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Abstract: The convergence of Artificial Intelligence (AI) with Internet of Things (IoT) technologies, known as AIoT,
is revolutionizing industries, including smart cities. However, this transformation introduces challenges in
energy management. Addressing this issue while upholding responsible AI principles requires prioritizing
the sustainability of AIoT solutions through using renewable energy sources. While renewable energy offers
numerous advantages, its intermittent nature necessitates an effective power management system. Developing
a power management system serving as a decision-making platform for AIoT-driven solutions is the goal of
this study. This platform contains two critical components: accurate forecasts of battery “State of Charge”
(SoC), and the implementation of appropriate control strategies, including energy consumption adjustments.
This study focuses on accurate battery SoC forecasts, to this end, an experiment has been designed, and a data
logging system has been developed to produce suitable data since publicly available datasets do not match the
specific characteristics of this research. The SoC forecasting in this paper has been addressed as a multivariate
and multi-step time series forecasting problem, benchmarking various models. Comprehensive evaluations
on datasets with varying time intervals showed the Bi-GRU model outperforming others based on MAE and
RMSE metrics.

1 INTRODUCTION

In our increasingly interconnected world, the Inter-
net of Things (IoT) has emerged as a transformative
technology, changing how data is collected and used
across various domains. As a result of this widespread
adoption of IoT technology, many remarkable inno-
vations have taken place, particularly in the areas of
smart cities and healthcare. These innovations are,
however, accompanied by significant challenges. The
extensive volume of data collected from different sen-
sors and devices during the advancement of IoT solu-
tions poses privacy issues that affect their widespread
adoption, as this data often contains sensitive infor-
mation (Lipford et al., 2022). The transmission of
large amounts of data from IoT devices requires a
high bandwidth, and not all environments support it
(Fetahu et al., 2022). Additionally, IoT data is often
unstructured, large-scale and unclean, which poses
challenges in extracting meaningful insights (Krish-
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namurthi et al., 2020). On the other hand, a valuable
application of Artificial intelligence (AI) is its capa-
bility to uncover insights and opportunities through
data analysis. It is imperative to emphasize the prin-
ciples of Responsible AI when it comes to AI-driven
solutions, which include privacy, ethics, and sustain-
ability. Responsible AI ensures that AI technologies
are developed and used in ways that protect individ-
ual privacy, maintain ethical standards, and reduce
environmental impact by promoting energy-efficient
practices and energy management (Barredo Arrieta
et al., 2020). AI integration with IoT ecosystems has
empowered them with the capability to analyze vast
amounts of data, derive insights, and facilitate au-
tonomous decision-making. The convergence of AI
and IoT technologies, known as AIoT, is introducing
a new era of smart and adaptive systems, accelerat-
ing innovation and increasing efficiency across a vari-
ety of industries (Zhang and Tao, 2021). Smart cities
are one of the sectors where AIoT is bringing signifi-
cant innovation. In order to leverage the full power
of AIoT, it is important to address IoT challenges
and adhere to responsible AI principles, in which pri-
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vacy, ethics, and sustainability are all taken into ac-
count. As a result, BusPas Inc., a Montreal-based
company, is offering a smart platform using AIoT in
order to tackle these challenges and meet the current
demand for smart mobility. Their idea involves re-
placing regular bus stop signs with intelligent and in-
terconnected displays named “SCiNe” which stands
for “Smart City Network”. Besides showing real-
time information regarding bus schedules, this de-
vice is equipped with several IoT sensors, including
a light sensor, environment sensors, an Infrared sen-
sor, microphones, speakers, and a fisheye camera.
These sensors enable the intelligent display to col-
lect valuable data at bus stops, making them strate-
gic hubs for gathering information on passenger and
vehicle flows, environmental conditions, traffic pat-
terns, ridership, and more. This data contributes to
enhancing mobility and optimizing transportation ser-
vices. Despite this, what truly distinguishes this intel-
ligent display is its embedded computational capabil-
ities. Through the use of AI at the edge, this device
enables real-time data processing at bus stops while
preserving user privacy by only transmitting descrip-
tive information, not only safeguarding privacy but
also streamlining data transmission due to the reduced
data volume after processing. The advancement of
AI technologies has resulted in larger and more pow-
erful models capable of performing complex tasks.
However, these larger models are energy-intensive,
which poses a challenge. Furthermore, IoT technolo-
gies are developing rapidly, creating new challenges,
one of which is managing energy resources efficiently
(Guenfaf and Zafoune, 2023). This challenge is fur-
ther compounded when integrating AI with IoT in
AIoT-driven solutions. To address these challenges
and uphold the principles of responsible AI, it is im-
portant to ensure the sustainability of these solutions.
The use of renewable energy sources is a promising
approach to addressing this challenge. Following this
approach, SCiNe is powered by a lithium-ion battery
that derives its charge from a solar panel, showcas-
ing its dedication to sustainability. Renewable energy
sources, like solar panels, offers benefits such as re-
ducing reliance on fossil fuels and cutting costs. It
can be harnessed in various locations, reducing de-
pendence on centralized grids and increasing energy
self-sufficiency. However, challenges exist in manag-
ing the intermittent nature of renewable sources for
a consistent energy supply for AIoT devices (Rathod
and Subramanian, 2022). Moreover, when renewable
energy sources are not producing enough power, en-
ergy storage is required to ensure a reliable energy
supply. However, current storage technologies have
capacity and efficiency limitations (Bharatee et al.,

