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Abstract: Advanced analytical techniques and sophisticated decision-making strategies are imperative for handling 
extensive volumes of data. As the quantity, diversity, and speed of data increase, there is a growing lack of 
confidence in the analytics process and resulting decisions. Despite recent advancements, such as metadata 
mechanisms in Big Data Processing and Systems of Deep Insight, effectively managing the vast and varied 
data from diverse sources remains a complex and unresolved challenge. Aiming to enhance interaction with 
Data Lakes, this paper introduces a framework based on a specialized semantic enrichment mechanism 
centred around data blueprints. The proposed framework takes into account unique characteristics of the data, 
guiding the process of locating sources and retrieving data from Data Lakes. More importantly, it facilitates 
end-user interaction without the need for programming skills or database management techniques. This is 
performed using Digital Twin functionality which offers model-based simulations and data-driven decision 
support.

1 INTRODUCTION 

Nowadays, in the era of Big Data, a substantial 
volume and variety of data generated from various 
sources necessitate storage in new Big Data 
architectures. Data visualization represents data in a 
systematic form, including attributes and variables for 
the unit of information. Visualization data allows 
users and businesses mash up data sources to create 
custom analytical views (Gupta et al., 2022). A 
Digital Twin (DT) is a virtual representation of an 
object or system that spans its lifecycle, is updated 
from real-time data, and uses simulation, machine 
learning and reasoning to support decision-making. In 
addition, a DT can also facilitate predictions about 
how an asset or process will evolve or behave in the 
future (Rasheed et al., 2020).  

The analysis of massive amounts of data requires 
advanced analytical techniques for processing and 
advanced decision-making strategies. As the amount, 
variety, and speed of data increases, lack of 
confidence in the resulting analytics process and 
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decisions grows. In comparison to traditional data 
techniques and platforms, artificial intelligence 
techniques such as machine learning, natural 
language processing, and computational intelligence, 
provide more accurate, faster, and scalable results in 
big data analytics (Hariri et al., 2019).  

Despite the substantial and transformative 
solutions suggested in recent years, such as metadata 
mechanisms within the realm of Big Data Processing 
and Systems of Deep Insight, effectively handling the 
extensive data generated by diverse and varied 
sources remains a complex and unresolved issue. This 
paper addresses this challenge and focuses on visual 
representation and interactive techniques to transform 
primary, raw data residing in Data Lakes (DLs) to 
meaningful data, which may be utilized by end users.   

The contribution of this paper lies with the 
proposition of a framework and a dedicated semantic 
enrichment mechanism structured around data 
blueprints to facilitate interaction with DLs. A 
suggested technique to improve metadata in a DL 
environment is called "data blueprint," which uses 
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semantics as a framework for describing data sources 
before they are included in a DL. The framework 
includes data specific characteristics and guides the 
process of locating the sources and retrieving data 
residing in DLs with the functionality and benefits of 
a DT environment. 

The rest of the paper is structured as follows: 
Section 2 discusses related work and provides the 
technical background in the areas of data processing 
and visualization, DTs and DLs. Section 3 presents 
the proposed framework and describes how 
blueprints and their extended data characteristics are 
integrated in processing and analysis steps to 
facilitate decision support. Section 4 demonstrates the 
proposed approach using a real-world case-study 
performed in a smart manufacturing environment and 
more specifically using real-world data collected at a 
local poultry meat factory Paradisiotis Group Ltd 
(PARG). Finally, Section 5 concludes the paper and 
highlights future work steps. 

2 TECHNICAL BACKGROUND/ 
RELATED WORK 

This section briefly describes the technical 
foundations of data processing, DTs and DLs, as well 
as visualization platforms that use blueprints to 
process data. To the best of our knowledge, no 
research has been documented as to how to combine 
extended features and data blueprints for customized 
smart analytics using graphical environments for 
interactive, visual, smart data processing in the 
literature. In the world of Big Data, data visualization 
tools and technologies are the challenges tackled in 
different papers focusing on how to analyse massive 
amounts of information and make data-driven 
decisions. By introducing traditional visualization 
techniques and extending some of them for handling 
large data, talking about the difficulties associated 
with big data visualization, and examining 
technological advancements in big data visualization, 
Gupta et al., (2022) present new techniques and 
advancements in the field. 

