
IndraFlow: Seamless Data Transfer and Transformation Between
Internet of Things, Robot Systems and Cloud-Native Environments

Attila Csaba Marosi1 a and Krisztián Póra1,2 b

1Laboratory of Parallel and Distributed Systems, Institute for Computer Science and Control (SZTAKI),
Hungarian Research Network (HUN-REN), Hungary

2John von Neumann Faculty of Informatics, Óbuda University, Hungary

Keywords: Data Analytics, IoT, IIoT, Big Data, Data Streaming, ROS, Data Bridge.

Abstract: In this paper we present our solution which aims to be a generic streaming data bridge. It utilizes a mod-
ular architecture with current support for MQTT, ROS1, ROS2, Kafka and relational database management
systems (RDBMS), such as MySQL or PosgreSQL as data sources or destinations. Our solution also sup-
ports custom transformations of messages and using multiple sources and destinations within a single bridge
instance. We compare our solution to existing generic streaming solutions (such as the GUI-based Apache
NiFi) and custom-made bridge codes (such as a ROS to MQTT bridge). Next, we present two use cases for
our solution from different projects. In the first use case ROS messages are received from drones, transformed
and sent to a cloud-based Kafka cluster. The second use case is representing an industrial IoT use case where
MQTT messages are received, transformed and sent to a PostgreSQL server for persistent storage. Finally, we
evaluate the performance and reliability of our solution using the second use case.

1 INTRODUCTION

The rise of the Internet of Things (IoT) has led to an
era where enormous amount of data is generated by
countless devices. This presents a challenge in ef-
fectively using this data, as it requires robust infras-
tructure and connectivity. Similarly, for robots using
the Robot Operating System (ROS) (Quigley et al.,
2009), there’s a growing need for a strong connection
between them and cloud environments.

Message consumption patterns and messaging
systems in distributed systems have evolved to meet
the need for efficient communication and data pro-
cessing, also supporting the challenges of IoT sys-
tems. Publish-subscribe (Eugster et al., 2003) and
message queuing are two important patterns that have
emerged. Publish-subscribe allows for decoupling of
producers and consumers, enabling scalability and a
loosely-coupled architecture. Message queuing en-
sures reliable and asynchronous communication, with
features like load balancing and message persistence.
Initially, generic messaging systems like email and
instant messaging allowed basic communication but

a https://orcid.org/0000-0001-9105-6816
b https://orcid.org/0009-0008-2229-9521

lacked complex integration capabilities. Message-
oriented middleware (MOM) (Curry, 2004) intro-
duced reliable messaging and clustering provided
fault tolerance and scalability. Enterprise service
bus (ESB) enhanced messaging systems with cen-
tralized infrastructure for managing message routing
and transformation. For messaging systems beside
custom-tailored solutions (Institut für Kraftfahrzeuge,
2023) (Lourenco et al., 2021) (Chaari et al., 2019),
generic distributed message systems like Apache
Kafka (Kreps et al., 2011), Apache Flink (Carbone
et al., 2015) or Apache Pulsar (Pulsar, 2023) have
gained popularity, handling high-throughput, fault-
tolerant messaging for modern architectures and with
data processing capabilities (Akidau et al., 2015).

This research focuses on the need for a reliable
data bridge that connects robot systems, IoT devices
and cloud environments, allowing for smooth and
real-time data transmission and analysis across the
different connected systems. The main contributions
of the paper are as follows. We present our so-
lution, IndraFlow, a generic streaming data bridge
with support for MQTT (Light, 2017), ROS1, ROS2,
Kafka (Wang et al., 2021) and RDBMS (e.g., MySQL
or PosgreSQL) as data sources or destinations. Our
solution also supports custom transformations of mes-

Marosi, A. and Póra, K.
IndraFlow: Seamless Data Transfer and Transformation Between Internet of Things, Robot Systems and Cloud-Native Environments.
DOI: 10.5220/0012622600003705
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 9th International Conference on Internet of Things, Big Data and Security (IoTBDS 2024), pages 191-198
ISBN: 978-989-758-699-6; ISSN: 2184-4976
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

191



sages and using multiple sources and destinations
within a single bridge instance. We compare our solu-
tion to existing streaming solutions such as the GUI-
based Apache NiFi, and to use case specific custom-
made bridge codes. Additionally, we present two use
cases: (a) we receive ROS messages from drones,
transform them and sending them to a cloud-based
Kafka cluster; and (b) in an industrial IoT scenario we
receive MQTT messages, transform and send them to
a PostgreSQL server for permanent storage. Finally,
we evaluate our solution through the second use case.

