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Abstract: In this age of life-wide learning, video-based learning has increasingly become a crucial method of educa-
tion. However, the challenge lies in watching numerous videos and connecting key points from these videos
with relevant study domains. This requires video characterization. Existing research on video characteri-
zation focuses on manual or automatic methods. These methods either require substantial human resources
(experts to identify domain related videos and domain related areas in the videos) or rely on learner input
(by relating video parts to their learning), often overlooking the assessment of their effectiveness in aiding
learning. Manual methods are subjective, prone to errors and time consuming. Automatic supervised methods
require training data which in many cases is unavailable. In this paper we propose a weakly supervised method
that utilizes concepts from an ontology to guide models in thematically classifying and characterising video
segments. Our research is concentrated in the health domain, conducting experiments with several models,
including the large language model GPT-4. The results indicate that CorEx significantly outperforms other
models, while GLDA and Guided BERTopic show limitations in this task. Although GPT-4 demonstrates
consistent performance, it still falls behind CorEx. This study offers an innovative perspective in video-based
learning, especially in automating the detection of learning themes in video content.

1 INTRODUCTION

Globalization and rapid technological advancements
have reshaped societal expectations, emphasizing the
critical role of education. This requires a broad set of
skills and learning contexts. The Council of Europe
developed a Framework of Competences for Demo-
cratic Culture (Barrett, 2018) which categorizes the
key competencies into into values, attitudes, skills,
and knowledge and critical understanding—each vi-
tal for the cultivation of well-rounded individuals in
a rapidly changing world. To meet the demands of
democratic societies for future competences, learning
throughout life and a shift to new learning paradigms
are imperative. Crucially, life-wide learning has be-
come the central paradigm for future education, as it
accommodates learning across various stages and do-
mains of life (Redeker et al., 2012).

Life-wide learning emphasizes the diversity of
learning environments, suggesting that learning can
unfold at any stage and across various life domains.
This paradigm not only highlights the significance of
formal, informal, and incidental learning experiences
in diverse settings like home, leisure, community, and
work, but also emphasizes their interconnectedness
and complementarity (Commission of the European

Communities, 2000). Yet, traditional educational sys-
tems, mainly set within fixed time frames and singular
environments, are often ill-equipped to accommodate
this holistic approach due to inherent limitations.

With the widespread accessibility of portable de-
vices, the surge in internet users, and the exponen-
tial growth of freely available content, video technol-
ogy’s application in education has significantly ex-
panded. This evolution allows learners to access nu-
merous instructional videos at their convenience, fos-
tering an environment conducive to life-wide learning
(Sablić et al., 2020). However, learning from these
videos demands not only a significant time investment
for watching but also poses challenges for learners
in identifying key points and linking them with rel-
evant study domains (Bywater et al., 2021; Schlot-
terbeck et al., 2021). Addressing this need, effective
characterization of videos becomes crucial, providing
learners with a structured overview for efficient con-
tent navigation and targeted learning.

In this work, we address the unique challenges
of characterizing video segments. The transcripts of
video segments, often short and dense, present lim-
itations to traditional supervised, unsupervised, and
deep learning methods. To overcome these challenges
and enhance the process of video segment classifica-
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tion for video segment characterisation, we propose a
unique approach. It integrates the concepts from an
ontology as weak supervision signals, capitalizing on
the structured nature of an ontology to offer contex-
tually relevant guidance. To assess the effectiveness
of our approach, we conducted experiments involving
several models, including the large language model
(LLM) GPT-4. This paper presents a comprehensive
analysis of the performance of different models in a
health domain. It shows good performance of the
CorEx model and highlights the limitations of GLDA,
Guided BERTopic, and GPT-4 in this task. The ap-
proach can be used to automate the characterization
of video content to support life-wide learning.

2 RELATED WORK

In this section, we briefly introduce related work
from four different perspectives: video-based learn-
ing, short text classification, weakly supervised short
text classification, and use of large language models.

