
Combining Goal-Oriented and BPMN Modelling to Support
Distributed Microservice Compositions

Jesús Ortiz a, Victoria Torres b and Pedro Valderas c
PROS Research Centre, Universitat Politècnica de Valéncia, Valencia, Spain

Keywords: Microservices, BPMN, Tropos, Goals, Transformation.

Abstract: Organizations usually use Business Processes (BPs) to describe how to achieve their goals. However, the
decentralization found nowadays in many organizations force them to work with fragmented BPs that need to be
coordinated to achieve these goals. In this context, microservices architectures are a good choice to coordinate
such fragments. Nevertheless, these types of architectures increase the complexity of the underlying BPs since
the control flow is split among the different microservices, and there is not a clear link among how each
microservice participates in the achievement of each goal. In addition, one of the main challenges that
developers face when creating a microservices composition is to identify the microservices that are required
to support the organization’s goals. To this end, in this paper, we propose to combine goal-oriented modelling
with microservices compositions based on the choreography of BPMN fragments. The major contribution of this
paper is the definition of a model-driven development approach to align both descriptions (goals and BPs)
automatically through a model transformation that derives BPMN-based microservices compositions from goal
diagrams. The main benefits of this solution are twofold: (1) to facilitate the distributed development of
microservice compositions directed through goals, and (2) to help developers to maintain the composition aligned
with the established goals when the composition evolves.

1 INTRODUCTION

Business processes (BPs) are the key instrument to
organize and understand the interrelationships of the
different activities in an organization to describe their
goals (Weske, 2007). When these activities are
performed in a decentralized way, e.g., by different
departments within the same organization,
microservices architectures turn into a very interesting
and convenient way to implement such processes due
mainly to their decoupling nature. Microservices
architectures (Lewis, 2014) propose the decomposition
of applications into small independent building blocks
(the microservices) that focus on single business
capabilities. Microservices can be deployed and
maintained independently by different development
teams, which leads to more agile developments and
technological independence between them. When we
want to support the goals defined in the BPs of
organizations that use such architecture, microservices

a https://orcid.org/0000-0002-9352-1045
b https://orcid.org/0000-0002-2039-2174
c https://orcid.org/0000-0002-4156-0675

need to be composed. From the point of view of the
software engineering field, two different approaches
can be found in the traditional SOA architectures
(Rosen, 2012) to coordinate the interactions between
services: (1) orchestration, when the coordination is
achieved from a single endpoint (Peltz, 2003), and (2)
choreography when it is achieved in a decentralized
way (Yahia, 2016).

Within microservices architectures, to keep a
lower coupling and dependency among microservices
for deployment and evolution, these compositions are
usually implemented by means of event-based
choreographies. The development team of each
microservice is in charge of supporting the
participation of the microservice in the event-based
choreography in an independent and autonomous
way. This solution, although improving the
development independence demanded by this
architecture, makes difficult to analyze the
composition when maintenance or evolution is

Ortiz, J., Torres, V. and Valderas, P.
Combining Goal-Oriented and BPMN Modelling to Support Distributed Microservice Compositions.
DOI: 10.5220/0012621000003687
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 75-86
ISBN: 978-989-758-696-5; ISSN: 2184-4895
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

75

required. This is because the control flow is split
among different microservices, and there is not a clear
link among how each microservice participates in the
achievement of each organization’s goal. In addition,
one of the main challenges that developers face when
creating a microservices composition is identifying
the microservices that are required to support the
organization’s goals. The identification of
microservices is a well-known problem in the
research community because it is a complex, time-
consuming, and error-prone task (Tizzei, 2017;
Carvalho, 2020). Commonly, microservices
architectures are derived from monolithic legacy
systems, and developers must follow criteria such as
cohesion, coupling, and communication between
microservices to divide a monolithic system into
microservices. Besides, identifying the microservices
that are required to support the goals of an organization
while defining the way they have to be composed
makes this task even more complicated.

In this work, we present a model-driven
development (MDD) approach that combines BPMN
with goal-oriented modelling and achieves their
synergy in order to improve these problems. This
approach supports the creation of distributed
microservices compositions based on event-based
choreographies of BPMN fragments. On the one
hand, goal-oriented modelling is used to help
business process engineers better identifying the
required microservices by analyzing the functional
responsibilities that can be derived from the identified
goals. To do so, we rely on the Tropos software
development methodology (Castro, 2002) since it
allows us to represent organization’s goals with a
high level of abstraction and also offers an easy-to-
understand visual representation for developers who
have little experience with goal modelling (Bresciani,
2002).

On the other hand, BPMN (Miers, 2008) is used
to represent the microservices composition that is
required to achieve the identified goals (Dietz, 2004).
We use BPMN since it provides an intuitive and easy
way to represent the semantics of complex processes
and it is used by experts on the notation to define
these processes, but also by other process
stakeholders such as customers, marketing
professionals, or finance employees that just need to
analyze them (Nysetvold, 2006; Harmon, 2011;
Andrade, 2016). The BPMN model is defined in two
steps: first, a model transformation is applied to the
Tropos diagram in order to obtain a preliminary
BPMN model. This model represents the
microservices composition in a global way,
identifying the main functional responsibilities of

microservices and the coordination required among
them, but without defining the specific tasks that each
microservice must perform. In the second step, this
BPMN model is complemented by independent
BPMN fragments that are created by the development
team of each microservice. These BPMN fragments
describe the tasks that each microservice must
perform to fit its functional responsibilities. These
BPMN fragments are executed through an event-
based choreography, which provides the high level of
independence and decoupling among microservices
required by this type of architecture.