The structure of the paper is as follows. In Sec-
tion 2 we are discussing related works. In Section 3
we are introducing IndraFlow and present its architec-
ture and the design decisions we chose. Additionally,
we present two use cases where IndraFlow is used. In
Section 4 we present performance and reliability eval-
uations using the second use case. Finally, Section 5
discusses future work and concludes the paper.

2 RELATED WORKS

We discuss related works in three categories using a
top-down approach. First, we discuss high-level con-
cepts of data streaming. Second, we discuss generic
data flow solutions with focus on their Robot and
IoT capabilities. We include in this category com-
plete data streaming platforms that provide capabili-
ties both for data sources and sinks and have computa-
tion capabilities either built-in or support via a plug-
in mechanism. Third, we look at custom bridge so-
lutions serving single use-cases. These solutions are
typically developed serving a single use case. Ad-
ditionally, we note here, that we relate the presented
related works concepts to our solution in Section 3.

First, the Lambda (Marz, 2011) and
Kappa (Kreps, 2014) architectures are two popular
high-level approaches for building data processing
systems. The Lambda architecture was designed for
handling massive amounts of data in a fault-tolerant
manner using a batch, a speed and a serving layer. On
the other-hand the Kappa architecture simplifies the
system by eliminating the batch layer, relying solely
on the speed layer for processing both real-time and
historical data. The Kappa architecture focuses on
stream processing and streamlining the processing
pipeline, while the Lambda architecture has both a
batch and a streaming pipeline.

Next, Differential Dataflow (McSherry et al.,
2013; Murray et al., 2013), developed by Microsoft, is
a computational framework that enhances traditional
data flow systems by enabling incremental and timely
processing of data. It introduces the concept of dif-

ferences, allowing for efficient handling of updates
to large-scale datasets. By processing incremental
updates instead of recomputing the entire dataset, it
achieves significant performance improvements. It
offers a declarative programming model for express-
ing complex data processing tasks in a concise and in-
tuitive manner. Also, it includes fault-tolerance mech-
anisms to ensure data consistency and reliability.

A prominent example of the second related works
category, Apache NiFi is an open-source data integra-
tion tool designed to automate the flow of data be-
tween systems. NiFi provides a user-friendly inter-
face for designing data flows, allowing users to eas-
ily collect, process, and distribute data across vari-
ous environments. It supports a wide range of data
sources and destinations, however it does not sup-
port ROS directly. In case of running multiple data
flows (e.g., different use cases) on a single cluster,
all nodes instantiate all components. This means that
the CPU and memory footprint has always a factor
that is determined by only the complexity of the data
flow and cannot be reduced by scaling the cluster.
Apache NiFi MiNiFi (MiNiFi, 2023) is a sub-project
of Apache NiFi and provides a complementary, low-
footprint data collection approach. It functions as an
agent near or adjacent to data sources such as sensors,
edge devices or other systems. It has a low footprint,
but can support only a subset of NiFi processors.

Logstash is an open-source data processing
pipeline tool that allows users to collect, transform,
and store data from various sources. It is part of the
Elastic Stack (Elastic, 2023), along others such as the
data collectors called as ’Beats’ and Elastic Agent
used for data ingestion. Logstash does not support
MQTT and ROS as input or output. MQTT support is
available via Filebeat, but only as a data source.

Integration frameworks (Ibsen and Anstey,
2018) (MuleSoft, 2023) (Google, 2023) enable the
connection of different systems for data consumption
and production. These support multiple data formats
like such as XML, JSON, CSV and AVRO, and allow
the transformation of messages between different
systems and protocols. They typically provide a
developer environment, where custom components
can be developed (e.g., via Java code or XML
descriptors) and deployed. These solutions can be
considered as low-level, but highly configurable.