2022). Therefore, an effective power management
system is essential to mitigate these challenges. In
systems based on renewable energy sources, predic-
tive control techniques have recently been offered
as a way to cope with uncertainty and intermittency
of energy production and consumption (Elmouatamid
et al., 2020). The State-of-Charge (SoC) of batteries,
which indicates the amount of energy stored in them,
is one of the main parameters for the development of
these techniques. Consequently, effective power man-
agement of renewable energy systems involves two
key aspects: accurately forecasting batteries SoC, and
the implementation of appropriate control strategies
such as adjusting energy consumption patterns, to en-
sure stable and reliable system operation. This power
management system serves as a decision-making sys-
tem, defining different service levels for the device.
At each service level, certain functionalities of the de-
vice are limited to control power consumption. Based
on the predicted SoC of the battery, and considering
weather and solar conditions in the future, the sys-
tem switches between these service levels dynami-
cally. The main objective of this study is to develop
such an effective power management system for AIoT
solutions, exemplified by our work on SCiNe, with
a specific focus on accurate battery SoC forecasting.
This SoC forecasting plays a central role within the
broader decision-making system, all while making ef-
ficient use of renewable energies to ensure the practi-
cal sustainability of AIoT solutions. The majority of
previous work in battery SoC forecasting has focused
on microgrid systems, electric vehicles, and grid an-
cillary services. This study fills a gap in battery SoC
forecasting by focusing on a unique application do-
main: developing a power management system for a
battery-powered AIoT device charged through a so-
lar panel. Additionally, the characteristics and scale
of this project are different from previous work, so
publicly-available datasets are not applicable. The
remainder of this study is structured as follows: We
begin by presenting the state of the art in studies on
battery SoC forecasting in different domains and the
forecasting models employed for this purpose. Then,
the Design of Experiment section introduces our ex-
perimental design and data gathering process, empha-
sizing the custom data logging system developed to
collect relevant data. Finally, we exhibit the evalua-
tion results and finish with conclusions and avenues
for future research.

SMARTGREENS 2024 - 13th International Conference on Smart Cities and Green ICT Systems

