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Abstract: Recently, researchers have seen promising results in using serverless computing for real-time machine learning
inference tasks. Several researchers have also used serverless for machine learning training and compared it
against VM-based (virtual machine) training. However, most of these approaches, which assumed traditional
offline machine learning, did not find serverless to be particularly useful for model training. In our work,
we take a different approach; we explore online machine learning. The incremental nature of training online
machine learning models allows better utilization of the elastic scaling and consumption-based pricing offered
by serverless. Hence, we introduce Creek, a proof-of-concept system for training online machine learning
models on streaming data using serverless. We explore architectural variants of Creek on AWS and compare
them in terms of monetary cost and training latency. We also compare Creek against VM-based training and
identify the factors influencing the choice between a serverless and VM-based solution. We explore model
parallelism and introduce a usage-based dynamic memory allocation of serverless functions to reduce costs.
Our results indicate that serverless training is cheaper than VM-based training when the streaming rate is
sporadic and unpredictable. Furthermore, parallel training using serverless can significantly reduce training
latency for models with low communication overhead.

1 INTRODUCTION

Serverless computing is a cloud computing model
that has garnered a lot of interest recently due to its
advantageous features, including consumption-based
pricing, elastic scalability for fluctuating workloads,
and low startup times. Leveraging these features, re-
searchers have effectively employed serverless in a
wide range of applications, including video process-
ing (Ao et al., 2018), data science workflows (Patel
et al., 2022), data analytics (Müller et al., 2020), ma-
chine learning inference (Ishakian et al., 2018; Yu
et al., 2021), and machine learning training (Carreira
et al., 2018; Wang et al., 2019; Jiang et al., 2021).

However, serverless has many drawbacks (Heller-
stein et al., 2018; Jonas et al., 2017), such as limited
execution times, a stateless nature, a data-shipping
architecture, and a lack of direct communication
between serverless functions. Serverless solutions
are suboptimal for scenarios with long-running sta-
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ble workloads, where VM solutions are more cost-
effective, or for tasks demanding substantial compu-
tational power due to serverless’s limited RAM and
lack of GPU support (Hellerstein et al., 2018; Jiang
et al., 2021).

Several researchers have explored the usage of
serverless in training ML models (Carreira et al.,
2018; Wang et al., 2019; Jiang et al., 2021). Yet, given
that training ML models, particularly deep learning
ones, is a resource-intensive, long-running task that
iterates over the same dataset multiple times with pre-
dictable workloads, serverless has not had much suc-
cess in this application. Training ML models us-
ing serverless is often slower and costlier than tra-
ditional methods using dedicated virtual machines
(VMs) (Jiang et al., 2021; Hellerstein et al., 2018). In
contrast, serverless has shown great potential for pro-
viding ML model inference services (Ishakian et al.,
2018; Yu et al., 2021). This is because inference tasks
generally demand fewer resources compared to train-
ing, exhibit dynamic workloads that are dependent on
real-time user requests, and have a more straightfor-
ward data flow due to the non-iterative nature of the
process.
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With the aforementioned observations in mind, we
investigate the use of serverless for training Online
Machine Learning (Online ML) models on real-time
streaming data. Online ML (Benczúr et al., 2018) is
an approach to machine learning where models are
updated incrementally in real-time, adapting to con-
tinuously streaming training data. This online incre-
mental training differs from traditional offline batch
training. In fact, training an online ML model is
more akin to the inference tasks in traditional ML:
it has unpredictable workloads because training oc-
curs on real-time streaming data; the models are typi-
cally lightweight with relatively lower computational
demands; and the data flow is simpler since each data
point is used for training just once without any itera-
tions. These characteristics suggest that a serverless
solution might be an ideal choice for training online
ML models. Hence, we introduce Creek, a proof-
of-concept system that utilizes serverless to train on-
line ML models on streaming data. Through Creek,
we identify the factors that determine the suitabil-
ity of serverless for training online ML models: data
streaming rates, model complexity, model paralleliz-
ability, and data dimensionality. We also compare
Creek with traditional VM-based solutions in terms of
cost and training latency to identify when the server-
less solution is superior.