2.1 Digital Twins 

Generally, DT is a physical product or process that 
exists in the real world and is used for operations as 
its practically identical digital counterpart. A DT 
controls the lifecycle of the IoT, minimizes defects, 
and optimizes errors to save money and time. Because 
a DT can stream, optimize, and analyze data in both 

the virtual and real worlds, it is a powerful 
technological tool. This work applies the concept of 
DTs using them to graphically represent data in real 
time and provide models for interaction and 
simulations.   

Several papers address the problem of monitoring 
real-time data and optimization of graphical 
environments for interactive, visual smart data 
processing with characteristics based on blueprints. 
Automated analytics, semantics-based information 
fusion and process automation are among the targets 
for improving the performance of systems for real-
time business intelligence (RTBI). Technologies like 
intelligent data analysis, soft computing and 
ontologies will play a major role in the development 
of RTBI (Azvine et al., 2006).  

Pang et al. (2015) present an innovative Data-
Source Interoperability Service (DSIS) that serves as 
a middleware for providing a querying and 
information integration service for heterogeneous 
data sources. The DSIS applies software agent 
technology that is capable of accomplishing tasks in 
an autonomous way without human intervention. 
Fuller et al. (2020) present the challenges, 
applications, and enabling technologies for Artificial 
Intelligence, IoT and DTs.  

Kritzinger et al., (2018) aim to provide a 
categorical literature review of the DT in 
manufacturing and to classify existing publication 
according to their level of integration of the DT. 

2.2 Data Lakes 

Large volumes of organized and unstructured data at 
any scale can be stored centrally in a DL. A DL 
enables the storing of raw data in its original format, 
in contrast to typical databases or data warehouses, 
which demand that data be formatted before storing. 
DLs provide storage flexibility by enabling data to be 
stored without first defining a schema. This feature 
makes it possible to accommodate different formats 
and types of data from different sources.  

Although DLs are very flexible, they must be 
managed carefully to avoid turning into "data 
swamps," which are places where data is 
disorganized, hard to locate and retrieve, and thus 
difficult to analyse in general. Data cataloguing, 
metadata management, and data governance policy 
establishment are essential procedures to handle this 
issue. 

The authors in (Pingos and Andreou, 2022) 
propose a novel standardization framework that 
combines blueprint ontologies, DL architecture, and 
the 5Vs Big Data characteristics to address the 
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Figure 1: General architectural structure. 

complex problem of dealing with heterogeneous data 
sources. Data blueprint is a proposed method to 
enhance the metadata within a DL environment, 
leveraging semantic as a guiding framework of 
describing data sources before they become part of a 
DL. The mechanism introduced in that work involves 
semantic structures and utilizes both the theory of 
Triples (subject-predicate-object) and the Resource 
Description Framework (RDF) to improve the 
organization, mapping, and retrieval of data stored in 
the DL. The semantic blueprints can be utilized with 
the combination of 5Vs characteristics of Big Data to 
improve the effectiveness and metadata quality 
within DLs, addressing challenges associated with 
managing and extracting meaningful information 
from large and diverse datasets. 

The authors in Pingos et al., (2022) introduce 
DLMetaChain, an expanded DL metadata framework 
that combines IoT data with heterogeneous data 
sources. Blockchain technology has emerged recently 
as a potentially useful tool for resolving security and 
privacy issues, as well as for fostering trust between 
entities where it has either never been established or 
is non-existent. The expanded mechanism places a 
strong emphasis on creating an architecture that 
guarantees the integrity of the data in the DL. 

The establishment of a metadata framework based 
on DL architecture as demonstrated in PARG factory 
is a noteworthy addition to the fields of data 
management and process mining. This novel structure, 
as put out (Pingos and Andreou, 2022) makes use of 
the idea of blueprints to methodically describe the data 
sources: Structure Blueprint (SB), Semi-Structured 
Blueprint (SEB) Unstructured Blueprint (UB) and 
manufacturing processes: Machine Blueprint (MB), 
Event Blueprint (EB) and Process Blueprint (PB). SB 
includes a metadata description of the correspondence 
pond which contains structured data. In addition to the 

SEB, there is also the UB, designed to capture and 
organize sources in the DL that lack a predefined data 
model. UB accommodates diverse and unstructured 
data types, enabling the system to handle information 
that may not conform to a specific format. Moreover, 
manufacturing processes are represented by the MB, 
EB and PB. These blueprints collectively provide a 
comprehensive framework for understanding and 
managing diverse aspects of the system's structure and 
processes. contributes to the construction of a 
comprehensive DL metadata history, presented in RDF 
(Resource Description Framework), offering a detailed 
and interconnected view of the system’s evolving data 
landscape. This study, which focuses on a factory that 
breeds chicken and produces various forms of poultry 
meat, offers insightful information about business 
workflow analysis and operational assistance. 