50



2 LITERATURE REVIEW

Energy storage becomes necessary as a consequence
of using renewable energies when they fail to gener-
ate sufficient power. Batteries are commonly used for
energy storage in Renewable Energy Source systems
and Lithium-ion batteries are often used in this con-
text. The SoC of batteries is one of the main param-
eters can be used in predictive control algorithms in
power management of systems using renewable en-
ergies. The process of determining the current state
of charge of a battery is known as SoC estimation,
whereas SoC forecasting involves predicting the fu-
ture state of charge based on past data and other fac-
tors. While numerous methods exist for SoC estima-
tion in batteries, limited research has been conducted
specifically on SoC forecasting which is an important
aspect of battery management systems (BMS) reliant
on renewable energy sources, as it enables the de-
velopment of effective power management strategies
(NaitMalek et al., 2021). Unlike other battery pa-
rameters, such as voltage, current, and temperature,
SoC cannot be directly measured. Researchers have
studied various methods for accurate SoC estima-
tion, which can be divided into three categories: con-
ventional methods, model-based methods, and data-
driven methods (Park et al., 2020). The focus of
this study is on SoC forecasting rather than estima-
tion. Several studies have investigated SoC forecast-
ing across different domains, employing various mod-
els and techniques. Researchers have used several
time series methods to forecast battery SoC in the
field of grid ancillary services. For instance, (Ardian-
syah et al., 2021) developed an approach for multi-
step SoC forecasting of battery energy storage sys-
tems (BESS) in grid ancillary services, using Long
Short-Term Memory (LSTM) neural networks. This
model considers dynamic grid conditions and vary-
ing power demand, enabling accurate and reliable pre-
dictions of the battery SoC over multiple time steps.
(Ardiansyah et al., 2022) proposed a Seq2Seq regres-
sion approach for multivariate and multi-step fore-
casting of BESS in frequency regulation service. The
model showed promising results in accurately pre-
dicting SoC, enabling efficient use of BESS. Another
domain in which SoC forecasting has been studied,
is in Micro grids, such as (NaitMalek et al., 2021).
That paper developed an embedded system for real-
time forecasting of battery SoC, enabling effective
energy management and decision-making in micro-
grid systems. In (Elmouatamid et al., 2020), MAP-
CAST, an adaptive control approach enhanced by pre-
dictive analytics, one of which is SoC forecasting,
is used to achieve energy balance in microgrid sys-

tems. By combining predictive analytics with adap-
tive control techniques, the proposed method opti-
mizes energy usage and ensures a stable energy bal-
ance, leading to improved energy management and
reliable operation in microgrid systems. One of the
key concerns of electric vehicle (EV) customers is
the driving range which depends mainly on battery
capacity. Forecasting battery SoC is therefore use-
ful in this context as well. In (NaitMalek et al.,
2022) Youssef NaitMalek et al. introduced a hybrid
method for accurate SoC forecasting in EVs. The ap-
proach combines a machine learning algorithm with
an EV model to forecast battery SoC. The machine
learning algorithm predicts vehicle speed, which is
then used as input for the EV model to determine
the battery SoC. The work presented in (NaitMalek
et al., 2019) also explored the integration of predic-
tive analytics techniques for multi-horizon forecast-
ing of battery SoC and contributes to the develop-
ment of an intelligent management system for battery-
powered electric vehicle. A variety of forecasting
techniques and algorithms have been applied in bat-
tery SoC forecasting. (NaitMalek et al., 2022) used
linear regression for SoC forecasting, which offered
simplicity and interpretability, making it suitable for
real-time SoC forecasting in battery-powered elec-
tric vehicles. However, to address the limitation of
not capturing complex nonlinear patterns in linear re-
gression, alternative algorithms such as decision trees
(DT) were employed in (Mashlakov et al., 2019). It is
worth noting that decision trees can be prone to over-
fitting, and ensemble methods like random forests
(RF) or gradient boosting can be employed to mit-
igate this issue and further enhance SoC forecast-
ing performance. In light of this, (Mashlakov et al.,
2019) also applied random forest and Light Gradient
Boosting Machine (LightGBM), whereas (NaitMalek
et al., 2019) leveraged the power of Extreme Gradi-
ent Boosting (XGBoost). Moreover, in (Ardiansyah
et al., 2021), advanced deep learning architectures in-
cluding LSTM, Gated Recurrent Unit (GRU), Bidi-
rectional Long Short-Term Memory (Bi-LSTM), and
Bidirectional Gated Recurrent Unit (Bi-GRU) were
investigated. These recurrent neural network variants
demonstrated their ability to capture temporal depen-
dencies and long-term patterns in SoC data, enabling
more accurate and the multi-step forecasting of bat-
tery SoC. (Ardiansyah et al., 2022) proposed a so-
lution to the challenges of multi-step SoC forecast-
ing by using a sequence-to-sequence (seq2seq) model
in deep regression learning. This model has demon-
strated its effectiveness and robustness in various sce-
narios, making it a reliable approach for accurate mul-
tivariate and multi-step forecasting, as supported by
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previous studies (Hewamalage et al., 2021). In sum-
mary, prior research on battery SoC forecasting has
been mostly centered around domains such as mi-
crogrid systems, electric vehicles, and grid ancillary
services. This research focuses on battery SoC fore-
casting which serves as the foundation for the intelli-
gent power management system designed to optimize
the operation of a battery-powered AIoT device us-
ing solar panel energy, addressing a crucial gap in the
field of SoC forecasting - specifically for this unique
application. Considering the specific characteristics
and scale of this study, a custom dataset was required
and created since public data did not meet the study’s
needs. Three contributions were made in this paper:
the design of an experimental setup and the devel-
opment of a data logging system, handling the prob-
lem as a multi-step and multivariate time series fore-
casting, and conducting a comprehensive model eval-
uation. In order to overcome the shortage of suit-
able datasets in this domain, an experimental setup
was designed and a custom data logging system was
devised to ensure acquisition of relevant and accu-
rate data. Data collection is an essential part of the
study because it provides essential data for analysis
and model development. The paper uses various fore-
casting models, including machine learning and deep
learning approaches, to forecast SoC as a multivari-
ate and multi-step time series problem. Furthermore,
the paper conducts a comprehensive evaluation of the
forecasting models, providing valuable insights into
their performance.