Fluvio (Fluvio, 2023) is an open-source stream-
ing platform with built-in computation capabilities.
Its composed of dedicated components for processing
and stream handling. It supports horizontal scaling
and is backed by a distributed key-store via an uni-
versal interface that currently works with Etcd (Etcd,
2023) and native Kubernetes (Brewer, 2015) key-

IoTBDS 2024 - 9th International Conference on Internet of Things, Big Data and Security

192



value stores. Fluvio follows the unified cluster ap-
proach, where all components for streaming and state-
ful computation are integrated. On the other hand,
Arroyo (Arroyo, 2023) is a distributed stream pro-
cessing engine developed for the execution of stateful
computations on different data streams. Its core is a
distributed data flow engine. Its goal is to achieve effi-
cient processing of both bounded and unbounded data
sources. In contrast to traditional batch processors,
Arroyo operates on data streams of varying sizes, en-
abling the immediate generation of results as soon
as they are available and pipelines are defined using
SQL. Also, it provides a web based user interface for
creating pipelines, monitoring and configuration.

Finally, in the third category we discuss custom
solutions for bridging different systems. For exam-
ple (Institut für Kraftfahrzeuge, 2023) provides a bi-
directional bridge between ROS1/ROS2 and MQTT.
It is written in C++ and uses a YAML-based con-
figuration file for defining topic mappings between
source and destination systems. A similar solution
is (GROOVE X, 2016). In (Lourenco et al., 2021),
authors present a solution that enables the communi-
cation between Apache Kafka and ROS2 using their
custom bridge code. The authors report the number
of messages they produced and the number of mes-
sages stored in Kafka, however they do not report the
rate of messages produced. The presented solution
allows bi-directional data flow, but does not support
any security features of Kafka (authentication, autho-
rization and encryption). In (Chaari et al., 2019), au-
thors present an architecture that allows computation
offloading to cloud based environments for robotics
environments. Here ROS is used for communication
framework between different robots, Apache Kafka
is used as an intermediary buffer and as a translation
layer between the cloud and robot environment, and
Apache Storm is used for computation. The presented
solution allows bi-directional data flow. The solution
is ROS1 based and relies on Rosbridge (Crick et al.,
2017) that allows sending to and collecting data from
ROS in JSON format using Websockets. The authors
evaluated their solution using message rates up to 25
messages/second (25Hz).

3 IndraFlow DESIGN

We can see that on the higher-level of the spectrum
of the related works we can find generic solutions
such as Apache NiFi, Apache Camel, Fluvio, etc.
These are highly customizable, but also require a
steep learning curve and typically lack support for
ROS based use cases. On the lower part of the spec-

trum we can see custom solutions such as (Lourenco
et al., 2021) that are tailored for a specific use case or
provide bridging capabilities between two solutions
(e.g., bridging between ROS and MQTT) with no or
limited transformation capabilities.

The aim of IndraFlow is to provide a middle
ground. The first goal of IndraFlow is to offer a
generic, but still highly customizable solutions with
support for cloud, IIoT and Robot based use cases.
The second goal is to provide light-weight transfor-
mation capabilities for changing the structure or for-
mat of the messages between source and destination
systems. Additionally, we aim to provide an a mod-
ularized structure, rather than an integrated all-in-one
solution such as Fluvio. Furthermore, we use a de-
scriptive configuration (i.e., YAML-based) such as in
(Institut für Kraftfahrzeuge, 2023) and a simplified
setup, thus a single instance focuses on data transfer
between a single source and destination.

Figure 1 presents the IndraFlow architecture. On
the left side of the architecture we observe the data
source modules. Currently ROS, ROS2, MQTT and
Kafka sources are supported out of the box. How-
ever, data sources are connected via modules that
rely on a well-defined interface. Thus, adding new
sources is a straight-forward process. Similarly, on
the right side of Figure 1, the available data destina-
tions are shown. Currently IndraFlow has modules
for Kafka, RDBMS (relational databases supported
via SQLAlchemy) and MQTT data destinations. The
list of outputs is also extensible with new destination
modules that implement a well-defined interface.

The Intermediary Storage and Processing (ISP, see
in Figure 1) is a special module as it can act both as
a data source and destination. Its role is to decouple
other data sources and other data destinations. Next,
in IndraFlow the basic data flow is represented by a
span. A span is similar to an input → filter → out-
put pipeline in Logstash. However, IndraFlow allows
custom transformations and supports ROS and MQTT
based data sources and destinations. Figure 2 depicts
a single span denoted by N as follows (see Figure 1):

N = ⟨S,T (t1, ..., tn),D⟩ (1)

Here S represents a data source, T (t1, ..., tn) de-
notes the transformation functions used in the span,
and D is the destination for the data. Both source S
and destination D can be any of the supported plu-
gins or the ISP. Any number of transformations are
allowed, however, currently a span is executed within
a single process, thus, increasing the number of trans-
formations will increase the latency of messages.