2.1 Video-Based Learning

In the context of life-wide learning, video-based
learning has emerged as a crucial educational modal-
ity. It provides learners flexibility, allowing them to
access a wide range of learning resources anytime and
anywhere, catering to their evolving democratic soci-
eties needs. However, video-based learning methods
also bring new challenges to learners (see Section 1).
This prompts us to consider how to characterise these
videos effectively. Currently, methods for video char-
acterisation primarily fall into two categories: manual
characterisation and automatic characterisation. In
the following, we will review these two approaches.

• Manual Characterisation. A common man-
ual approach to video characterization involves
note-taking, where essential information from the
video is recorded and summarized (Dodson et al.,
2019). However, this method heavily relies on hu-
man resources, making it resource-intensive and
susceptible to errors. Another study proposes
enhancing learner engagement and efficiency by
having teachers emphasize crucial content using
phrases, keywords, or questions (Tseng, 2021).
Although aligned with the teacher’s learning ob-
jectives, this approach is subjective and demands
a significant amount of annotation work. Both
methods face challenges in scaling with the abun-
dance of online videos.

• Automatic Characterisation. Recent methods
for automatic video characterization have primar-
ily relied on two approaches: learner interac-
tion and video content. In the learner interac-
tion approach, one study propose using learner
interactions and comments to identify key points
that capture learners’ attention in videos, aiming
to characterize the video (Mitrovic et al., 2016).
However, this approach depends on learners’ re-
sponses and perspectives, and some may not ef-
fectively capture the video’s key points. In the
video content approach, another research utilizes
slide content and teacher notes to characterize
videos and segment them based on transitions be-
tween slides (Luca et al., 2019). However, this
method primarily assesses the performance of its
segmentation algorithm and overlooks whether its
characterizations effectively aid learning.

These manual and automatic methods have their
own limitations. For example, they often require sig-
nificant human resources, and their effectiveness in
assisting learning may not be comprehensive or well-
evaluated. Video content classification is also one of
the methods for video characterisation. Next, we will
review various classification methods.

2.2 Short Text Classification

To achieve more granular video characterization, this
research focuses on video segments. These segments
have limited duration and the transcripts extracted
from them are relatively short. These transcripts, cat-
egorized as ’Short Text’, exhibit several distinct char-
acteristics (Song et al., 2014; Li et al., 2017):

• Sparsity. The limited length of short texts leads to
a significantly condensed feature space, impeding
the extraction of effective linguistic attributes.

• Ambiguity. Short texts lack the comprehensive
context present in longer texts, making it chal-
lenging to understand the intended meaning.

• Multi-Topic. Despite their brevity, short texts
may encompass multiple topics with not enough
elaboration on each topic.

Similar to short text, transcripts derived from
video segments are brief and vague, lacking compre-
hensive context which pose significant challenges for
traditional text classification algorithms (Lee and Der-
noncourt, 2016; Zhou, 2017; Qiang et al., 2020). To
characterize video segments based on text classifica-
tion, it is necessary to investigate methods suitable for
short text classification (STC). Next, we will review
and analyze weakly supervised methods for STC.
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Figure 1: Framework of Weakly Supervised Short Text Classification for Characterising Video Segments. The performance
of three WSSTC methods based on seed terms and GPT-4 is evaluated on transcripts of video segments in the health domain.

2.3 Weakly Supervised Short Text
Classification

Weakly supervised learning is a comprehensive term
encompassing numerous studies aimed at building
predictive models through learning with different
weak supervision types (Zhou, 2017):

• Incomplete Supervision. Only a small portion of
data is labeled, and while the quantity of labeled
data may be insufficient for effective model train-
ing, it is partially mitigated by a larger amount of
unlabeled data that contributes to the process.

• Inaccurate Supervision. This refers to situations
with potentially inaccurate labels, often observed
in learning with label noise scenarios, where some
training examples may be mislabeled.

• Inexact Supervision. This type of supervision
provides only coarse-grained label information
which may not be as precise as desired. Examples
of inexact supervision include the utilization of
knowledge bases, heuristic rules, and keywords.