The architecture of Creek has four components:
the data ingestor, trainer, invoker, and model store.
We identify the requirements for each component and
explore the various options available on AWS for
their implementation, weighing their respective ad-
vantages and disadvantages in Section 3.2. Further-
more, we detail how an automated end-to-end train-
ing pipeline can be set up on AWS using these com-
ponents. Depending on the specific implementations
chosen, there can be multiple variants of this pipeline.
We highlight and analyze three such variants: Push-
based Kinesis, Push-based SQS, and Pull-based SQS
in Section 3.3.

In our experiments, we also vary the online ML
models used, the data streaming rate, and the data
dimensionality. For each scenario, we report the
training cost and latency. Additionally, we explore
how the unique characteristics of a model can influ-
ence the suitability of a serverless solution. Our ex-
periments employ two different online ML models:
Adaptive Random Forest (ARF) (Gomes et al., 2017)
and Continuously Adaptive Neural Networks for Data
Streams (CAND) (Gunasekara et al., 2022). The pri-
mary objective of our experiments is to conduct a
comparative analysis between Creek and traditional
VM-based solutions, evaluating the aptness of server-
less for online ML training. Our contributions are

summarized as follows:

1. We have implemented a system that trains on-
line ML models using serverless while being cost-
effective and having low training latency.

2. We have identified three variants of our system,
compared them in terms of cost and latency, and
found the Pull-based SQS variant to be optimal.
It is 3x more cost-effective than Push-based Kine-
sis and offers at least 8x lower latency than Push-
based SQS during data surges.

3. We studied the effect of data streaming rates and
observed that at lower rates, a serverless solution
saves at least 87% more than a VM-based solution
for ARF and at least 17% for CAND.

4. We have investigated and found that it reduces la-
tency (3x for ARF and 1.5x for CAND), but at a
greater cost.

5. We have implemented dynamic memory alloca-
tion for Pull-based SQS, and it reduced costs by
80% when training ARF.

Our paper begins with a section that describes
a motivating use-case scenario where Creek would
excel. This is followed by the System Design sec-
tion, listing Creek’s components, describing the end-
to-end pipeline’s implementation, and elaborating on
further optimizations like dynamic memory allocation
and model parallelism. Then, in the Experimental
Setup section, we specify the models, datasets, met-
rics, and streaming patterns used in our experiments.
The Experimental Results section presents findings
from our experiments with ARF and CAND. Lastly,
the Related Works mentions notable previous studies
in serverless computing and online ML and highlights
our work’s novelty.

2 MOTIVATION

Online ML excels in scenarios where the statistical
nature of the training data changes frequently, and
thus the ML model needs to be adaptable. Several
industry giants have reported utilizing online ML:
ByteDance for recommendation systems (Liu et al.,
2022), Facebook, and Google for predicting clicks on
ads (He et al., 2014; McMahan et al., 2013). How-
ever, continuous training of online ML models can be
expensive and infeasible. Some challenges related to
building systems for training online ML models are
identified in (Huyen, 2022).

Yet smaller companies could benefit from online
ML. Consider an e-commerce start-up making thou-
sands of daily deliveries. Predicting delivery times
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Table 1: Use Case Properties and Associated Challenges.

Challenge Description
Fluctuating data rates Allocating resources based on peak data rates causes over-

provisioning and extra costs, while using average rates risks inad-
equate handling of data surge.

Sequential training When learning from a data stream, the order in which the model
receives the training samples must be maintained in order to adapt
to trends and concept drifts (Tsymbal, 2004).

Low latency training The trainer must quickly update the model when concept drift alters
the data stream’s statistical distribution. Acceptable update latency
varies from seconds to minutes, depending on the use case.

Synchronization with inference
system

Decoupling training and inference systems enhances fault tolerance
and specialization, but in continuous training, quickly updating the
inference system with the latest model is challenging.

relies on current conditions, such as supply chain dis-
ruptions, warehouse issues, unexpected weather, or
traffic congestion. Online ML would be suitable for
such a use case where real-time data takes precedence
over historical data. Similar use cases include person-
alized product recommendations, time series predic-
tions, and much more. Unfortunately, smaller compa-
nies can’t afford the cost and complexity of building
online ML systems.

This is where Creek has a promising solution.
It provides a training system for online ML models
that is cost-effective and scalable, thanks to features
of serverless computing such as consumption-based
pricing and elastic scalability. It is easy to set up since
the serverless platform abstracts away all server man-
agement, and the developers only have to worry about
the business logic. Thus, by minimizing the infras-
tructural cost and overhead, Creek makes online ML
training more accessible and seamless to integrate.