Next, lets consider D as a set of points. This set
of points represent the available data sources and des-

IndraFlow: Seamless Data Transfer and Transformation Between Internet of Things, Robot Systems and Cloud-Native Environments

193



Figure 1: General architecture of IndraFlow.

tinations within an environment or use case. A span
e1 is an edge between data source vs1 ∈ D and desti-
nation vd1 ∈ D with the weight w1 = T (t1,1, ..., t1,n).
Using the notation from equation 1:

e1 = ⟨vs1,w1,vd1⟩ (2)

Furthermore, a pipeline P is can be constructed us-
ing arbitrary number of spans (edges) (see Figure 1):

P = (e1,e2...,en) (3)

A pipeline denotes and end-to-end data flow, how-
ever it does not need to be continuous. Spans within
a pipeline behave independently, they can be created,
started and stopped as needed. They might form a
path (a continuous data flow) within a directed graph
(e.g., e1 → e2 → e3). In this case the destination of
e1 is the data source of e2. Additionally, each edge
(span) in a pipeline has an additional weight p that
denotes the multi-span configuration (see section 3),
where multiple parallel instances of the same span are
started to load balance the transfer of messages.

IndraFlow runs on top of a container orchestrator
such as Kubernetes or Docker Compose. Currently,
each span is implemented as a separate container, and
pipelines are scaled and orchestrated via standard-
ized tools such as Docker Compose and Helm (Helm,
2023). Currently, the ISP is a containerized Apache
Kafka cluster. These tools allow to deploy, manage
and scale IndraFlow on a component by component
basis. For example in case of Apache NiFi when run-
ning multiple data flows (e.g., different use cases) on
a single cluster, all nodes instantiate all components.
This means that the CPU and memory footprint has

always a factor that is determined by only the com-
plexity of the data flow and cannot be reduced by scal-
ing the cluster. The best-practice for NiFi is to sepa-
rate each data flow to its dedicated cluster (Cloudera,
2023). However, this would increase the administra-
tive burden or require further automation.

Figure 2: Structure of a single IndraFlow Span.

In the following sections we introduce two real-
world use cases where IndraFlow is actively be-
ing used. The first use case involves bi-directional
data flow between drones and autonomous vehi-
cles, and cloud-based environments. Within the Na-
tional Laboratory for Autonomous Systems (abbre-
viated as ARNL in Hungarian) and the TKP2021-
NVA-01 project (”Research on Hydrogen-Powered,
Cooperative Autonomous Remote Sensing Devices
and Related Data Processing Framework”) in Hun-
gary IndraFlow is used for data bridging between
ROS1/ROS2 based drones and autonomous vehi-
cles (Németh and Gáspár, 2021) and a cloud-based
data platform (Marosi et al., 2022). This involves
multiple data flows between (i) bi-directional ROS
and Apache Kafka, and (ii) ROS and TimescaleDB/
PostgreSQL. Originally the flow of data was ROS →

IoTBDS 2024 - 9th International Conference on Internet of Things, Big Data and Security

194



MQTT (via custom bridge code) → Apache Kafka
(via Apache NiFi) → TimescaleDB (via Apache
NiFi). With the help of IndraFlow this is simplified
to (a) ROS → TimescaleDB/ PostgreSQL or (b) ROS
→ Kafka → TimescaleDB/ PostgreSQL, depending
on the message rate (see section 4 for details).

The second use case is based on Industrial IoT
(IIoT) data collection and enrichment in a robotic as-
sembly scenario (Beregi et al., 2019) (Beregi et al.,
2021). This scenario involves a service-oriented man-
ufacturing execution system, in which the collabo-
rative robotic arm near real time-data provision pro-
vides the foundation necessary for a better under-
standing of the entire process. In this use case, the
robots used provide data on their physical operations
at up to 125Hz via an MQTT interface. This data is
subsequently stored in TimescaleDB (TimescaleDB,
2023), a time-series database based on PostgreSQL.
Here similar Apache NiFi based data flows were used
as in the previous use case, and they are being phased
out in favor of IndraFlow based ones.

This use case is actively utilized within ARNL
in Hungary, and is detailed in (Marosi et al., 2022).
However, for the evaluation, we opted to use a pub-
licly available dataset to support the reproducibility
of our research. Therefore, we selected an environ-
mental dataset from Kaggle (Stafford, 2020).