Thus, the main contributions of the proposed
MDD approach are twofold:

• It facilitates the identification of the
microservices that participate in a composition
and helps developers relate the goals defined
in a Tropos diagram to a BPMN process. This
maintains the composition aligned with the
established goals, which is a valuable
mechanism to analyze the composition when
requirements change, and the composition
needs to evolve.

• It supports the distributed definition of a
microservices composition through a set of
independent BPMN fragments that must be
created by the development team of each
microservice. This provides a high level of
autonomy and independence among
development teams to create the whole
composition collaboratively.

Note that the combination of BPMN with goal-
oriented modelling has already been discussed by the
scientific community (Alves, 2013; Horita, 2014;
Koliadis, 2006). However, these works focused their
efforts on orchestrated processes that are supported
by monolithic systems. In our work, we focus on
choreographed processes that are supported by
systems deployed in distributed environments. Note
also that the proposed approach supports very early
stages of system development, where the specific
system requirements are not yet clear. Therefore, the
system domain is represented at a high level of
abstraction. We focus on specifying the objectives to
be achieved, without specifying details of how to
achieve them, to generate an executable BPMN
diagram that will be aligned with the defined goals.

The rest of this paper is organized as follows:
Section 2 presents the proposed model-driven
development approach to create distributed
microservices compositions and explains the different
steps that conform it. Section 3 exemplifies the benefits
of our approach when a microservices composition
based on the choreography of BPMN fragments needs

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

76

to be evolved. Section 4 analyses the related work.
Finally, conclusions are commented on in Section 5.

2 MDD OF MICROSERVICES
COMPOSITION

In this section, we present a MDD approach to create
distributed microservices compositions by using a
Tropos diagram and BPMN models. To this end, the
following main three steps are proposed (see Figure
1):

1. Tropos diagram construction. In this step,
the Business Engineer identifies the goals of
the process of an organization and builds a
Tropos diagram to represent them (section
2.1).

2. BPMN collaboration diagram template
creation. In this step, a model transformation
is automatically applied to derive a BPMN
collaboration diagram template from the
previously created Tropos diagram. The
resulting BPMN model represents a
choreography of BPMN fragments (section
2.2).

3. BPMN fragment definition. In this step,
each microservice developer must complete
its corresponding BPMN fragment to define
the tasks that the microservice must perform
to achieve its goals (section 2.3).

Figure 1: MDD approach for Microservices Composition.

To explain the main concepts of our approach, we use
a running example based on the e-commerce domain.
In this example, the system must manage the process
of placing an order in an online shop, following the
next sequence of actions: first, the system must
register the client. If the client data is valid, the system
checks the availability of the ordered items. If all the
items are available, the system books the requested
items and processes the payment with the client. Once
the payment process has been successfully

completed, the system updates the stock of the
purchased items, creates a shipment order, and
assigns it to a delivery company. Afterwards, the
system updates the client record and informs the
client about the shipment details. Then, the process
finishes.

2.1 Definition of BP Goals with Tropos

To represent the goals of a business process we use
Tropos (Bresciani, 2004), which is a goal-driven and
agent-oriented language that aims to identify the
motivations of software systems and the role that they
will play in an organization (Hammer, 1994).

Models in Tropos are acquired as instances of a
conceptual metamodel resting on several concepts.
However, in this paper, we only focus on the ones
used to integrate Tropos with our microservices
composition approach, which are the following:

• Actor: It represents an entity that has strategic
goals and intentionality within the system or the
organizational setting.

• Goal: It represents actors’ strategic interests.
There are two types of goals: (1) hard goals,
which are goals with a clear definition or criteria
for deciding whether they are satisfied or not;
and (2) soft goals, which are typically used to
represent non-functional requirements. In this
paper, we just focus on hard goals and therefore,
the term goal is used to refer to a hard goal. The
incorporation of soft goals to the approach
presented in this paper is left as further work.

• Dependency: It indicates that one goal depends
on another to be achievable.

To build a Tropos diagram, the first step is to
identify the different actors that participate in a
system process. To do so, we analyze the process to
identify its core business functionalities. We propose
to employ a data-driven strategy, dividing the process
between the different data chunks that are managed
during the process. For example, in the motivating
example, we can identify the following data chunks:
(1) the client data, (2) the stock data, (3) the payment
data, and (4) the shipment data. Therefore, four actors
can be defined as responsible of each data chunk: i.e.,
Client Manager, Warehouse, Payment Manager and
Distributor.

Once the actors have been identified, we must
relate them to goals. Goals can be defined as what the
actor must achieve. Therefore, a goal is an abstraction
of the actor's behavior. Figure 2 shows the Tropos
diagram describing the actors (circles) participating
in the running example, and their respective strategic
high-level goals (round-corner rectangles linked to

Combining Goal-Oriented and BPMN Modelling to Support Distributed Microservice Compositions

77

them). We can identify the following goals for each
actor: for the Client Manager actor, validate the
customer and keep the customer data up to date; for
the Warehouse actor, book the products and update
the stock; for the Payment Manager actor, process the
payment, and finally; for the Distributor actor, send
the products to the client.