3 DESIGN OF EXPERIMENTS

To gather data for this project, a comprehensive ex-
perimental setup was designed to capture and analyze
the relevant parameters of the battery system of the
device. This system comprised essential components,
including a lithium-ion battery, a solar panel (substi-
tuted with a programmable power supply for lab en-
vironment purposes), a load representing the device
with various subsystems, and an MPPT (Maximum
Power Point Tracking) solar charge controller. The
battery, power supply, and load were interconnected
through the MPPT charge controller, while a com-
puter served as the central control unit for data collec-
tion and control of the power supply. The computer
was connected to both the MPPT charge controller
and the power supply, allowing for real-time moni-
toring and control of the power supply’s parameters.

Figure 1 illustrates the setup configuration. The
collected parameters from the MPPT charge con-

Figure 1: Setup Configuration.

Table 1: Description of Parameters from MPPT Controller.

Category Parameters
Solar Info. Voltage, Current, State, Power

Battery Info. Voltage, Current, Temperature, SoC
Load Info. Current, Voltage, Power

Controller Info. Temperature, State

troller are presented in Table 1, with the data acqui-
sition facilitated by the MPPT controller’s software.

An experimental plan was designed to observe and
analyze the behavior of the battery system. The bat-
tery charging and discharging methodology were the
two crucial aspects that the experimental plan focused
on. Since the experiment was conducted in a con-
trolled lab environment without direct sunlight, a pro-
grammable power supply was used to charge the bat-
tery instead of solar panel. To simulate the charging
effect of the solar panel, solar radiation data for the
desired location were obtained from publicly avail-
able sources. Based on solar radiation values for each
hour, Equation 1 was used to calculate the voltage and
current settings for the power supply simulator. The
device’s solar panel specifications indicated a power
output of 50W under standard test conditions (STC)
with solar radiation at 1000W/m2. This information
was used to calculate the amount of power that the
solar panel would deliver to the battery based on the
actual solar radiation data.

Charge Power =
SR

STC SR
×SP (1)