3 SYSTEM DESIGN

Figure 1: Overview of an Online Learning System.

In this section, we describe how Creek’s architecture
utilizes serverless computing for the training of online
machine learning models on streaming data. Figure
1 gives a high-level overview of an online machine
learning system. We focus on the model training sys-
tem, whose goal is to update the model using new
training data and make the updated model available
for the inference system. To implement this trainer
Creek uses a serverless-based solution, which has a

potentially lower cost and training latency compared
to a traditional dedicated VM-based solution. Besides
the trainer, several other components are required to
implement an end-to-end system that handles every-
thing from the ingestion of new training data to post-
training model availability for inference. We detail
this end-to-end architecture in three steps: identify-
ing challenges in designing a trainer online machine
learning models, outlining the required components
and their AWS implementation, and explaining how
the components work together as a single system.

3.1 Challenges

Creek uses serverless computing to tackle the chal-
lenges of training online machine learning models
with streaming data. This involves minimizing train-
ing latency and ensuring sequential data processing,
while also adeptly managing fluctuating data rates and
maintaining synchronization with the inference sys-
tem. These challenges, detailed further in Table 1, are
addressed by Creek in a cost-effective manner.

3.2 Components

Considering the challenges identified in Table 1, we
propose Creek’s architecture in Figure 2. Creek has
four major components which work together to form
an end-to-end pipeline for online training on stream-
ing data.

To implement Creek, we used Amazon Web Ser-
vices (AWS) since it is a mature cloud computing
platform and allows easy integration between the
components of Creek. However, Creek can be im-
plemented using any other cloud platform.

Next, we discuss the components of Creek in de-
tail.
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Figure 2: Main Components of an Online Model Training
System.

3.2.1 Data Ingestor

• Purpose: Collects training data from various
sources, maintaining temporal order.

• Challenge: Handling fluctuating data streams ef-
ficiently. Traditional services like AWS MSK and
Kinesis Data Streams provide high throughput but
their fixed hourly costs are not economical for
streams with variable rates and idle times.

• Implementation: Amazon SQS FIFO queues of-
fer a cost-efficient solution with their usage-based
pricing, reducing expenses during idle times and
balancing cost with data handling efficiency.

3.2.2 Trainer

• Purpose: Updates the model with data from the
Ingestor using serverless functions.

• Challenge: Prior research suggests serverless
trainers are ill-fitted for traditional ML, notably
deep learning, because of no GPU support, state-
lessness, and brief execution times (Hellerstein
et al., 2018; Jiang et al., 2021), resulting in in-
creased costs and latency.

• Implementation: We use AWS Lambda. Despite
the challenges, serverless trainers are effective for
online machine learning because:

– Online ML uses lightweight models that do not
require GPUs for incremental training.

– Unlike traditional training that iterates over the
same dataset multiple times, online ML pro-
cesses each data sample once, aligning with
the stateless and ephemeral nature of serverless
functions.

– Serverless functions can scale to zero during
idle periods, eliminating the idle costs associ-
ated with VM-based solutions.

– Enables concurrent training across multiple
functions, essential for quick response to data
influxes.

3.2.3 Model Store

• Purpose: Aims to persistently maintain the model
and other stateful data, addressing the Trainer
component’s statelessness.

• Challenge: Ensuring efficient state management
across training invocations without incurring ex-
cessive load times or data transfer costs.

• Implementation: We utilize AWS S3 for the
Model Store, where the Trainer loads the model
before training and saves it afterward.

3.2.4 Invoker

• Purpose: Invokes the Trainer when new training
data arrives.

• Challenge: Needs to handle both data surges and
periods of low data rate.

• Implementation: Although the ingestor, such as
AWS Kinesis and SQS, can serve as the in-
voker, we consider alternatives like AWS Cloud-
watch Alarm to bypass SQS (FIFO) limitations
and achieve more refined control over the invo-
cation mechanism.

Next, we describe an end-to-end pipeline that
seamlessly integrates all system components.

3.3 Pipeline

An end-to-end pipeline automates everything from
data ingestion to making the updated model available
for inference. Depending on the ingestor and invoker
choices, there are three pipeline variants, as shown in
Table 2. We will explore these variants, highlighting
their pros and cons.