In addition to defining actors and goals, we can
also identify that some goals depend on the
completion of others in order to be achievable. For
example, the Book Products goal of the Warehouse
actor cannot be achieved until the customer is
validated. Therefore, there is a dependency between
the goal of the Warehouse actor and the goal of the
Client Manager. A dependency between two goals is
depicted by a solid arrow connecting them, where the
goal that is pointed by the arrow is considered the
depender goal (i.e., the goal that must be achieved
first) and the goal at the other end is the dependee
(i.e., the goal that depends on the completion of the
previous one). This also allows designers to specify
an order between the different goals.

Figure 2: Representation example of a Tropos diagram.

Inspired by works such as (Greenwood, 2009), we
propose to extend the goal representation in Tropos
by defining a pre-condition and a post-condition for
each goal. These conditions are based on the data
required by a goal to be realizable (pre-condition) and
achieved (post-condition). Therefore, the pre-
condition will be related to the availability of data
with a specific structure before the system tries to
achieve a goal and the post-condition with the
creation of data with a specific structure after a goal
is achieved. Note that we consider data as a list of
attributes defined as pairs key-value.

Table 1 represents the goals represented in Figure
2 with the associated pre- and post-conditions. For
example, to achieve the Validate Customer goal, the
system must receive the customer’s data. In the same
way, to consider this goal achieved, the system must
know the status of the client (i.e., whether the client
has been correctly validated or not).

Table 1: Goal definition.

Goal
Name Pre-condition Post-condition

Validate
Customer

Name: Customer
Data
Data:
- Customer Name
- Customer
Address

Name: Customer
Checked
Data:
- Customer Status
(Valid | Not Valid)

Book
Products

Name: Ordered
Products
Data:
- Customer Status
== Valid
- Purchased
Products (Name,
Quantity)

Name: Stock
Checked
Data:
- Products Status
- Total Price

Pay
Products

Name: Payment
Data
Data:
- Products Status
- Total Price
- Payment Method

Name: Payment
Checked
Data:
- Payment Status
(OK | Fail)

Updated
Stock

Name: Valid
Payment
Data:
- Payment Status
== OK

Name: Stock
Updated
Data:
- Stock Status (OK |
Fail)

Send
Products

Name: Shipping
Information
Data:
- Stock Status ==
OK
- Customer
Address

Name: Shipment
Managed
Data:
- Delivery Company
- Estimated
Delivery Time

Keep
Customer
Record
up to
Date

Name: Products
Shipped
Data:
- Delivery
Company
- Estimated
Delivery Time

Name: Purchase
Processed
Data:
- Products Status
- Estimated
Delivery Time

2.2 From Tropos to BPMN

Once the Tropos diagram has been defined, we can
derive a structured BPMN collaboration diagram
from it. This structured BPMN collaboration diagram
represents a microservices composition. We use
BPMN collaboration diagrams instead of BPMN
choreography diagrams since collaboration diagrams
allow us to separate the microservices that participate
in a composition by business responsibilities and also,
allow us to represent the dependencies between the
different microservices. In addition, collaboration
diagrams can be used to describe the internal behavior
of each microservice together with the collaborative
behavior of the whole composition. On the contrary,

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

78

in BPMN choreography diagrams it is more complex
to separate microservices by business responsibilities,
since they focus more on defining the composition
from a global perspective, as well as the messages
exchanged between the different participants.
Furthermore, collaboration diagrams can be executed
by most BPMN engines on the market while choreo-
graphy diagrams are not supported (Corradini, 2018).

We have defined a model transformation to
automatically generate a microservices composition
template defined in a BPMN collaboration diagram
from Tropos diagrams (see Algorithm 1). To achieve
this, we need to consider that each actor in the Tropos
diagram represents an entity that is in charge of a
specific business responsibility (e.g., managing
customer data, managing payment, and so on). By
definition, a microservice is a building block that
focuses on a specific business capability. Thus, we can
consider that each actor in Tropos can be supported
by a microservice. Considering that microservices are
independent and autonomous components of a global
system, we have decided to transform each actor of
the Tropos diagram (and then each microservice) into
a BPMN pool (line 2 of Algorithm 1). Figure 3
represents graphically how the transformation
algorithm is applied to the running example. As we
can see, the Client Manager actor is derived into the
Client Manager BPMN pool, which represents a
microservice. In the same way, the Warehouse actor
is derived into the Warehouse pool.

To represent a goal in a BPMN pool, we use
collapsed BPMN sub-processes. A collapsed BPMN
sub-process is a group of tasks that performs a part of
the entire process. In this case, we associate each goal
with a collapsed BPMN sub-process to indicate that
this goal can be achieved through the group of tasks
represented by the sub-process. Therefore, each goal
is derived into a collapsed BPMN sub-process (line
3). In Figure 3, the Validate Customer and Book
Products goals are transformed into a collapsed
BPMN sub-process with the same name.

The next step of the transformation is surrounding
each sub-process with a catching intermediate
message event as a previous element, and a throwing
intermediate message event as a subsequent element
(lines 4 - 6). In BPMN, these elements are used to
indicate that a process either needs the reception of
some message (catching) or is able to produce it
(throwing). We use them to represent both the
dependency between goals and the pre- and post-
conditions of a goal in the BPMN model.