None of the studies on coupling DTs with DLs 
thus far has been concentrated on defining, linking, 
and analyzing data used for process and data 
modelling or computational enhancement through 
approaches that alleviate the need for expert 
knowledge. This paper addresses this challenge and 
provides the means for a totally different user 
experience based on visual querying and simulations, 
which is characterized by simplicity, self-
explainability, ease of use and graphical ergonomics 
by extending data and process blueprints. 

3 METHODOLOGY 

The basic idea for using visual analysis is to present 
the data in a graphical and meaningful visual format 
so that the end-user can interact with it, learn from it, 
and make better decisions.  
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As previously mentioned, the main target of this 
paper is to utilize a DT in the form of a unified 
graphical and interactive dashboard to retrieve data 
from DLs based on their semantic annotation. This is 
performed by: (1) extending the applicability of data 
blueprints (SB, SEB, UB) and process blueprints 
(MB, EB, PB) (see previous section) and executing 
visual queries to deliver a graphical representation of 
structured, semi-structured and unstructured data 
retrieved from the DL based on their blueprint 
metadata history; (2) introducing a new semantic part, 
namely the Business Blueprint (BB), to describe the 
business processes associated with the data and which 
will guide more effectively the application of DT.  

Figure 1 depicts the general architectural structure 
upon which this approach builds, which involves four 
distinct steps: (1) the definition of goals and how to 
measure them, (2) the mechanism for data retrieval, 
(3) the data processing procedures, and finally, (4) the 
interactive dashboard, which offers decision support 
simulations based on DTs using real-time data and 
four analytical models. A description of each of the 
steps follows: 

Step 1: targets at enabling organizations to clearly 
define their goals and determine how to measure their 
progress towards those goals. This step essentially 
provides a structured approach to help organizations 
define their specific objectives and identify the 
metrics that will be used to evaluate success. 

Step 2: essentially offers the means for data 
retrieval using latest advances on DLs that utilize 
architectural patterns, or as we call it, data blueprints. 
These blueprints provide the means for describing 
and characterizing data sources and the data they 
produce. The present paper, as mentioned earlier, 
extends these characteristics by suggesting a new, 
specialized form of a blueprint (BB) to support the 
interaction with a DT. The BB blueprint describes 
data properties revolving around manufacturing 
processes, rules, constraints, thresholds (for 
actuators) and actions (see Figure 2). To this end, we 
introduce also a Data Dictionary, which includes data 
properties, such as types, formats, units etc., and 
describes attributes and characteristics of the current 
data thus contributing to better understanding it and 
enabling efficient retrieval and processing. Rules 
combine constraints, actions and thresholds to 
provide guidelines for data handling and decision-
making.  

The DL architecture utilized in this paper is 
structured with ponds and puddles as described in 
(Pingos and Andreou, 2022). A dedicated data 
blueprint is used to describe every source that stores 
data in this DL, which is divided into two 
 

 
Figure 2: DT with the utilization of BB. 

interconnected parts, the “Stable Data Blueprint” and 
the “Dynamic Data Blueprint”. The static one is 
stable over the time and records the name and type of 
the source, the type of data it produces, the value, 
velocity, variety, and veracity of data source. The 
dynamic characterizes the volume of data, the last 
source update, and the keywords of the source which 
are metadata characteristics may vary over time. A 
manufacturing production cycle consists of 
processes. Every process involves actions and events 
which are executed by a machine. All this information 
is described in a specific blueprint (Pingos and 
Andreou, 2022). 

The blueprint descriptions produce an RDF 
ontology for the data sources written in XML format. 
RDF stands for Resource Description Framework and 
is used for describing resources usually found on the 
Web. RDF is designed to be read and understood by 
computer. The experiments that were conducted and 
will be presented later on code implemented in 
Python, while library rdflib was used for RDF 
manipulation. RDF triples were created to extend the 
data with additional characteristics.  

 
Figure 3: Graphical Dashboard available tools. 
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Step 3: supports Data Fusion using three 
techniques: (a) Data cleaning, (b) Data mapping, and 
(c) Data identification.  

Data Cleaning aims at identifying and addressing 
errors, inconsistencies, and missing values in the 
underlying dataset. By applying data cleaning 
techniques, such as removing duplicate records and 
filling missing values, the quality and accuracy of the 
data is improved, ensuring also that the fused dataset 
is consistent.  