Furthermore, in contrast to the original use case
where TimescaleDB is actively used, we chose to
use the standard PostgreSQL for the evaluation. This
decision was made to eliminate an external variable
(TimescaleDB) from the assessment.

4 EVALUATION AND
DISCUSSION OF RESULTS

In order to evaluate the scalability and reliability
of our solution, numerous performance benchmarks
simulating the previously described IIoT use case
were performed. As detailed previously, the ex-
periments were based on a public dataset of sensor
telemetry data (Stafford, 2020). For the sake of sys-
tematic and reproducible experimentation, we devel-
oped an automated benchmarking framework capable
of starting and terminating components, logging uti-
lization, gathering results, and generating reports.

The experiments presented were performed on
HUN-REN Cloud (Héder et al., 2022), a federated,
community cloud based on OpenStack. We utilized
the resources of a single m2.2xlarge flavoured virtual
machine instance, featuring a 16-Core virtual CPU
(Intel Xeon Gold 6230R) and 32 GB of memory. All
components were deployed using Docker.

Three containers were launched in order to act
as parts of a sensor network, and provide a stable
stream of time-series data. Under the hood, the sen-
sor containers were reading rows from the dataset and
transforming them to JSON objects before forward-
ing them to the message broker. In order to enable the
evaluation of the scalability of IndraFlow, a delay pa-
rameter was implemented, which determines the rate
at which the sensors send out messages. The sen-
sors were generating data throughout a five minute
benchmark period in all presented cases. The first
step in the message flow was an open source MQTT
message broker, Mosquitto (Light, 2017). The main
aim of this use case is to provide long-term storage
for the messages received by the broker, namely to
store them in a PostgreSQL (Stonebraker and Rowe,
1986) database, which serves as the final destination
for the flow of data. IndraFlow interconnects the
source and destination systems and handles the de-
livery of messages and the transformation of time-
series data into records of a relational database. The
executed benchmarks were scaled twofold: the deliv-
ery rates, throughput, and latency of IndraFlow were
measured with message frequencies from 120Hz to
up to 845Hz, and with pipelines consisting of 1 to
up to 16 Spans. While in the 1-Span case all mes-
sages were handled by the single Span, in Multi-Span
configurations the messages are balanced among the
Spans using a shared subscription model.

We present reliability measurements in Table 1.
The first row of the table describes the destination of
the messages. We performed experiments with the
PostgreSQL database at increasing frequency values,
and repeated with a Dummy destination at the highest
frequency. The two rows below describe the param-
eters of the sensor network. The frequency of mes-
sages, denoted by f , is calculated as follows:

f =
1

δ+θ
×N (4)

Where δ stands for the message delay, and N is
the number of sensors transmitting messages. θ rep-
resents the overhead of publishing messages, which
is increasingly significant as the delay is lowered: at a
delay of 0.025 seconds, the sensors are able to publish
messages without a noticeable overhead, and achieve
a frequency of 120 Hz. In theory, halving the delay
would mean twice the frequency, however, as it can
be observed, due to the effect of the overhead, with
a delay of 0.0125 seconds messages are published at
a frequency of 235 Hz instead of the expected 240
Hz. The message delay is set up before running the
benchmark, and then forwarded to the sensor contain-
ers at runtime. The rows below show the achieved
results of 1- to 16-Span configurations of IndraFlow.

IndraFlow: Seamless Data Transfer and Transformation Between Internet of Things, Robot Systems and Cloud-Native Environments

195



Table 1: Measurements of scalability and reliability focusing on the delivery rate and latency achieved by different pipeline
configurations under increasing message frequency. The 845Hz configuration was also tested with a Dummy destination
model in order to verify the database adapter as a source of bottleneck.

Destination PostgreSQL Dummy

Message Frequency [Hz] 120 235 450 845 845
Delay [s] 0.025 0.0125 0.00625 0.003125 0.003125

1-Span Delivery Rate 100% 30.4% 11.7% 7.3% 100%
Latency [ms] 11 21800 14318 14886 12

2-Span Delivery Rate 100% 100% 48.9% 19.7% 100%
Latency [ms] 8 9 14973 18508 15

4-Span Delivery Rate 100% 100% 100% 39.8% 100%
Latency [ms] 8 9 13 17392 12

8-Span Delivery Rate 100% 100% 100% 100% 100%
Latency [ms] 8 9 13 28 9

16-Span Delivery Rate 100% 100% 100% 100% 100%
Latency [ms] 8 9 13 19 9

(a) Latency of messages at 850Hz. (b) CPU Utilization of a single Span at 120Hz.