Table 2: Implementation Variants of End-To-End Pipeline.

Ingestor Invocation Variant Name
Kinesis Kinesis Push-based Kinesis

SQS SQS Push-based SQS
SQS Cloudwatch Pull-based SQS

1. Push-based Kinesis: AWS Kinesis directly in-
vokes the Lambda trainer with a batch of train-
ing data. The trainer retrieves the model from S3,
trains it incrementally, and uploads it back to S3.
If more data remains in Kinesis, another trainer
is triggered. Multiple invocations happen sequen-
tially.
Each invocation can handle up to 10,000 data
samples. However, we set a batch window time
of five seconds such that an invocation occurs the
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time limit is reached, even if the batch is not full.
This is because:

• While increasing batch window time reduces
state management overhead, it increases train-
ing latency. Besides, if a higher latency is ac-
ceptable, an SQS-based solution is more effec-
tive anyway, as our results will illustrate.

• A smaller batch window means fewer data sam-
ples per invocation, increasing state manage-
ment overhead.

When order across all data is required, we are
restricted to the throughput of a single shard of
Kinesis. However, our results show that at rates
where serverless is more effective than VM-based
solutions, this constraint is not an issue

Figure 3: Implementation of Push-Based Kinesis/SQS
Pipeline.

2. Push-based SQS: SQS triggers Lambda trigger
when new data arrives. This method is simple, re-
sponsive, and cheap, but it is limited by the FIFO
queue’s limitation of 10 data samples per invoca-
tion, making the system vulnerable to data surges.

3. Pull-based SQS: A Cloudwatch Alarm monitors
the FIFO SQS queue’s message count. When un-
processed data is detected, the Lambda trainer is
triggered via AWS SNS. As shown in Figure 4,
the trainer first disables the alarm to prevent con-
current invocations, ensuring consistent training.
Then it retrieves and processes data from SQS in
batches of 10 until the queue is empty. Finally, it
reactivates the alarm and terminates.
Unlike Push-based SQS, Pull-based SQS can pro-
cess unlimited training samples per Lambda invo-
cation, limited only by execution time. This re-
duces state management overhead, lowers costs,
and provides greater robustness to data surges.
However, Pull-based SQS has an average invoca-
tion delay of 30-seconds since the minimum trig-
ger interval for Cloudwatch Alarm is one minute.

Some additional challenges need to be addressed:

Figure 4: Implementation of Pull-Based SQS Pipeline.

• AWS Lambda’s 15-minute limit requires careful
batch size management for Push-based Kinesis
and SQS to avoid exceeding this limit. For Pull-
based SQS, training times over 14 minutes trigger
an additional trainer.

• To prevent the S3 model from becoming outdated
during lengthy training sessions, it is updated at
predefined intervals.

3.4 Dynamic Memory Allocation

The Pull-based SQS pipeline can be optimized by
utilizing the extra level of control on the invocation
mechanism provided by Cloudwatch Alarm. Since
the memory needed for the trainer Lambda depends
on the model and data dimensionality, and can change
over time, blindly allocating memory according to
the maximum requirement is wasteful. Therefore, we
use a dynamic memory allocation strategy, where a
Lambda function adjusts memory for its subsequent
invocations, ensuring cost-effective and usage-based
resource allocation.

When training, if the trainer’s memory usage
exceeds the max threshold of 70%, the training
is halted. At this point, the trainer triggers an-
other Lambda function. This function determines
the future memory allocation for the trainer based
on the maximum memory used during the previ-
ous three invocations of the trainer, multiplied by
the mem scaling factor of 1.3. It then updates the
trainer’s memory, enables the Cloudwatch Alarm, and
exits, allowing the training to resume.

On the other hand, if a trainer completes training
with memory usage below a min threshold of 50%, it
invokes a Lambda function to adjust the memory al-
location for the trainer in a similar manner, thus pre-
venting resource wastage due to excessive memory al-
location.
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3.5 Parallelism

There are two main approaches for distributed ma-
chine learning training: data parallelism (Jiang et al.,
2021), which partitions the dataset across nodes with
each using the same model, and model parallelism,
which splits the model across nodes, each training on
the same dataset (Ooi et al., 2015).