On the one hand, each dependency between two
goals (line 9) is represented by connecting the throwing
event after the sub-process that represents the depender

goal with the catching event defined before the sub-
process that represents the dependee goal. For instance,
in Figure 3, the throwing event after the Validate
Customer sub-process (depender goal) is connected to
the catching event before the Book Products sub-
process (dependee goal). After this step, if a catching
intermediate message event of a pool is not connected
to any throwing event, it is transformed into a catching
start message event (line 11). In the same way, if a
throwing intermediate message event of a pool is not
connected to any catching event, it is transformed into
a throwing end message event (line 12). For instance,
the sub-process that represents the goal Validate
Customer (without dependencies) is linked with a start
catching message event.

On the other hand, note that goals have pre- and
post-conditions that are associated with the
availability and creation of specific data. To represent
this in BPMN, the catching and throwing events that
surround each sub-process are linked to a BPMN data
object that defines the data required in the pre-
condition and post-condition of the corresponding
goal (lines 13 – 15). In Figure 3, the Customer Data
data object is connected to the catching event of
Client Manager to represent the pre-condition of the
goal Validate Customer and the Customer Checked
data object is linked to the throwing event to represent
the post-condition of the same goal.

Finally, for each goal dependency (represented by
two connected throwing and catching events), it is
analyzed whether or not the post-condition of the
depender goal (i.e., the data object associated with the
throwing event of the corresponding sub-process)
creates all the data required by the pre-condition of the
dependee goal (defined in the data object associated to
the catching event of the corresponding sub-process).
In case the pre-condition of a dependee goal is not
satisfied by the post-condition of a depender goal, the
BPMN data objects associated with the catching and
throwing events of the sub-process of the depender
goal are extended with the data required by the
dependee goal (lines 17 - 22). With this action, we are
indicating the sub-process that represents the depender
goal receives and propagates some data that is created
earlier in the process in order to be used by a
subsequent sub-process. For example, the Book
Products goal (dependee) has a pre-condition that
needs the list of the purchased products and the
customer status. However, the post-condition of the
Validate Customer goal (depender) only creates the
customer status (see Table 1). Thus, the purchased
products (propagated data) are added to the data
objects of the catching and throwing events of the
Validate Customer sub-process.

Combining Goal-Oriented and BPMN Modelling to Support Distributed Microservice Compositions

79

Figure 3: Established mappings between Tropos and BPMN.

INPUT: A Tropos diagram.
OUTPUT: A BPMN collaboration diagram.
1 For each actor in the Tropos diagram:
2 A BPMN pool is created;
3 Each goal defined is represented as a collapsed BPMN sub-

process;
4 For each goal:
5 A throwing intermediate message event element is added

as a succeeding element of the collapsed sub-process that
represents the goal;

6 A catching intermediate message event element is added
as a preceding element of the collapsed sub-process that
represents the goal;

7 End For
8 For each goal with dependency:
9 The throwing intermediate message event of the depender and

the catching intermediate message event of the dependee
goal are linked to represent the interaction between goals;

10 End For
11 The catching intermediate message events that are not

connected to any throwing intermediate message event, are
transformed into a catching start message event;

12 The throwing intermediate message events that are not
connected to any catching intermediate message event, are
transformed into a throwing end message event;

13 For each catch/throwing event:
14 A BPMN data object is linked to the catching event to

represent the pre-condition of its corresponding goal;
15 A BPMN data object is linked to the throwing event to

represent the post-condition of its corresponding goal;
16 End For
17 For each catching event:
18 If the catching event receives less data than its throwing

event sends:
19 The data is added to the throwing event which sends

the data to the catching event;
20 The data is added to the initial catching event of the

fragment that contains the throwing event;
21 End if
22 End For
23 End For

Algorithm 1: From Tropos to BPMN collaboration
diagram.

Figure 4: Obtained structured BPMN collaboration.

Figure 4 shows the resulting BPMN collaboration
diagram when applying the transformation for the
running example. It represents a microservices
composition composed of four microservices that
correspond to the four actors defined in the Tropos
diagram: Client Manager, Warehouse, Payment
Manager, and Distributor. Each pool includes as
many collapsed BPMN sub-processes as goals linked
to the actor. For example, the Client Manager
microservice includes two collapsed BPMN sub-
processes that correspond to the goals: Validate
Customer and Keep Customer Record up to Date.
Likewise, dependencies between goals have been
supported by sending/receiving events between
pools. For example, note how the dependency
between the Book Products goal and the Validate
Customer goal is supported by the throwing event of
the Client Manager (see A in Figure 4) microservice
and the catching event of the Warehouse microservice
(see B in Figure 4).

Note that each pool must be executed by an
autonomous microservice. Thus, the developers of

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

80

Figure 5: Refinement of the collapsed BPMN sub-process Validate Customer.

each microservice must complete them as we explain
in the next sub-section.