Figure 3: Latency and CPU utilization measurements with different configurations.

The delivery rate represents the percentage of mes-
sages successfully stored. The latency, measured in
milliseconds, shows the amount of time between the
sensors publishing a message, and it being stored
by the PostgreSQL database. The presented values
were taken as the median of three 5-minute bench-
mark executions. In case of the latency, the median
value for all messages sent is first selected for each
run. As it can be seen, an IndraFlow pipeline consist-
ing of just a single Span handles a 120 Hz message
flow without errors, however becomes highly unre-
liable beyond this point, storing smaller and smaller
fractions of total messages sent as the frequency in-
creases. It can also be observed that the message loss
is accompanied by latency values that are several or-
ders of magnitude larger. The measurements show
that scaling the pipelines, namely increasing the num-
ber of Spans improves the reliability of the solution,
enabling low-latency, lossless message delivery even
for data streams with significantly higher frequency.
IndraFlow is able to achieve lossless message deliv-

ery at the last measurement point, 845 messages per
second, while utilizing 8 or 16 Spans.

We found that the main problem occurring in
high-frequency benchmarks is that due to a bottle-
neck in the destination model, the employed Spans
are simply too busy with storing data, and cannot
keep up with the velocity of messages. In the cur-
rent iteration of IndraFlow, messages are handled one-
by-one, meaning that the database adapters in the
RDBMS model were forced to perform many costly
single insertions, which becomes a limiting factor at
higher frequencies. In order to verify this, additional
benchmarks were executed with a Dummy destination
model, which simply drops messages after the Span
forwards them for storage. The results in the last col-
umn of the table demonstrate that without the bottle-
neck of the database adapters, even a single Span is
able to receive all messages at a frequency of 845Hz.

Figure 3a shows the latency of messages measured
over the duration of a benchmark conducted with 845
messages sent per second. While it was shown pre-

IoTBDS 2024 - 9th International Conference on Internet of Things, Big Data and Security

196



viously that both 8- and 16-Span configurations man-
aged to deliver all the messages from source to des-
tination at this frequency, it can be observed on the
figure that the 16-Span pipeline achieved this with
significantly lower latency. The fastest message took
5 milliseconds in both cases, while to slowest took
526 milliseconds using 8 Spans, and 138 millisec-
onds using 16. The mean latency for 8- and 16-Span
pipelines were 45.66 and 19.18 milliseconds respect-
fully. Based on the histogram on the right side of the
plot, we can conclude that while major spikes in la-
tency occur (especially in the 8-Span case), most of
the messages are delivered with a latency of less then
100 milliseconds. These results nicely demonstrate
why scaling even beyond configurations achieving a
100% delivery rate might be beneficial in use-cases
with time-critical systems.

Lastly, tendencies in the CPU utilization of In-
draFlow were also examined. Measurements of the
CPU utilization percentage of a single Span in dif-
ferent configurations are presented on Figure 3b. As
indicated by the results, scaling the data pipelines to
multiple Spans can be a major factor in not only reli-
ability and performance, but also in the efficient uti-
lization of computational resources. As doubling the
number of utilized Spans nearly halves the CPU uti-
lization per Span, scaled IndraFlow pipelines can be
considered as beneficial options in use cases where
the available processing power in individual devices
might be limited (e.g., Edge and Fog computing).

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented our generic data bridge,
IndraFlow. It features a modular architecture, sup-
porting currently different protocols and systems such
as MQTT, ROS1, ROS2, Kafka and various RDBMS.
Furthermore, it supports custom message transforma-
tions and multiple sources and destinations within a
single bridge instance. Our evaluation has shown that
the scalability of our solution enables it to provide re-
liable and and low latency transmission at high mes-
sage frequencies. Additionally, it was demonstrated
that increasing the number of Spans is beneficial both
in terms latency and the resource utilization of single
Spans, making IndraFlow a promising option in time-
and resource-critical systems.

For future we would like to focus on enhancing
the orchestration of spans, particularly for use cases
requiring multiple spans and more intricate work-
flows (graphs), and enabling components of spans
(source, transform, destination) to run on Function-

as-a-Service (FaaS) platforms such as AWS Lambda
or OpenFaaS (OpenFaaS, 2023).