Compared to supervised and unsupervised meth-
ods, weakly supervised learning addresses the need
for a large amount of labeled data and often pro-
vides more interpretable classification results than un-
supervised methods. Unlike deep learning methods, it
doesn’t require extensive training time and computa-
tional resources. Moreover, weakly supervised learn-
ing can handle attenuated data label signals, accom-
modate different label forms, and cater to various in-
stances of inexact supervision. Consequently, several
weakly supervised short text classification (WSSTC)
approaches have been applied to STC.

Existing research in WSSTC has utilized knowl-
edge bases (Türker et al., 2020), heuristic rules (Shu

et al., 2020), and seed terms (Meng et al., 2019) as
weak supervision signals to guide models to classify.
Among these options, seed terms offer greater flexi-
bility and simplicity. They do not require extensive
time or specialized knowledge, only a basic under-
standing of each category. This significantly reduces
the entry barrier for newcomers or when dealing with
new domains. Therefore, in this project, we have cho-
sen to adopt the seed terms method for WSSTC.

Guided Latent Dirichlet Allocation (GLDA)1,
Correlation Explanation (CorEx)2, and Guided
BERTopic3 all allow for the provision of seed terms
describing each category as weak supervision signals
to enhance the text classification process. To under-
stand the performance of these different methods, we
will employ all three of the aforementioned methods.

2.4 Use of Large Language Models

The advancements in LLMs make them promising
for applications in the education domain. For exam-
ple,LLMs can provide learners with feedback on the
educational content they create(Denny et al., 2022).
Additionally, LLMs can generate corresponding so-
lutions for exercises in teaching, opening up new
possibilities and support for education(Savelka et al.,
2023). However, existing research has primarily fo-
cused on exploring their generative capabilities, with
limited studies on their STC abilities. Considering
that LLMs are famous for their ability to provide ex-
tensive contextual information(Xie et al., 2021), this

1https://guidedlda.readthedocs.io/en/latest/
2https://ryanjgallagher.github.io/code/corex/overview
3https://maartengr.github.io/BERTopic/getting started/

guided/guided.html

Weakly Supervised Short Text Classification for Characterising Video Segments

199



research will also explore the STC capabilities of the
currently most popular LLM, GPT41.

To compare the performance of different mod-
els and assess the STC capabilities of ChatGPT, this
research will conduct a comparative analysis using
GLDA, CorEx, Guided BERTopic, and GPT-4. The
framework of this research, based on the selected
techniques and methods, is shown in Figure 1. Next
chapter will introduce our methodology.

3 METHODOLOGY

The experimental method is structured as follows:
data sets and classification models.

3.1 Data Sets

We have implemented our methodology in the do-
main of Health Related Quality of Life Awareness
(HRQLA). The data of our domain is the video seg-
ments with their transcript and characterisation (la-
bels) that have been generated using Health Related
Quality of Life Ontology2 and (VISC-L). The tran-
script of the video segments will be used as an input to
the selected models and the characterisation of these
segments will be used as the ground truth to evalu-
ate the models. Using VISC-L (Mohammed, 2022),
60 videos have been collected, segmented and char-
acterised using the domain ontology and the result
is: ENVIRONMENT (74), LEVEL OF INDEPEN-
DENCE (246), PHYSICAL HEALTH(221), PSY-
CHOLOGICAL HEALTH (198), PERSONAL VAL-
UES AND BELIEFS (2), and SOCIAL RELATION-
SHIP (85) (Mohammed, 2024).

To normalize and standardize the transcripts and
the seed terms, we employed Natural Language Pro-
cessing (NLP) techniques for data pre-processing,
which included lowercase, punctuation and stop-
words removal, lemmatization, spell checking and
correction, and tokenization. Then, we constructed
the corresponding corpus, consisting of 2160 tokens.
We partitioned our dataset into a training set (70%)
and a test set (30%).