2.3 Definition of Microservice Tasks

When the structured BPMN collaboration diagram
has been generated, the next step is to specify the
tasks that the collapsed BPMN sub-processes must
perform to achieve the defined goals. Note that
BPMN pools represent microservices, which are
autonomous and independent software elements that
can be developed by different development teams.
Thus, the developers of a specific microservice can
focus on the specification of the tasks of the sub-
processes of the corresponding BPMN pool. Each
BPMN sub-process can be developed independently
of the others as long as they achieve the goals which
are related, specifically as long as they achieve the
pre-condition and post-condition of the goal.

For example, for the collapsed BPMN sub-
process Validate Customer of the Client Manager
microservice (see Figure 4), developers of this
microservice may decide to define the following tasks
(see Figure 5): Check Customer to begin the process
of registration. If the customer is not registered, the
Create Profile task is executed to register the new
customer. If the customer completes the registration
process or is already registered, the Log Request task
stores the purchase made by the client and the sub-
process terminates. An exception path is also added
to cancel the purchase order if the customer does not
want to perform the registration process with an
exception boundary event and the Cancel Order task.

In the example represented in Figure 5, the
Validate Customer BPMN sub-process is aligned
with its related goal, i.e., the BPMN sub-process can
reach the pre-condition and achieve the post-
condition for the Validate Customer goal defined in
Table 1. In the example, the Client Manager
microservice receives an event that includes the
customer’s name, the customer’s address, and the
purchased products. Therefore, the BPMN sub-
process of the example is aligned with the goal pre-
condition. The customer’s name and the customer’s
address are used by the tasks of the sub-process to
check if the customer already exists and create a
customer profile otherwise. In addition, at the end of
the process, the customer status is created. Thus, the
BPMN sub-process of the example is also aligned
with the goal post-condition, as it creates all the data
specified in the condition. Note also that the
purchased products received by this sub-process are
not used. This data is received at the beginning of the
composition (when the Client Manager microservice
receives the initial event) and must be propagated to
the next sub-processes.

3 SUPPORTING EVOLUTION

The proposed model-driven approach allows
developers to insert a group of tasks inside collapsed
BPMN sub-processes. With our approach,
microservices can be developed autonomously.
Developers can define the microservice tasks

Combining Goal-Oriented and BPMN Modelling to Support Distributed Microservice Compositions

81

Figure 6: Modified Validate Customer collapsed BPMN sub-process.

independently. This approach offers developers
another benefit: once a microservice has been
developed, the development team of one microservice
can change the tasks contained in a BPMN sub-
process independently of the other participants, as
long as the sub-process continues aligned with its
established goals, i.e., developers can change the
tasks contained in the collapsed BPMN sub-
processes, but they cannot make modifications to the
throw/catching events that surround the collapsed
sub-processes, since they specify the pre- and post-
conditions that the sub-process must achieve.
Therefore, the only condition that developers must
consider is that the evolved sub-process must still be
able to achieve the pre-condition and the post-
condition of the goal that it supports. Consequently,
developers can perform changes in their BPMN
fragments without the need to involve or coordinate
them with other development teams that are
developing other microservices. Note that
microservices compositions are generally built to
avoid dependencies and be reusable as much as
possible. Our solution focuses on reuse within the
domain of the system being designed. Therefore, the
developed fragments can be reused by other systems
that have domains equivalent to the designed system.

For example, if the Client Manager development
team wants to differentiate between VIP clients and
regular clients (if the store offers a premium service),
the Validate Customer collapsed BPMN sub-process
can be modified independently as follows (see Figure
6).

In this example, a new path is added to the
Validate Customer sub-process to identify if the client
is already VIP or not. In the case that is not a VIP
client, two new tasks are added: Show Ad and Offer
VIP, to offer the advantages of the premium service.
Finally, the client can refuse or accept the offer. If it
is accepted, a new task Process VIP is added to
register the client in the premium program. This is
considered a BPMN sub-process, that can be
exchanged with the BPMN sub-process shown in
Figure 5 at any time since the new sub-process is still
aligned with the pre-condition and post-condition of
its related goal (see Table 1). According to the pre-
condition of the Validate Customer goal, the Client
Manager microservice catches an event to receive the
customer’s data, the customer’s address, and the
purchased products. In the definition of the new sub-
process, this data continues to be used by the Check
Customer task, and therefore the pre-condition
continues to be met. On the other hand, according to
the post-condition of the Validate Customer goal,
when the sub-process finishes all its tasks, the
microservice must send an event that includes the
customer status and the purchased products. This is
also supported in the new sub-process since the Log
Request task generates as a result of its process the
customer status, and the purchased products are
received by the initial catching Event of the Client
Manager microservice. Consequently, the new sub-
process is also aligned with the goal post-condition.

Therefore, the BPMN sub-processes can be
modified independently from the rest of the

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

82

composition since they are developed from the local
perspective of the microservice developer. In
addition, since developers must continue to meet the
pre-condition and post-condition of the goal, we
ensure that the microservices composition remains
aligned with the established goals if it evolves.

4 PROOF OF CONCEPT
VALIDATION

In order to validate the proposed model-driven
approach, we have developed the representative
example and deployed the resulting microservices
composition in a microservices architecture. The
main goal of this preliminary validation was to
evaluate whether the microservices compositions
implemented by following the proposed steps can be
executed correctly. Currently, the approach presented
is implemented and integrated in a development
environment that supports the different steps of the
approach. Thus, we have validated the proposed
model-driven approach as follows:
1. We created the Tropos diagram by using the

CGM-Tool1.
2. Once the goal model was created, we applied the

proposed model transformation in order to
obtain the BPMN model with the general view
of the microservices composition.