ACKNOWLEDGEMENTS

The research was partially supported by the Min-
istry of Innovation and Technology NRDI Office
within the framework of the Autonomous Systems
National Laboratory Program. Project no. TKP2021-
NVA-01 has been implemented with the support pro-
vided by the Ministry of Innovation and Technol-
ogy of Hungary from the National Research, De-
velopment and Innovation Fund, financed under the
TKP2021-NVA funding scheme, as well as under
OTKA Grant Agreement No. K 132838. On be-
half of projects ”ARNL: GPU-enabled Cloud-based
Big Data/AI Research Platform” and ”Research on
Hydrogen-Powered, Cooperative Autonomous Re-
mote Sensing Devices and Related Data Processing
Framework” we thank for the usage of HUN-REN
Cloud (Héder et al., 2022) (https://science-cloud.hu/)
that significantly helped us achieving the results pub-
lished in this paper.

REFERENCES

Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S.,
Fernández-Moctezuma, R. J., Lax, R., McVeety, S.,
Mills, D., Perry, F., Schmidt, E., and Whittle, S.
(2015). The dataflow model: A practical approach
to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing. Pro-
ceedings of the VLDB Endowment, 8(12):1792–1803.

Arroyo (2023). Arroyo: Cloud-native stream processing.
https://www.arroyo.dev/. Accessed: 2023-12-01.

Beregi, R., Pedone, G., Háy, B., and Váncza, J. (2021).
Manufacturing execution system integration through
the standardization of a common service model for
cyber-physical production systems. Applied Sciences,
11(16).

Beregi, R., Pedone, G., and Mezgár, I. (2019). A novel
fluid architecture for cyber-physical production sys-
tems. International Journal of Computer Integrated
Manufacturing, 32(4-5):340–351.

Brewer, E. A. (2015). Kubernetes and the path to cloud
native. In Proceedings of the Sixth ACM Symposium
on Cloud Computing, SoCC ’15, page 167, New York,
NY, USA. Association for Computing Machinery.

Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi,
S., and Tzoumas, K. (2015). Apache flink: Stream and
batch processing in a single engine. The Bulletin of the
Technical Committee on Data Engineering, 38(4).

Chaari, R., Cheikhrouhou, O., Koubaa, A., Youssef, H., and
Hmam, H. (2019). Towards a Distributed Computa-
tion Offloading Architecture for Cloud Robotics. In

IndraFlow: Seamless Data Transfer and Transformation Between Internet of Things, Robot Systems and Cloud-Native Environments

197



2019 15th International Wireless Communications &
Mobile Computing Conference (IWCMC), pages 434–
441, Tangier, Morocco. IEEE.

Cloudera (2023). Cloudera dataflow for the public cloud
(cdf-pc) datasheet. https://www.cloudera.com/conte
nt/dam/www/marketing/resources/datasheets/cloude
ra-dataflow-datasheet.pdf. Accessed: 2023-12-26.

Crick, C., Jay, G., Osentoski, S., Pitzer, B., and Jenkins,
O. C. (2017). Rosbridge: Ros for non-ros users. In
Robotics Research: The 15th International Sympo-
sium ISRR, pages 493–504. Springer.

Curry, E. (2004). Message-oriented middleware. Middle-
ware for communications, pages 1–28.

Elastic (2023). Elastic stack: Elasticsearch, kibana, beats
& logstash. https://www.elastic.co/elastic-stack/.
Accessed: 2023-12-27.

Etcd (2023). Etcd: A distributed, reliable key-value store
for the most critical data of a distributed system. https:
//etcd.io/. Accessed: 2023-12-26.

Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec,
A.-M. (2003). The many faces of publish/subscribe.
ACM computing surveys (CSUR), 35(2):114–131.

Fluvio (2023). Fluvio: The programable data streaming
platform. https://www.fluvio.io/. Accessed: 2023-
12-01.

Google (2023). Google Cloud: Apigee API Management.
https://cloud.google.com/apigee. Accessed: 2023-12-
31.

GROOVE X, I. (2016). mqtt bridge: functionality to bridge
between ROS and MQTT in bidirectional. https://gi
thub.com/groove-x/mqtt bridge. Accessed: 2023-12-
31.

Héder, M., Rigó, E., Medgyesi, D., Lovas, R., Tenczer,
S., Farkas, A., Emődi, M. B., Kadlecsik, J., and
Kacsuk, P. (2022). The past, present and future of the
elkh cloud. INFORMÁCIÓS TÁRSADALOM:
TÁRSADALOMTUDOMÁNYI FOLYÓIRAT,
22(2):128–137.