Models chosen in our experiments favor model
parallelism using concurrent Lambda invocations. As
depicted in Figure 5, our system utilizes a synchro-
nizer function and a worker function. The synchro-
nizer invokes the required number of workers and as-
signs a model partition to each worker invocation.
Each worker then pulls its partition from the model
store and trains it using the data from the ingestor.
Each worker can either independently fetch data from
its own SQS FIFO queue in parallel (3A in Figure 5)
or receive data from the synchronizer during invoca-
tion (3B in Figure 5). Since model loading, training,
and saving are performed in parallel by the workers,
training latency decreases. There is also no chance of
data races as each worker updates a different model
partition.

Figure 5: Parallelization Implementations.

4 EXPERIMENTAL SETUP

4.1 Model Selection

We chose two different online machine learning mod-
els for evaluating Creek:
1. Adaptive Random Forest (ARF) (Gomes et al.,

2017): ARF is an enhanced version of the Ran-
dom Forest algorithm tailored for classification
on evolving data streams. ARF updates the trees
in an incremental manner, and it is designed to
handle concept drift by replacing existing trees
with new ones. These new trees are preemptively
trained through ”background learning” when a
potential future drift is detected.

2. Continuously Adaptive Neural networks for
Data streams (CAND) (Gunasekara et al., 2022):

It maintains a pool of neural networks with differ-
ent sets of hyperparameter values. This ensures
robustness against concept drifts. For each mini-
batch, a subset of networks is selected for training.
During predictions, CAND picks the network that
is performing best in terms of training loss.

We use these models for the following reasons:

• Neural networks excel in traditional batch-
learning scenarios and are now being explored for
online ML scenarios. (Zheng and Wen, 2022; Gu-
nasekara et al., 2022; Sahoo et al., 2017b).

• ARF is superior for low-dimensional data,
whereas CAND excels with high-dimensional
data (Gunasekara et al., 2022). So using them al-
lows us to explore the effect of data dimensional-
ity on Creek.

• We used ARF from River (Montiel et al., 2021), a
Python library for online ML. On the other hand,
CAND is available within MOA (Bifet et al.,
2010) which was built using Java. This allowed
us to evaluate Creek in two different development
ecosystems.

• ARF and CAND support model parallelism, al-
lowing us to investigate parallel training using
concurrent serverless functions.

4.2 Datasets Used

We use two datasets in our experiments for the two
different models:

• Airlines Dataset: The Airline on-time perfor-
mance dataset (Expo, 2009) consists of US com-
mercial flight details from October 1987 to April
2008. We used a variation of this dataset for our
experiments with ARF, as used by the authors of
ARF (Gomes et al., 2017), where the goal is to
predict whether a given flight will be delayed or
not: a classification problem.

• Random Radial Basis Function Generator: It
is a synthetic data generator used in (Gunasekara
et al., 2022) to evaluate CAND. Since the data is
synthetic, we can control data dimensionality pre-
cisely. So we can explore the effect of data dimen-
sionality on our system. We use a random RBF
generator in our experiments with CAND.

4.3 Data Streaming Patterns

We based our experiments’ data streaming rates on
the data stream patterns of the Airlines dataset. Al-
though the dataset does not provide exact timestamps
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Figure 6: Minute-wise Data Rate (Airline Dataset).

for each data point, we estimated the timestamps us-
ing scheduled arrival times. Specifically, we assumed
that flight delay status would be available at the sched-
uled arrival time. We then studied the variation in data
production rate throughout the day. The results are
shown in Figure 6. The rate of data samples for a par-
ticular minute of the day, denoted by rt , is defined as:

rt =
∑

N
i=1 I(ai,t = 1)

D
(1)

where N is the total number of data points. I is the
indicator function with ai,t which is a binary variable
indicating whether the flight corresponding to the i-th
data point was scheduled to arrive at minute t. Fi-
nally, we divide by D, the total number of days in
the dataset, to calculate the mean rate for a typical
day. The results indicate a higher data streaming rate
during the day than at night, with significant surges at
specific times of the day. At night, there are also some
idle periods with no data. The streaming rate peaks
at 43.28 samples per minute, drops to a minimum of
0.005 samples per minute, and averages around 10
samples per minute during most of the day. Thus, the
rate is variable, with occasional peaks and idle times.