3. Then, the authors of the paper played the role of
microservice developers in order to
independently create the BPMN sub-process
that supports the goals represented in the
previous BPMN model. To do so, the BPMN.io2
modeler was used.

4. The microservices composition was deployed
and executed in the architectural solution
presented below.

5. We evaluated the correct execution by analyzing
the logs generated by each microservice.

6. We evolved the microservices composition as
explained in Section 3 and deployed it again to
evaluate the execution of the new version.

Model Transformation Implementation. To
perform the transformation from a Tropos diagram to
a BPMN collaboration diagram, we have
implemented a model transformation based on
Algorithm 1 using Java3. We have used the CGM-
Tool to generate the Tropos diagram, which

1 http://www.cgm-tool.eu/index.html
2 https://bpmn.io/
3 https://github.com/MicroservicesResearch/Tropos2BPMN

Figure 7: From BPMN collaboration diagram to BPMN
fragments.

represents the diagram in XML. Currently, there are
several solutions to implement model transformations
(Czarnecki, 2003). In this work, we have used a direct
manipulation approach based on two parsers, one
parser to read the XML generated by the CGM-Tool
and the Java BPMN parser provided by Camunda.

The Architectural Solution. 4 Once the
microservices composition was completed it was
deployed in a microservices architecture
implemented as follows (Ortiz, 2022): the Spring
Boot Java framework was used to implement all the
microservices. Each microservice was endowed with
a Camunda BPMN engine that oversees the execution
of its respective BPMN fragment to execute (1) the
sub-processes defined in its BPMN pool, and (2) the
catch/throwing events to either receive or publish
asynchronous events in a communication bus to
support the collaboration with the rest of participants.
This communication bus was supported by a
RabbitMQ message broker.

Therefore, each microservice executes its
corresponding BPMN fragment and informs other
participants about its progress through the publication
of events. In this way, the microservices composition
is executed by means of an event-based choreography
of BPMN fragments in which microservices wait for
specific events to execute their corresponding piece
of work (see Figure 7). Note that these events are
named manually and allow data exchange between
microservices. Following the motivation example,
the resulting choreography begins when the
composition receives the Process Order event. Then,
each microservice performs its defined tasks and
publishes its progress through events on the
communication bus. The whole process ends when
the Client Manager microservice has updated the
client’s data and sends him a notification to inform

4 Specific tool support to create this architectural solution
is available at: https://github.com/microserviceresearch/
microservices-composition-infrastructure

Combining Goal-Oriented and BPMN Modelling to Support Distributed Microservice Compositions

83

Figure 8: Logs generated in the composition deployment.

him that the purchase process has finished
successfully through the Order Processed event.

Logs Evaluation. To validate the correctness of the
executed microservices composition, we analyzed the
logs generated by each microservice. In general
terms, both the initial deployment of the
microservices composition and the evolutions
performed worked adequately. The evaluation
consisted of checking if the choreography shown in
Figure 7 was deployed correctly and if the
microservices could correctly execute their processes
and achieved their pre- and post-conditions (they
received/sent the corresponding events). As a
representative example, Figure 8 presents the logs
generated in the deployment of the choreography
shown in Figure 7. This figure illustrates the logs for
each deployed microservice. Lines 1 through 3 show
the correct execution of the Client Manager
microservice, where it first receives the Process Order
event and then executes the tasks defined in the
Validate Customer sub-process (i.e., Check Customer
and Log Request). In the same way, we can also
observe the correct execution of the Warehouse (lines
4 through 6), Payment Manager (lines 7 and 8) and
Distributor (lines 9 through 11) microservices.
Additionally, the Validate Customer sub-process of the
Client Manager microservice was modified as shown
in Figure 6. The Client Manager microservice was re-
deployed, executing the task Show Ad since the client
was not VIP (lines 12 and 13). Therefore, we
concluded that the evolution was executed correctly.

It is worth remarking that, as commented above,
this constitutes a preliminary validation of the
approach. However, a more precise evaluation is
planned as further work.

5 RELATED WORK

In the research community, we can find several works
that relate BPs with goals. We have classified these
works in two different groups according to how this
relation is achieved. The first group relates to the works
that propose methods to relate goal diagrams with BPs.
(Alves, 2013) proposes a model driven approach to
obtain BPMN models from i* models. It proposes a
heuristic process for mapping i* models to BPMN
models but the execution order of the BPMN tasks
obtained from the i* model must be manually defined
by developers. In our work, the execution order of the
tasks is automatically derived by the transformation
algorithm. (Koliadis, 2006) proposes the GoalBPM
methodology for relating business models to high level
stakeholders’ goals modelled using KAOS. In their
work, to relate a BPMN model with a KAOS model, it
is first necessary to create both models and then apply
their proposed methodology to relate them. In our
work, we derive a BPMN model from a goal diagram
and at the same time we relate the goals with the
processes. (Horita, 2014) proposes a transformation
approach to transform KAOS models into BPMN
models by using refinement patterns. The limitation of
their work is that the KAOS models are defined at a
low level, considering each goal directly a BPMN task.
Consequently, the KAOS models can be considered as
direct representations of BPMN models and vice-
versa. In our work, we use collapsed BPMN sub-
processes so that developers can define processes that
can achieve the defined goals. In addition, it is not clear
if their proposal can support more complex situation
such as interaction between different actors.
(Sabatucci, 2019) proposes an automatic approach that
focuses on extracting goals from BPs but does not