Data Mapping is the process of integrating data 
from multiple sources based on common attributes. 
This activity establishes relationships and 
connections between datasets and confirms that the 
combined dataset includes an accurate representation 
of the topic, integrating relevant information from 
various sources (e.g. function merge in Python).   

Data Identification finds and extracts major 
patterns, trends, and features from a dataset. 
Therefore, useful information and insights may be 
extracted from the fused data. 

Overall, organizations can achieve efficient data 
fusion by utilizing techniques such as data cleaning, 
data mapping, and data identification. These 
techniques guarantee the useful value, consistency, 
and accuracy of the integrated dataset. The merged 
data offers a solid base for additional investigation, 
allowing organizations to collect perceptive 
knowledge and make decisions (see next step). 

Step 4 conducts simulations for data-driven 
decision support. The DT concept, which offers a 
virtual representation of the data, facilitates the 
execution of such simulations and the interpretation 
of their results. Four analytical models may then be 
constructed, namely Describe, Diagnose, Prescribe, 
and Predict, to interact with the fused data produced 
in Step 3 during simulations. These models make use 
of the underlying dataset to identify problems, predict 
results, offer analytical insights and provide 
recommendations. More specifically, each model 
works as follows: 

Describe Model: Aims to provide description of 
the system and the fused data to represent the 
elements, actions, and structure of the system.  

Diagnose Model: Emphasizes on discovering and 
investigating problems, anomalies, or special patterns 
in the dataset. This model allows the identification of 
the basic reasons behind observed actions or results. 

Prescribe Model: Generates prescriptive 
recommendations or actions based on meaningful 
insights. It offers practical recommendations to guide 
decision-making procedures. 
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Predict Model: Forecasts or predicts future 
behavior by using historical data and patterns. This 
model uses predictive analytics methods, like 
regression and time-series analyses, and machine 
learning algorithms, using the fused data and thus 
enables businesses to predict new developments. 

Summing up, the proposed framework combines 
retrieval and processing of large volumes of 
structured, semi-structured, and unstructured data 
residing in DLs with a graphical interactive 
dashboard that offers DT-oriented simulations. 
Employing RDF, Python, and data fusion methods, 
the approach provides actions, constraints, thresholds 
and rules, described in the form of a dedicated 
blueprint architecture. Real-time analysis and 
decision-making are then facilitated with the creation 
of the Describe, Diagnose, Prescribe, and Predict 
models, which provide the means for efficient and 
accurate decision support. 

4 DEMONSTRATION AND 
EXPERIMENTATION 

This section presents the practical application of the 
proposed framework using real-world data collected 
in the poultry meat factory of PARG4. The factory 
breeds chicken in large capacity farms (20,000-
30,000 chicks per farm) with automated ventilation 
and temperature systems, and a technologically 
advanced mill for mixing ingredients and producing 
chicken food. After a breeding cycle is concluded, 
slaughtering takes place at the factory and the meat 
produced is packaged with different ingredients 
according to orders placed, which are then sent to 
local supermarkets.  

Figure 3 shows a collage of figures depicting 
different screens of the graphical interactive 
dashboard that was developed especially for the 
purpose of demonstrating the proposed approach. The 
dashboard essentially supports all steps of Figure 1 
and offers DT capabilities. To this end, three real-
world scenarios were constructed in close 
collaboration with engineers of the PARG factory to 
show how the framework may be employed so as to 
facilitate data-driven decision-making, enabling 
PARG to extract valuable insights, optimize 
processes, and enhance operational performance. The 
scenarios correspond to decisions regarding the 
ventilation process taking place within the breeding 
farms with different approaches as regards efficient 
control of inside temperature and energy 
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consumption. More specifically, the three scenarios 
investigated the optimal decision for lowering 
temperature in a breeding site by increasing the 
frequency of opening shutters, increasing the duration 
shutters stay open, and using a hybrid form 
combining the two. All scenarios were evaluated 
against successfully achieving the goal (lowering 
temperature), but at the same time energy 
consumption and, hence cost, was taken into 
consideration.  

Step 1: Define 
Options for predefined goals were available at this 
step including “Reduce Cost”, “Improve Efficiency” 
“Improve Quality”, “Reduce Waste”, “Optimize 
Resource Usage”, “Lower/increase temperature”, etc. 
The users selected control the temperature control 
goal and set a specific (standard) breeding value for 
the farm environment (33ºC). Then, the 
measurements and sensors that correspond to these 
goals were defined.  

