenium ecosystem. Elec-
tronics, 9(7):1067.

Gordillo, C., Bergdahl, J., Tollmar, K., and Gisslén, L.
(2021). Improving playtesting coverage via curiosity
driven reinforcement learning agents. In Conference
on Games (CoG), pages 1-8. IEEE.

Jansen, T., Ricés, F. P., Luo, Y., van der Vlist, K., van Dalen,
R., Aho, P, and Vos, T. E. (2022). Scriptless gui test-
ing on mobile applications. In 22nd QRS, pages 1103—
1112. IEEE.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and
Jaskowski, W. (2016). Vizdoom: A doom-based ai re-
search platform for visual reinforcement learning. In
Symposium on computational intelligence and games
(CIG), pages 1-8. IEEE.

Kong, P, Li, L., Gao, J., Liu, K., Bissyandé, T. F., and
Klein, J. (2018). Automated testing of android apps:
A systematic literature review. IEEE Transactions on
Reliability, 68(1):45-66.

Liu, G., Cai, M., Zhao, L., Qin, T., Brown, A., Bischoff,
J., and Liu, T.-Y. (2022). Inspector: Pixel-based au-
tomated game testing via exploration, detection, and
investigation. In CoG, pages 237-244. IEEE.

Mariani, L., Pezze, M., Riganelli, O., and Santoro, M.
(2011). Autoblacktest: A tool for automatic black-
box testing. In 33rd ICSE, pages 1013-1015. ACM.

Mariani, L., Pezze, M., and Zuddas, D. (2018). Augusto:
Exploiting popular functionalities for the generation
of semantic GUI tests with oracles. In 40th ICSE, page
280-290. ACM.

Mesbah, A. and Van Deursen, A. (2009). Invariant-based
automatic testing of ajax user interfaces. In 31st ICSE,
pages 210-220. IEEE.

Nguyen, B. N., Robbins, B., Banerjee, 1., and Memon, A.
(2014). Guitar: an innovative tool for automated test-
ing of gui-driven software. Automated software engi-
neering, 21:65-105.

Paduraru, C., Paduraru, M., and Stefanescu, A. (2022).
Rivergame-a game testing tool using artificial intelli-
gence. In 15th ICST, pages 422-432. IEEE.

Pascarella, L., Palomba, F., Di Penta, M., and Bacchelli,
A. (2018). How is video game development different
from software development in open source? In I5th
MSR, pages 392-402.

62

Pastor Ric6s, F. (2022). Scriptless testing for extended real-
ity systems. In /6th RCIS, pages 786—794. Springer.

Pezze, M., Rondena, P., and Zuddas, D. (2018). Automatic
gui testing of desktop applications: an empirical as-
sessment of the state of the art. In ISSTA/ECOOP
2018 Workshops, pages 54—62.

Pfau, J., Smeddinck, J. D., and Malaka, R. (2017). Auto-
mated game testing with icarus: Intelligent comple-
tion of adventure riddles via unsupervised solving. In
CHI PLAY’17 Extended Abstracts, pages 153—164.

Politowski, C., Petrillo, F., and Guéhéneuc, Y.-G. (2021).
A survey of video game testing. In 2nd AST, pages
90-99. IEEE.

Prada, R., Prasetya, 1., Kifetew, F., Dignum, F., Vos, T. E.,
Lander, J., Donnart, J.-y., Kazmierowski, A., David-
son, J., and Fernandes, P. M. (2020). Agent-based test-
ing of extended reality systems. In /3th ICST, pages
414-417. IEEE.

Prasetya, I., Pastor Ricés, F., Kifetew, F. M., Prandi, D.,
Shirzadehhajimahmood, S., Vos, T. E., Paska, P., Hov-
orka, K., Ferdous, R., Susi, A., etal. (2022). An agent-
based approach to automated game testing: an experi-
ence report. In 13th A-TEST Workshop, pages 1-8.

Ralph, P. and Tempero, E. (2018). Construct validity in
software engineering research and software metrics.
In 22nd EASE, pages 13-23. ACM.

Rani, G., Pandey, U., Wagde, A. A., and Dhaka, V. S.
(2023). A deep reinforcement learning technique for
bug detection in video games. International Journal
of Information Technology, 15(1):355-367.

Santos, R. E., Magalhaes, C. V., Capretz, L. F., Correia-
Neto, J. S., da Silva, F. Q., and Saher, A. (2018).
Computer games are serious business and so is their
quality: particularities of software testing in game de-
velopment from the perspective of practitioners. In
12th ESEM, pages 1-10. ACM/IEEE.

Sestini, A., Gisslén, L., Bergdahl, J., Tollmar, K., and Bag-
danov, A. D. (2022). Automated gameplay testing and
validation with curiosity-conditioned proximal trajec-
tories. IEEE Transactions on Games.

Vos, T., Aho, P., Pastor Ricos, F., Rodriguez-Valdes, O., and
Mulders, A. (2021). testar—scriptless testing through
graphical user interface. STVR, 31(3):e1771.

Vos, T. E., Marin, B., Escalona, M. J., and Marchetto, A.
(2012). A methodological framework for evaluating
software testing techniques and tools. In /2th QSIC,
pages 230-239. IEEE.

Wang, X. (2022). Vrtest: an extensible framework for auto-
matic testing of virtual reality scenes. In ACM/IEEE
44th ICSE Companion, pages 232-236.

Wieringa, R. and Daneva, M. (2015). Six strategies for
generalizing software engineering theories. Science
of computer programming, 101:136-152.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2012). Experimentation in
software engineering. Springer.

Zheng, Y., Xie, X., Su, T., Ma, L., Hao, J., Meng, Z., Liu,
Y., Shen, R., Chen, Y., and Fan, C. (2019). Wuji: Au-
tomatic online combat game testing using evolution-
ary deep reinforcement learning. In 34th ASE, pages
772-784. IEEE.