3.2 Classification Models

Data Vectorization. To transform video segment
transcripts into a computable form for model input,

1https://openai.com/research/gpt-4
2https://github.com/Health-Related-Quality-of-Life-O

ntology/Ontology.git

we employed vectorization. GLDA utilizes a stan-
dard BOW approach for vectorization, representing
transcripts as unordered bags of words, maintain-
ing only word frequency and disregarding order. In
contrast, CorEx works only on binary data, employ-
ing the Naı̈ve Binarization approach based on bi-
nary BOW (Gallagher et al., 2017). Instead of re-
taining word frequencies, this method marks each
word in the transcripts as either present (1) or absent
(0). Guided BERTopic and GPT-4 employ embedding
models to represent words as dense vectors in a high-
dimensional space. This enables capturing semantic
similarity through spatial proximity, ensuring com-
parable embeddings for words with similar contexts
and encapsulating intricate relationships and nuances
in their representations. Unlike Guided BERTopic,
GPT-4 accepts raw text input and encodes it on its
own. To align with other models that take vectoriza-
tion of pre-processed data as input, we used both raw
data and pre-processed data as inputs for GPT-4.
Model Implementation. The implementation proce-
dures for all models and their execution in the STC
tasks is illustrated in Figure 2.

GLDA is a variant of Latent Dirichlet Allocation
(LDA) to discover latent or hidden topics within ex-
tensive text data (Jagarlamudi et al., 2012). It en-
hances LDA by incorporating seed terms, based on
prior knowledge, to ensure the emergence of specific
topics. CorEx, operating on information theory prin-
ciples, aims to maximize mutual information (MI)
between identified topics and observed data (Gal-
lagher et al., 2017). Users can include domain knowl-
edge using ”anchor words.” In our case, seed terms
are used as anchor words, and CorEx maximizes MI
I(X ;T ) between words in transcripts and latent top-
ics. Guided BERTopic employs BERT (Bidirectional
Encoder Representations from Transformers) model
to generate dense text embeddings, capturing seman-
tic relationships (Grootendorst, 2022). It introduces
user-defined seed terms to guide topic extraction to-
wards specific areas. Our seed terms vocabulary is
generated from the ontology, wherein the concepts of
each theme are used to describe their respective top-
ics. After training, we obtained our GLDA, CorEx,
and Guided BERTopic models.

For GPT-4, we used the ChatGPT’s Chat Comple-
tions API, which supports taking a list of messages as
an input and returns the model-generated message as
the output (OpenAI, 2023). It supports user-defined
different roles in the conversation to guide GPT-4 in
completing STC tasks. We use the ”System” role to
specify task requirements and instructions, while the
”User” role is employed to submit transcripts that re-
quire classification. Finally, we parsed the informa-
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Figure 2: The diagram above shows the schematic representation of STC conducted by GLDA, CorEx, and Guided BERTopic
under the guidance of seed terms (1). The diagram below illustrates the process of conducting STC with the assistance of seed
terms by GPT-4 via Chat Completions API (2).

tion returned by GPT-4 in JSON format to obtain the
classification results.

4 RESULTS

To evaluate the performance of different models, we
employed the Hold-out method and considered Ac-
curacy, Precision, Recall, F1 Score, and Hamming
Loss. This section presents the comprehensive eval-
uation results of the five models on the test set based
on the ground truth data. Additionally, it provides an
in-depth analysis of the results by topics. Finally, it
presents a comparative analysis between the classifi-
cation results of the best-performing model and the
ground truth data.

4.1 Models Performance

Based on the ground truth data, we evaluated the clas-
sification results of each model on the test set. The
performance of all models on the evaluation metrics
is presented in Table 1.

In this study, the CorEx model demonstrated supe-
rior performance in a specific STC challenge, achiev-
ing an accuracy of 62.12%. Its precision and re-
call rates, 89.20% and 78.45% respectively, empha-
size its strength in accurate prediction and identifying
true positives. A notably low HL of 5.57% further
confirms its effectiveness. These results suggest that

CorEx is well-suited to the characteristics of the data
set used.

Conversely, both GLDA and Guided BERTopic
models showed suboptimal results, with accuracies of
9.09% and 4.55%, respectively. A significant perfor-
mance gap compared to CorEx is evident across all
metrics, as highlighted by their higher HLs (39.27%
for GLDA and 34.22% for Guided BERTopic), sug-
gesting a greater likelihood of cross-label miss-
classifications. Despite their effectiveness in vari-
ous NLP applications, their suitability for this specific
data set warrants reevaluation.