Step 2: Data Retrieval - Blueprints 
Users stored relevant information in the DL based on 
the scenario needs, such as sensor readings for grow 
day 1… n (hourly for 24 hours), inside and outside 
temperature (2 sensors), humidity, CO2, and static 
pressure. Sources and data were semantically 
annotated via the blueprints before being stored in the 
DL. Furthermore, users entered data properties, 
actions, constraints, and rules related to temperature 
control using the above parameter readings (further 
detailed information on related rules may not be 
disclosed to secure business processes privacy).  

Step 3: Data Processing and Analysis 
Users were able here to choose various data analysis 
tasks to execute using the uploaded data mainly 
through tabular formats.  

Step 4: Decision Support Simulations 
This step provided users with an extensive set of tools 
to profile, visualize, and actively manipulate 
temperature-related data to support decision-making 
related simulations. The system’s user-focused design 
supports the main goal of utilizing a DT environment 
for data-driven decision-making in farming 
environments and enabled stakeholder1s to continually 
refine their temperature control strategies based on 
simulated scenarios and real-time insights. More 
specifically, the following sub-steps were taken: 

4.1 Profile Data 

Users profiled the data to learn more about the 
distribution, statistical measures, and important 

features of the columns related to temperature (see 
Figure 4, upper part, and lower left part). 
Understanding the basic conditions and variability in 
the farm environment was thus made easier by this 
profiling. 

 
Figure 4: Original vs modified summary statistics of data. 

4.2 Edit Values 

Users actively edited values within the selected data, 
allowing for hypothetical scenarios and “what-if” 
analyses. Using historical data, a temperature 
coefficient was calculated by dividing the difference 
of the inside temperature (before and after opening 
the windows) with the time the windows remained 
open. This coefficient was then used to estimate the 
increase/decrease of temperature during simulations. 
When users changed the value for the time windows 
remained open, the relevant effect on temperature 
was estimated based on the temperature coefficient 
(see right column at the lower part of Figure 4).  

4.3 Visualize Data 

The system provided interactive data visualization 
options, allowing users to create visual 
representations of temperature-related variables. The 
selected visualization types included bar charts, line 
charts, and scatter plots, which enabled users to 
identify patterns and trends in the data. 

4.4 Perform Actions 

Users employed various actions to simulate decision-
making scenarios. The handling of numerical 
parameters, as in our case temperature, involves 
filtering and focusing on specific attributes of the 
data, using values that are “Greater than”, “Average”, 
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“Equal to”, “Less than or equal to”, and “Greater than 
or Equal to”, etc. a key value. Adjustments performed 
to the farm environment were triggered by studying 
the behavior of the filtering based on average 
temperature values and the corresponding changes in 
temperature thresholds were observed as previously 
described.  

The main findings of the three scenarios may be 
summarized as follows: 

Scenario 1: Increased Frequency of Window 
Openings 
In this scenario, data is produced within the factory 
mainly by two systems: CUBORA, which is a fully 
operational heating control system requires for 
securing the healthy growth and well-being of chicks 
in the farms, and AGROLOGIC, which specializes in 
the field of automated climate controllers, feeding 
and weighing systems for the poultry. AGRO-LOGIC 
in PARG is being integrated with Chore Time 
controller and collects metrics from several remote 
sensors that are distributed into the farms, such as 
CO2, Temperature, Humidity, Air Static Pressure, 
and Light Intensity Level. All metrics are recorded in 
a database and are accessed through a Web 
application in real-time. Furthermore, images of the 
farms and/or equipment may be recorded for shift 
managers to inspect visually when appropriate. 
Finally, the system generates alerts if any of the 
metrics exceed pre-defined thresholds via an 
embedded GSM modem. The plant engineers, using 
the framework capabilities described in Step 4, 
decided to increase the frequency up to three times a 
day and investigate the impact of this decision in the 
simulated environment. It became evident that by 
enabling more frequent ventilation the system 
actively reacts to temperature average increases.  

Scenario 2: Extended Duration of Window 
Openings 
The second scenario investigated the effects of 
leaving the automated windows open for a longer 
amount of time (6 hours) while keeping the daily 
frequency stable (once). In Step 4, the users adjusted 
the duration settings to allow longer air conditioning 
times via the framework's user interface. Line charts 
depicting temperature and statistical summaries were 
consulted that highlighted the long-term cooling 
impact on farming operations. Figure 5 graphically 
depicts the outcome of this scenario (red color) 
contrasted with the outside temperature (blue) and the 
temperature achieved using the normal procedure 
(oceanic blue). The figure also shows the time 
windows remained open for the scenario and the 
normal procedure (area within dotted lines). 