4.4 Evaluation Metrics

We evaluated Creek using two metrics:

• Monetary Cost: The estimated training expense
includes costs from various AWS services.

• Training Latency: The system’s reaction time to
new training data and involves everything from in-
voking the trainer upon data arrival to updating the
model and making it ready for inference.

4.5 Experiment types

To evaluate Creek’s performance, we conducted sev-
eral experiments. These fall into two main categories:
1. Single Trigger: For these experiments, data is

preloaded into the ingestor, and then the trainer

is manually triggered. While not mimicking a
production environment, these experiments allow
us to evaluate individual components and system
performance in extreme scenarios, like measuring
latency during a data surge.

2. Time Bound: These experiments are run for a
fixed duration during which we simulate a data
stream by uploading samples with varying inter-
arrival times generated from an exponential dis-
tribution. These experiments simulate the per-
formance of a production system. The goal is
to compare the cost-efficiency of serverless so-
lutions against VM-based solutions to determine
their feasibility and limitations.

5 EXPERIMENTAL RESULTS

We experimented with ARF and CAND to compare
Creek’s cost and training latency across serverless
variants and against VM-based solutions.

5.1 Experiments with ARF

Our Adaptive Random Forest (ARF) model is config-
ured with 100 base learners in accordance with the
”immediate setting” described in the original paper
for ARF (Gomes et al., 2017)

5.1.1 Memory Requirements of ARF

The model size, and thus the memory requirement,
of Adaptive Random Forest changes as trees in the
forest grow and are replaced by new ones to handle
concept drift. This is illustrated in Figure 7. For the
VM-based solution, a T2-Medium EC2 instance with
4096 MB memory is sufficient. But for serverless, the
Lambda functions are allocated 5120 MB because of
some state management overhead in the Boto3 SDK
of Python.

Figure 7: Model Size & Memory Usage of ARF.
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5.1.2 Training Cost: Push-based-Kinesis vs
Push-based-SQS vs Pull-based-SQS

In Figure 8, we have the monetary cost comparison of
three implementation variants of our system against
the log mean time gap for one hour time-bound ex-
periments. In Table 3, we map the mean time gaps
to log mean time gaps. In Figure 8, we observe that
the cost decreases for all three variants as we increase
the mean time gap, reflecting the consumption-based
pricing nature of Lambda since a greater mean time
gap means a lower data rate and a lower training re-
quirement. However, we can see that the cost associ-
ated with Push-based Kinesis is always higher due to
the fixed cost associated with using Kinesis.

Figure 8: Training Cost of Three Pipeline Implementation
Variants at Different Data Rates.

Table 3: Mean Time Gap to Log Mean Time Gap Mapping.

Mean Time Gap Natural Log of Mean Time Gap
1 0

10 2.3
60 4.09

120 4.79
240 5.48
360 5.89

5.1.3 Training Latency: Push-Based-Kinesis vs
Push-Based-SQS vs Pull-Based-SQS

Figure 9: Training Latency of Three Pipeline Implementa-
tion Variants for Different Number of Samples.

In Figure 9 we can see how well the three different
variants can handle an unexpected data surge. We
can see that the Push-based SQS is far worse than
the other two methods, with much higher training la-
tency. This is because for Push-based SQS, since
each Lambda invocation can train at most 10 data
samples, frequent sequential invocations significantly
waste time due to overhead.

5.1.4 Training Cost: Pull-Based-SQS vs EC2

Figure 10 shows the cost of training using Pull-based
SQS variant as a percentage of the cost incurred when
training using a dedicated T2-Medium EC2 instance.
The experiments performed are one hour time-bound
experiments. The percentage of cost compared to
EC2 decreases as the log mean time gap increases; a
lower data rate means the consumption-based pricing
of Lambda incurs a lower cost.

Figure 10: Training Cost of Pull-Based SQS With & With-
out Dynamic Memory Allocation as % of EC2 Cost.

Now, the performance of Pull-based SQS can be
improved further with dynamic memory allocation.
In Figure 10, we see that for each log mean time gap,
the percentage cost is lower for dynamic memory al-
location compared to that of fixed memory. The sys-
tem self-adjusts to the optimal memory size to mini-
mize cost, regardless of initial allocation.