The analysis of GPT-4’s performance with both
raw and pre-processed data reveals minimal differ-
ences, indicating that the text pre-processing stage did
not significantly impact data quality. While GPT-4’s
recall is comparable to CorEx’s (73.28% for raw data
and 72.17% for pre-processed data against CorEx’s
78.45%), it falls short in other metrics. This suggests
that, despite GPT-4 can predict a certain amount of
contextual information, its ability in STC tasks still
requires further optimization.

4.2 In-depth Analysis by Topics

For a more comprehensive understanding, we con-
ducted an analysis of the performance of the four al-
gorithms on video segments across six distinct topics.
The results of all evaluation metrics across topics are
illustrated in Figure 3.
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Table 1: Evaluation metrics of classification models on the test set against ground truth.

Models & Methods Evaluation Metrics (%)

Accuracy Precision Recall F1 Score HL

WSSTC
GLDA 9.09 23.11 15.05 17.12 39.27
CorEx 62.12 89.20 78.45 82.24 5.57

Guided BERTopic 4.55 26.06 23.38 22.38 34.22

LLM GPT-4 (Raw Data) 18.94 65.21 73.28 63.75 24.12
GPT-4 (Pre-processed Data) 18.18 63.23 72.17 63.29 23.36

Figure 3: Evaluation metrics across topics of classification models on the test set against ground truth.

It’s notable that in the ”Personal Values and Be-
liefs” topic, metrics such as Precision, Recall, and F1
score are observed to be zero in some methods. This
is attributed to the limited number of videos collected
for this specific topic. CorEx emerged as a top per-
former, especially in the ”Environment” topic, achiev-
ing a remarkable 0.95 accuracy and maintaining per-
fect precision in the first four categories. Its low HL
in comparison to other models underlines its relia-
bility. While GLDA and Guided BERTopic showed
variable overall results, they excelled in specific top-
ics. Specifically, in the ”Social Relationship” topic,
GLDA achieved an accuracy of 0.83, while Guided
BERTopic achieved an accuracy of 0.71. However,
the lower precision and recall in this category also in-
dicate that there is potential for improvement in the
overall performance of GLDA and Guided BERTopic.

GPT-4, when fed with raw data, displayed remark-
able results in the ”Physical Health” category, boast-
ing a recall of 0.94. Additionally, its accuracy peaked
at 0.95 for the ”Personal Values and Beliefs” category.
However, the precision metrics for this model require
attention, especially for categories where it registered
low values. In contrast, when fed pre-processed data,
it exhibited strong balanced performance across cate-
gories. While its accuracy wasn’t the highest, it didn’t
see significant drops across different topics. Some
categories might exhibit higher precision (indicating
fewer false positives), while others might have higher
recall (indicating fewer missed actual positives). No-
tably, this model didn’t display extreme values like 0
or 1 in various metrics. In sum, this approach seemed
to have superior stability compared to other methods.

In in-depth analysis by topics, CorEx consis-
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tently outshined others, particularly in the ”Environ-
ment” category. While GLDA and Guided BERTopic
demonstrated strong capabilities in certain topics,
they still lag significantly behind other methods and
exhibit inconsistent stability across different topics.
The GPT-4 model, when leveraging raw data, mani-
fested superior results in categories such as ”Physical
Health”, yet its precision metrics across some topics
leave room for refinement. Interestingly, the adapta-
tion of pre-processing techniques with GPT-4 show-
cased a more balanced performance.

4.3 CorEx & Ground Truth Data

Based on the above analysis, CorEx emerged as the
best-performing model among the four. To under-
stand the discrepancies between its classification re-
sults and the ground truth data, we conducted a com-
parison. According to our analysis, out of the 132
samples in the test set, CorEx correctly classified 83
samples, which accounts for 62.88% of the total sam-
ples. The discrepancies can be categorized into two
types: 14 samples that couldn’t be classified at all
(fully under-classification) and 35 samples that were
under-classified.