Scenario 3: Hybrid Approach  
This scenario combined longer duration more 
frequently (twice a day for 3 hours each time). Again, 
using step 4 the users interacted with the framework 
to define that the system should automatically open 
the windows more often than before and for a little 
longer period. It became evident by using temperature 
visualizations in the hybrid scenario that there exists 
a complex relationship between frequency, duration, 
and temperature. Figure 6 shows the performance of 
each scenario tested with activation of windows 
openings indicated by circles. 

 
Figure 5: Behaviour of temperature based on window 
opening duration (scenario 2). 

 
Figure 6: Combined effects of all scenarios on temperature 
values. 

To optimize decision-making, the scenarios also 
considered energy consumption effects. The 
engineers evaluated the energy associated with each 
scenario as follows: The normal daily temperature 
control (NDTC) procedure involves opening 
windows once and starting a roof fan 2-3 times for 
some minutes. The purpose of the fan is to offer a 
more drastic solution to increasing or decreasing 
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temperature so as to guide it to the optimal value of 
33ºC. More specifically, if outside conditions allow, 
the temperature of the breeding site can be controlled 
and brought to the optimal value using only the 
windows. Otherwise, is actually the fan that regulates 
the inside temperature. The fan, though, is a high 
energy consumption device, and, therefore, it should 
be used as little as possible. Each breeding cycle (50-
60 days) consumes 3250KWh of energy based on the 
NDTC procedure. Using historical samples and 
measurements in the past, an average daily energy 
consumption was calculated, and this number was 
distributed between the opening of the windows and 
the operation of the fan with the support of site 
engineers. These figures were then used to calculate 
the energy cost of the decisions made according to the 
frequency and duration of the windows opening 
according to each scenario.  

Based on the above, the engineer confirmed that 
all three scenarios were able to improve temperature 
and drive it close to the standard, desired value for the 
breeding site, which, as previously mentioned, should 
be 33 degrees Celsius. Scenario 1 lowers temperature 
from 34.08ºC to 33.83ºC, scenario 2 to 33.82ºC and 
scenario 3 to 33.39ºC. However, taking into account 
the energy consumption, scenario 1 has the lowest 
daily consumption but the highest average 
temperature, scenario 2 has almost the same 
temperature but higher energy consumption and, 
finally, the hybrid scenario (#3) yields the best 
average temperature and lower consumption 
compared to the normal average daily consumption 
but not the lowest among the three scenarios tested 
(see Figure 6).  However, the engineer chose to apply 
the hybrid scenario in the real-world as he advocated 
in favor of achieving the best possible temperature in 
the plant at the cost of a slight increase in energy 
consumption.  

5 CONCLUSIONS 

The paper proposed a framework which utilizes a 
dedicated semantic enrichment mechanism that uses 
data blueprints to facilitate interaction with DLs, 
offering at the same time DT capabilities.  The 
framework is able to tackle successfully the 
complexity present in real-time storing of high-
frequency data and offers data-driven user interaction 
to support simulations and decision making. 

Without requiring extensive technical knowledge, 
the framework assists users to efficiently locate and 
retrieve information from large data sets and convert 
raw data into meaningful data. The proposed 

approach is divided into a series of steps with which 
organizations can enhance data processing and 
analysis and be able to study the effects of possible 
actions in a controlled, simulated environment.   

The applicability of the framework was 
demonstrated using a real-world case-study 
conducted in a poultry meat factory. Three scenarios 
were created and tested regarding the control of 
temperature in breeding farms using automatic 
ventilation systems that open windows and/or start 
the operation of large ceiling fans. The scenarios were 
evaluated in terms of successfully controlling the 
current inside temperature and keeping energy 
consumption at acceptable levels. The stakeholders-
engineers of the factory were quite satisfied and 
highly appreciated the support they received during 
simulations as they were able to differentiate between 
the optimal case they would like to apply in reality. 

Future work will focus on three axes: The first is 
to explore further functional aspects of the DT 
offering better services and more graphical tools and 
visual representations of the data. The second is to 
extend the interaction with users by enhancing the 
visual querying part of the dashboard developed via 
game engines, such as Unreal and Unity, and 
providing a more gamified experience which will 
further ease the processing and analysis of the data. 
Finally, the third axis will revolve around exploring 
different forms of DLs and data formats to investigate 
how different sources of data and formats affect the 
applicability of the proposed approach.  
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