5.1.5 Model Parallelism

In Figure 11, we can see that the Pull-based SQS
method is slower than the EC2-based solution in han-
dling unexpected data surges because it has a higher
training latency. However, we can easily solve this by
utilizing the fact that ARF is embarrassingly parallel
and that serverless computing provides us with elas-
tic horizontal scalability. To train ARF in parallel, the
synchronizer function invokes a worker function for
each tree in the forest, then each tree is trained in-
dependently in parallel. As shown in Figure 11, by
training each tree in the forest in parallel, we can re-
duce the training latency.
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Figure 11: Training Latency of Lambda With & Without
Parallelism Compared to EC2.

5.2 Experiments with CAND

Neural networks often work with high-dimensional
data (a 224 x 224 image has 50,176 attributes) and
have large model sizes. Recent works explore the
use of concurrent serverless functions for partition-
ing large models for inferences (Yu et al., 2021). For
Creek, we implement model parallelism by invoking
a synchronizer for CAND and parallel worker func-
tions for each MLP. We typically use a pool size of 10
MLPs for the experiments, along with a Pull-based
SQS pipeline.

5.2.1 Revisiting Results from ARF

Firstly, we perform a one hour time-bound experi-
ment to compare our serverless solution with a VM-
based solution. From Figure 12 we observe the cost
of our serverless solution decreases with the increase
in mean time gap and for higher mean gaps the server-
less solution is much cheaper than the VM-based so-
lution. This corroborates the results for ARF.

Figure 12: Training Cost of Lambda at Different Data Rates
as Percentage of EC2 Cost.

5.2.2 Training Latency: CAND-Single vs
CAND-Parallel

We conducted single-trigger experiments by vary-
ing the number of samples to compare the training
latency between CAND-single and CAND-parallel,

and the results are shown in Figure 13. We used
low-dimensional data (50 attributes), and all Lambda
functions are allocated 2048 MB of memory. CAND-
single has much lower training latency than CAND-
parallel. In CAND-parallel, worker functions need to
frequently communicate with the synchronizer func-
tion since, for each training batch, CAND needs to
choose a new subset of MLPs for training. This leads
to high synchronization overhead.

Figure 13: Training Latency of CAND-Single and CAND-
Parallel for Different Number of Samples.

We perform further experiments, as shown in Fig-
ure 14, where we vary the training batch size and
observe its effect on the synchronization overhead.
Increasing the batch size reduces the frequency of
synchronization, making the overhead less signifi-
cant and reducing the training latency. However, this
might make CAND less effective at reacting to con-
cept drifts. In ARF, this synchronization overhead
was less significant because the workers in ARF-
parallel could independently decide whether to update
themselves with a particular data sample instead of
having to communicate with the synchronizer.

Figure 14: Training Latency of CAND-Parallel for Varying
Synchronization Overhead.

5.2.3 Data Dimensionality: CAND-single vs
CAND-Parallel

We perform single-trigger experiments with vary-
ing data dimensionality for both variants of CAND.
From the results shown in Figure 15, we can con-
clude that model parallelism using serverless can
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yield significant benefits in terms of latency. Again,
for higher-dimensional data (above 30,000 attributes),
CAND-single fails due to a lack of resources, but
CAND-parallel can perform training. Note that all
Lambda functions were allocated 10240 MB of mem-
ory (which is the maximum possible allocation) and
a pool size of 30 MLPs was used for this experi-
ment. In conclusion, using serverless functions, we
can perform distributed training for large, paralleliz-
able models that work with high-dimensional data.

Figure 15: Training Time of CAND-Single & CAND-
Parallel for Varying Data Dimensionality.

5.2.4 Training Cost: CAND-single vs
CAND-parallel vs EC2

In our previous experiments, we established that
serverless is more suitable for sporadic data stream-
ing patterns. So accordingly, we chose a low data
rate (with a mean delay of 120 seconds between data
samples) and perform a one hour time-bound exper-
iment to compare cost of serverless with VM-based
systems. Bear in mind that as we increase the number
of attributes in our data, we need to upgrade our EC2
server instance to meet memory requirements, which
increases the cost of our VM-based deployments.

Figure 16: Training Cost of Lambda & EC2 for Varying
Data Dimensionality.

From the results in Figure 16, we can conclude
that our serverless (CAND-single) solution offers a
cheaper alternative compared to VM-based solutions
for low-dimensional data. For high-dimensional data,
the models grow in size considerably, resulting in

some overhead for loading and saving models every
time we perform training. CAND-parallel, on the
other hand, gives better results for high-dimensional
data but does not outperform EC2 in terms of cost.