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

84

address the reverse process, i.e., how to relate goals
to BPs as we do in our work. In our work we focus on
first defining the goal diagram, so that from the
beginning the BPs are directed by the defined goals.
(Brown, 2006) and (Kazhamiakin, 2004) present an
approach to specify the requirements that a system
must fulfil based on goal diagrams. These two
approaches focus on modelling monolithic systems,
and do not support distributed environments. Our
proposal is focused on supporting distributed systems,
i.e., an event-based microservices composition based
on the choreography of BPMN fragments. (Huber,
2016) proposes to integrate semantic queries into
process activities to support runtime discovery and
dynamic invocation of goal-based IoT-services. This
work also does not support distributed systems, and
uses proprietary tools, while in our approach, since we
use the BPMN standard, it can be integrated with
different commercial tools that run BPMN models.

The second group relate to the works that propose
to extend BPMN to explicitly define goals in the
process models. (Braubach, 2010; Jander, 2011)
propose an approach based on the notion of process
goals to relate business goals to workflows. However,
these approaches consider that the goals are embedded
with the workflows and thus, they are not considered
two different models, which limits their autonomy. A
change in a BP must be directly translated to a change
in the goals. These two works differ from ours in that
we keep using the standard BPMN notation, which
means that our BPMN descriptions can be executed in
any BPMN engine (i.e., we are not tied to any
proprietary tool). Furthermore, in our work, a
modification in a BP does not have to directly affect to
the goal diagram, if the modified BP still satisfies the
pre- and post-conditions of its goal. (Greenwood,
2009) proposes an extension of the BPMN language to
define goals in BPMN processes and also considers
that the goals are embedded to workflows. This work
also differs from ours in that their work introduces
modifications to the BPMN language. In our work, we
do not introduce any kind of complexity to the BPMN
models, which were originally designed to describe
processes and no other aspects as goals in this case. In
fact, introducing new concepts into a well-known and
consolidated notation can be risky since it can
introduce complexity to the model (Zugal, 2011).

6 CONCLUSIONS AND FURTHER
WORK

This paper explores how to combine goal-oriented

modelling with microservices compositions based on
the choreography of BPMN fragments, and achieve
their synergy, benefiting from the advantages of both.
For modelling business goals, we rely on the Tropos
software development methodology. The
contribution of this work is a model-driven
development approach to develop distributed
microservices composition directed through goals.
For this purpose, we propose a model transformation
to obtain a structured BPMN collaboration diagram
from a Tropos diagram. The resulted BPMN
collaboration diagram is composed through
independent pools (the microservices), which can be
developed by different development teams. Each
microservice is made up of a set of collapsed BPMN
sub-processes that developers must complete to
define the tasks that the microservice must perform to
achieve its related goals. The collapsed BPMN sub-
processes can be changed without involving other
microservices as long as the new sub-process
continues fulfilling the pre-condition and the post-
condition of its related goal, in order to maintain the
composition aligned with the established goals.

As a future work, we want to develop the reverse
process, i.e., to derive a Tropos diagram from a
BPMN collaboration diagram that represents a
microservices composition based on the
choreography of BPMN fragments. In this way, the
intrinsic goals of an existing microservices
composition can be obtained. In addition, with the
reverse process we can support more complex
evolution scenarios to ensure that the composition, as
it evolves, remains aligned with the established goals,
i.e., allowing changes that not only affect the tasks
that the microservices perform but also affect the
communication between microservices (e.g., changes
in throw/catching elements). In addition, we want to
extend the current approach to also support soft goals,
which we consider that can be very interesting in a
distributed environment and extend our approach to
consider cases such as legacy systems.

ACKNOWLEDGEMENTS

This work is part of the R&D&I project
PID2020-114480RB-I00 funded by
MCIN/AEI/10.13039/501100011033. It is also
supported by the Research and Development Aid
Program (PAID-01-21) of the UPV and funded with
the Aid to First Research Projects (PAID-06-22),
Research Vice-Rectorate of the Polytechnic
University of Valencia (UPV).

Combining Goal-Oriented and BPMN Modelling to Support Distributed Microservice Compositions

85

REFERENCES

Alves, R., Silva, C., and Castro, J. (2013). A bi-directional
mapping between i* and BPMN models in the context of
business process management. ER@BR.

Andrade, E., van der Aa, H., Leopold, H., Alter, S., and
Reijers, H. (2016). Factors leading to business process
noncompliance and its positive and negative effects:
Empirical insights from a case study.

Braubach, L., Pokahr, A., Jander, K., Lamersdorf, W., and
Burmeister, B. (2010) Go4flex: Goal-oriented process
modelling. In Intelligent Distributed Computing IV
(IDC), Morocco (pp. 77-87). Springer Berlin Heidelberg.

Bresciani, P., and Sannicolò, F. (2002). Applying Tropos
Requirements Analysis for defining a Tropos tool. In
Agent-Oriented Information System (AOIS). In Fourth
International Bi-Conference Workshop (pp. 135-138).