Helm (2023). Helm: The package manager for kubernetes.
https://helm.sh/. Accessed: 2023-12-31.

Ibsen, C. and Anstey, J. (2018). Camel in action. Simon
and Schuster.

Institut für Kraftfahrzeuge, RWTH Aachen, i. (2023).
MQTT client: ROS / ROS 2 C++ Node for bi-
directionally bridging messages between ROS and
MQTT. https://github.com/ika-rwth-aachen/mqtt
client. Accessed: 2023-12-31.

Kreps, J. (2014). Questioning the lambda architecture. http
s://www.oreilly.com/radar/questioning-the-lambda-a
rchitecture/. Accessed: 2023-12-31.

Kreps, J., Narkhede, N., Rao, J., et al. (2011). Kafka: A dis-
tributed messaging system for log processing. In Pro-
ceedings of the NetDB, volume 11, pages 1–7. Athens,
Greece.

Light, R. A. (2017). Mosquitto: server and client implemen-
tation of the mqtt protocol. Journal of Open Source
Software, 2(13):265.

Lourenco, L. L., Oliveira, G., Mea Plentz, P. D., and Ron-
ing, J. (2021). Achieving reliable communication be-
tween kafka and ROS through bridge codes. In 2021

20th International Conference on Advanced Robotics
(ICAR), pages 324–329, Ljubljana, Slovenia. IEEE.

Marosi, A. C., Emődi, M., Farkas, A., Lovas, R., Beregi,
R., Pedone, G., Németh, B., and Gáspár, P. (2022).
Toward reference architectures: A cloud-agnostic data
analytics platform empowering autonomous systems.
IEEE Access, 10:60658–60673.

Marz, N. (2011). How to beat the cap theorem. http://nathan
marz.com/blog/how-to-beat-the-cap-theorem.html.
Accessed: 2023-12-31.

McSherry, F., Murray, D., Isaacs, R., and Isard, M. (2013).
Differential dataflow. In Proceedings of CIDR 2013.
Proceedings of cidr 2013 edition.

MiNiFi, A. N. (2023). Apache nifi minifi:a subproject of
apache nifi to collect data from the point of origin.
https://nifi.apache.org/minifi/. Accessed: 2023-12-
01.

MuleSoft (2023). MuleSoft Anypoint Platform: Enterprise
Hybrid Integration Platform. https://www.mulesoft.c
om/platform/enterprise-integration. Accessed: 2023-
12-31.

Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham,
P., and Abadi, M. (2013). Naiad: A timely dataflow
system. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages
439–455, Farminton Pennsylvania. ACM.

Németh, B. and Gáspár, P. (2021). The design of perfor-
mance guaranteed autonomous vehicle control for op-
timal motion in unsignalized intersections. Applied
Sciences, 11(8).

OpenFaaS (2023). OpenFaaS: Serverless Functions, Made
Simple. https://www.openfaas.com/. Accessed: 2023-
12-31.

Pulsar (2023). Apache Pulsar: Cloud-Native, Distributed
Messaging and Streaming. https://pulsar.apache.org/.
Accessed: 2023-12-31.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., Ng, A. Y., et al. (2009). Ros: an
open-source robot operating system. In ICRA work-
shop on open source software, volume 3, page 5.
Kobe, Japan.

Stafford, G. (2020). Environmental sensor telemetry data.
https://www.kaggle.com/datasets/garystafford/envir
onmental-sensor-data-132k. Accessed: 2023-12-01.

Stonebraker, M. and Rowe, L. A. (1986). The design of
postgres. ACM Sigmod Record, 15(2):340–355.

TimescaleDB (2023). TimescaleDB: Time-series data sim-
plified. https://www.timescale.com. Accessed: 2023-
12-31.

Wang, G., Chen, L., Dikshit, A., Gustafson, J., Chen, B.,
Sax, M. J., Roesler, J., Blee-Goldman, S., Cadonna,
B., Mehta, A., Madan, V., and Rao, J. (2021). Con-
sistency and completeness: Rethinking distributed
stream processing in apache kafka. In Proceedings
of the 2021 International Conference on Management
of Data, SIGMOD ’21, page 2602–2613, New York,
NY, USA. Association for Computing Machinery.

IoTBDS 2024 - 9th International Conference on Internet of Things, Big Data and Security

198