To understand the reasons behind these discrep-
ancies, we analyzed the MI during the classification
process for these 49 samples. The results indicate
that CorEx struggles to correctly classify some con-
cepts with high MI, such as ”feeling” (3.7350) and
”information” (3.1183). This difficulty may be at-
tributed to its inherent limitations. Since CorEx re-
lies on a greedy algorithm, it may not always identify
the global optimal solution, settling for a local opti-
mum instead. Consequently, terms with high MI to
certain topics might not be assigned to them. Addi-
tionally, the BOW vectorization approach, when ap-
plied to short texts, can result in sparse representa-
tions, which are further affected by noise such as
paralinguistic elements. Paralinguistic elements are
non-verbal features that accompany speech and con-
tribute to communication, such as ”um” and ”uh.”
This noise can inadvertently influence the model’s
decision-making process. Certain key concepts in
CorEx displayed near-zero MI, , such as ”disease”
(0.0032) and ”breath” (0.0001), leading to miss-
classification. This could be attributed to the presence
of noise within the dataset, which might depress the
MI values of essential concepts, causing them to be
overlooked by the model.

Despite the mentioned limitations, the perfor-
mance of CorEx in this task is commendable. It does
not rely on deep learning methods or LLMs. Instead,
it achieves good performance in this task just with the

guidance of seed terms as weak supervision signals.

5 DISCUSSION & CONCLUSION

In this study, we proposed guiding the model for clas-
sifying transcripts of video segments on HRQLA do-
main by using the concepts of each topic from ontol-
ogy as weak supervision signals. We compared the
performance of different models, including GLDA,
CorEx, Guided BERTopic, and GPT-4. The main
challenges were limited contextual information pro-
vided by transcripts of video segments, given that they
are considered short text. Additionally, there is a limi-
tation in the number of samples available for training.
Some topics have fewer videos, resulting in a scarcity
of samples for those particular topics.

Our analysis revealed that among the four mod-
els, CorEx performed the best. This is attributed to
CorEx leveraging MI optimization to uncover hidden
patterns in the texts, making it proficient at captur-
ing intricate relationships among various topic con-
cepts present in the transcripts. Although CorEx’s al-
gorithm is based on a greedy approach and may oc-
casionally suffer from miss-classification due to local
optima, achieving such results with just the guidance
of seed terms is commendable.

However, the performance of GLDA and Guided
BERTopic was less satisfactory. GLDA, despite uti-
lizing seed terms as guiding words, often deviated
significantly from the original topics. The adverse
impact of irrelevant noise in the dataset could be a
contributing factor to this deviation. As for Guided
BERTopic, it relies on cosine similarity measure-
ments between all seed words for each topic and the
recorded transcripts. It neglects cases where only in-
dividual concepts or subsets of concepts appear, lead-
ing to suboptimal performance.

We evaluated GPT-4 using both raw text and pre-
processed text as inputs, and interestingly, the results
showed minimal differences between the two modes.
This suggests that we did not lose crucial information
during the data pre-processing stage. While GPT-4’s
consistent performance is commendable, it still lags
behind CorEx in this task. Despite GPT-4’s popularity
and excellent performance in many NLP tasks, there
is room for improvement in its STC capabilities.

This innovation provides a powerful tool for ed-
ucators and learners to efficiently learn from videos,
aligning specific video segments with relevant learn-
ing domains and objectives. As a result, educators can
tailor instructional materials more precisely to meet
diverse learning needs, enhancing the overall educa-
tional experience. Learners can access video content
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closely aligned with their learning interests and re-
quirements, thereby increasing their engagement and
comprehension. In summary, this research not only
advances the field of STC but also offers a practical
solution to enhance video-based learning.

Future work can consider increasing the size of
text which includes: increasing the number of video
segments and the duration of each segment to include
more transcript text lines. This to allow us observe
how it affects the performance of various models
within the given short text size constraints. Once the
video segments are characterised, we have developed
a framework to link video segments to support learn-
ing of specific domain concepts(Mohammed, 2024).

We envisage applications of the work in other do-
mains related to using videos for life-wide learning
based on other people’s experiences, e.g. communica-
tion, project management, empathy, where automated
video characterization can enable efficient video link-
ing to support informal learning.
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