6 RELATED WORKS

6.1 Serverless Computing

Previous research on serverless computing falls into
two categories: studies improving the serverless
platform and studies leveraging serverless for spe-
cific workloads. Examples of the first category in-
clude Firecracker (Agache et al., 2020), a server-
less Virtual Machine Monitor; Hermod (Kaffes et al.,
2022), a specialized scheduler for serverless; Pocket
(Klimovic et al., 2018), an external storage system
for serverless; and OpenLambda (Hendrickson et al.,
2016), an open-source serverless platform commonly
used by researchers. Examples of the second category
include the usage of serverless for workloads such as
video processing (Ao et al., 2018), data science work-
flows (Patel et al., 2022), and data analytics (Müller
et al., 2020).

Several studies have used serverless for ML infer-
ence tasks (Ishakian et al., 2018; Yu et al., 2021) with
promising results in terms of inference latency and
cost. Finally, a considerable amount of research has
examined the suitability of serverless for training ML
models in traditional batch-learning settings (Carreira
et al., 2018; Wang et al., 2019; Jiang et al., 2021).

6.2 Online Machine Learning

A stream of training data is inherently different from
offline training data as it is generated in real time
at unpredictable rates. Thus, machine learning on
streaming data differs from traditional machine learn-
ing and is referred to as online machine learning
(Benczúr et al., 2018). Although not widespread in
industry (vZliobait.e et al., 2012), industry giants like
ByteDance (Liu et al., 2022), Facebook (He et al.,
2014), and Google (McMahan et al., 2013) employ
online ML. Yet, most companies often lack the fi-
nancial capacity to deploy the dedicated infrastructure
needed for continuous training of online ML mod-
els. Despite this, there has been a general interest in
the community to explore online ML (Huyen, 2020),
and efforts are being made to make the deployment of
such systems feasible (Huyen, 2022).

Most research on online ML focuses on devel-
oping models suitable for incremental learning on
evolving data streams. For example: data stream
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classification (Gaber et al., 2007), clustering (Mon-
tiel et al., 2022), and recommender systems (Pálovics
et al., 2017). Other papers explore the challenges in
training online ML models: concept drift (Tsymbal,
2004), scalability, and efficiency (Fontenla-Romero
et al., 2013). Recent works aim to adapt deep neural
networks for use in online ML: (Sahoo et al., 2017a;
Gunasekara et al., 2022; Hammami et al., 2020).

6.3 Serverless Computing for Online
Machine Learning

To the best of our knowledge, no prior research has
explored the use of serverless computing for train-
ing online ML models on streaming data. While
some studies have utilized serverless for streaming
data (Hou et al., 2023; Konstantoudakis et al., 2022),
their focus is not machine learning. A study in (Jiang
et al., 2021) found using serverless for offline ML
training to be faster but not necessarily cheaper than
VM-based methods. However, no such study ex-
ists for online models. In (Carreira et al., 2019) a
serverless-based framework was developed for tradi-
tional ML, while our research studies the develop-
ment of a serverless-based framework for online ML.

7 CONCLUSION

In recent years, a lot of research has explored server-
less computing for diverse applications. Our work
concentrates on online machine learning, developing
a serverless system for efficient, low-latency training
of online ML models. We examine three system vari-
ants, comparing their cost and latency. We identify
factors that must be considered when designing such
a system: data streaming rates and data dimension-
ality. In our experiments, we found that with unpre-
dictable streaming rates, serverless training offers up
to 87% cost savings for ARF over VM-based meth-
ods and 17% for CAND. Model parallelism improves
training latency by 3x for ARF and 1.5x for CAND
with higher data dimensionality.

Our work focuses on two models - ARF and
CAND - but exploring additional models could offer
deeper insights into which are best suited for server-
less systems. Another promising research direction is
to extend our work to develop an end-to-end frame-
work that can be used to seamlessly integrate new
models. Since previous works have not explored this
intersection between online ML and serverless com-
puting, we hope our work inspires further research
in this domain. Our in-depth look at system archi-
tectures, parameters, and model characteristics offers

valuable insights to those choosing between server-
less and non-serverless solutions for online ML.
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