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and
Mylopoulos, J. (2004). Tropos: An agent-oriented
software development methodology. In Autonomous
Agents and Multi-Agent Systems, 8, (pp. 203-236).

Brown, G., Cheng, B. H., Goldsby, H., and Zhang, J. (2006).
Goal-oriented specification of adaptation requirements
engineering in adaptive systems. In Proceedings of the
2006 international workshop on Self-adaptation and self-
managing systems (pp. 23-29).

Carvalho, L., Garcia, A., Colanzi, T. E., Assunção, W. K.,
Pereira, J. A., Fonseca, B., ... and Lucena, C. (2020). On
the performance and adoption of search-based
microservice identification with tomicroservices. In
IEEE International Conference on Software Maintenance
and Evolution (ICSME) (pp. 569-580).

Castro, J., Klop, M., and Mylopoulos, J. (2002). Towards
requirements-driven information system engineering: the
Tropos project. Information Systems, vol. 27 (pp. 365-
389).

Corradini, F., Morichetta, A., Polini, A., Re, B., and Tiezzi,
F. (2018). Collaboration vs. choreography conformance
in BPMN 2.0: From theory to practice. In IEEE 22nd
International Enterprise Distributed Object Computing
Conference (EDOC), (pp. 95-104).

Czarnecki, K., Helsen, S. (2003). Classification of model
transformation approaches. In: Proceedings of the 2nd
OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture, vol. 45, (pp.
1–17).

Dietz, J.L.G. (2004). Basic Notions Regarding Business
Processes and Supporting Information. In Systems
Proceedings of BPMDS’04, CAiSE’04 Workshops
Proceedings, Riga, Vol. 2 (pp. 160-168).

Greenwood, D., and Ghizzioli, R. (2009). Goal-oriented
autonomic business process modelling and execution.
INTECH Open Access Publisher.

Hammer, M. and Champy, J. (1994). Reengineering the
Corporation – A manifesto for Business Revolution.
Nicholas Brealey Publishing.

Harmon, P., and Wolf, C. (2011). Business process modeling
survey. Business process trends, 36(1), (pp. 1-36).

Horita, H., Honda, K., Sei, Y., Nakagawa, H., Tahara, Y., and
Ohsuga, A. (2014). Transformation approach from

KAOS goal models to BPMN models using refinement
patterns. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing (pp. 1023-1024).

Huber, S., Seiger, R., Kühnert, A., Theodorou, V., and
Schlegel, T (2016). Goal-based semantic queries for
dynamic processes in the internet of things. International
Journal of Semantic Computing, 10(02), (pp. 269-293).

Jander, K., Braubach, L., Pokahr, A., Lamersdorf, W., and
Wack, K. J. (2011). Goal-oriented processes with
GPMN. International Journal on Artificial Intelligence
Tools, 20(06) (pp. 1021-1041).

Kazhamiakin, R., Pistore, M., and Roveri, M. (2004). A
framework for integrating business processes and
business requirements. In Proceedings. Eighth IEEE
International Enterprise Distributed Object Computing
Conference, (EDOC) (pp. 9-20).

Koliadis, G., and Ghose, A. (2006). Relating business
process models to goal-oriented requirements models in
KAOS. In Advances in Knowledge Acquisition and
Management (PKAW) China, 7-8, Revised Selected
Papers 9 (pp. 25-39). Springer Berlin Heidelberg.

Lewis, J., and Fowler, M. (2014). Microservices.
https://martinfowler.com/articles/microservices.html
(accessed December 2023).

Miers, D., and Stephen, W. (2008). BPMN Modelling and
Reference Guide. Future Strategies Inc.

Nysetvold, A. G., and Krogstie, J. (2006). Assessing business
process modeling languages using a generic quality
framework. In Advanced Topics in Database Research,
Volume 5 (pp. 79-93).

Ortiz, J., Torres, V., and Valderas, P. (2022). Microservice
compositions based on the choreography of BPMN
fragments: facing evolution issues. Computing (pp. 1-42)

Peltz, C. (2003). Web services orchestration and
choreography. Computer, 36(10), 46-52.

Rosen, M., Lublinsky, B., Smith, K. T., and Balcer, M.
(2012). Applied SOA: service-oriented architecture and
design strategies. John Wiley & Sons.

Sabatucci, L., and Cossentino, M. (2019). Supporting
dynamic workflows with automatic extraction of goals
from BPMN. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 14(2), (pp. 1-38).

Tizzei, L. P., Nery, M., Segura, V. C., and Cerqueira, R. F.
(2017). Using microservices and software product line
engineering to support reuse of evolving multi-tenant
saas. In Proceedings of the 21st International Systems
and Software Product Line Conference-Volume A (pp.
205-214).

Weske, M. (2007). Business Process Management:
Concepts, Languages, Architecture. Springer.

Yahia, E. B. H., Réveillère, L., Bromberg, Y. D., Chevalier,
R., and Cadot, A. (2016). Medley: An event-driven
lightweight platform for service composition. In Internat.
Conf. on Web Engineering (pp. 3-20).

Zugal, S., Pinggera, J., and Weber, B. (2011). Assessing
process models with cognitive psychology. Enterprise
modelling and information systems architectures
(EMISA).

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

86