where: SR = Solar Radiation, STC SR = Solar Radi-
ation at STC, SP = Solar Panel Power at STC.
For instance, if the solar radiation for a particular hour
was measured as 300W/m2, the power supply’s volt-
age and current were adjusted to deliver 15W to the
battery during that hour. This approach facilitated
the simulation of solar charging within the lab en-
vironment. One of the device’s functionalities is to
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send sensor data to the cloud at five-minute intervals
which is called telemetry data. This data is reflect-
ing the activation and deactivation of various subsys-
tems of the device. In this study, for the discharg-
ing methodology, the telemetry data for the month of
February 2023 was used. The collected telemetry data
were employed to precisely reproduce the activation
and deactivation patterns of the subsystems to simu-
late real-world scenarios throughout the experiment.
To ensure consistency in the data gathering process,
the experiment was initiated with a fully charged bat-
tery and incorporated a repetitive cycle. When the
battery SoC reached a critical level close to zero, the
experiment was temporarily paused. The battery was
then charged back to its full capacity, and the exper-
iment was resumed from the point at which the bat-
tery had reached the critical level. This process of
discharging, pausing, recharging, and resuming was
repeated multiple times throughout the experiment,
ensuring a reliable and controlled data collection ap-
proach. Through the carefully planned experiments,
which encompassed the simulated solar charging and
the replication of real-world subsystem activation and
deactivation, a comprehensive dataset was obtained.
This dataset serves as the foundation for the subse-
quent analysis and enables accurate battery SoC fore-
casting.

4 EXPERIMENTS

The dataset produced for this study consists of 40,320
observations, which corresponds to the number of
minutes in 28 days. The data was collected at one-
minute intervals to ensure a high level of detail in cap-
turing the behavior of the battery system. To assess
the impact of different time intervals on forecasting
accuracy, the dataset was resampled into three sub-
sets. This resampling makes a balance between data
granularity and computational efficiency, as the origi-
nal dataset contained a large volume of one-minute in-
terval observations. Based on the resampled datasets,
time series forecasting models were evaluated and re-
sults were compared across different temporal reso-
lutions. The subsets consisted of 2,688 observations
(15-minute interval), 1,344 observations (30-minute
interval), and 672 observations (1-hour interval). This
approach enables a comprehensive analysis of the
dataset and provides insight into the effect of tempo-
ral granularity on forecasting accuracy.

4.1 Data Preprocessing

An exploratory data analysis (EDA) is performed to
preprocess the dataset and select the important fea-
tures to include in the SoC forecasting model. In
Figure 2, the correlation heatmap, which is based on
Pearson correlation coefficients, clearly shows that
the battery voltage and SoC are positively correlated,
with a correlation coefficient of 1. This high correla-
tion is not surprising, considering that the MPPT con-
troller relies on the battery voltage as a crucial factor
in determining the SoC. The pearson correlation co-
efficient r is calculated using Equation 2:

r =
Sxy√

Sxx ·Syy
(2)

where Sxy represents the covariance between variables
X and Y, Sxx is the variance of X and Syy is the vari-
ance of Y.

Figure 2: Pearson correlation heatmap displaying the rela-
tionship between the gathered features and the SoC of the
battery.

According to the correlation values, the SoC is
more correlated with load voltage, solar voltage, and
load current. Therefore, these features become cru-
cial factors to consider in order to improve the SoC
forecasting model. To further improve the feature se-
lection process, mutual information (MI) is employed
alongside correlation analysis. While correlation fo-
cuses on linear relationships between variables, MI
takes into account both linear and nonlinear depen-
dencies. It quantifies the amount of information one
variable provides about another, capturing a broader
range of relationships beyond what correlation alone
can reveal. The MI is calculated as:

MI(X ,Y ) = ∑∑P(X ,Y ) log2

(
P(X ,Y )

P(X) ·P(Y )

)
(3)

where P(X ,Y ) represents the joint probability distri-
bution of variables X and Y , and P(X) and P(Y ) rep-
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resent their marginal probability distributions (Zhou
et al., 2022). Normalized mutual information (NMI)
is used to standardize evaluations across feature
scales. A high NMI score indicates strong depen-
dence between the target feature and the input feature.
NMI scores range from 0 to 1, with 1 representing
perfect correlation (0 = no mutual information). Fig-
ure 3 shows NMI scores between all the features and
battery SoC. Battery voltage, solar voltage, load volt-
age, and battery current have the highest NMI scores,
all with NMI score above 0.2. Therefore, based on
both analyses, the following features can be consid-
ered as features for improving the SoC forecasting
model: battery voltage, load voltage, solar voltage,
load current, and battery current.

Figure 3: Normalized mutual information score between
SoC and the features.

In the experiment, the Date and Time were set as
the time series index. The SoC percentage and the
features selected based on the Pearson correlation and
NMI score were used as input data.

4.2 Forecasting Models

Various multi-step and multivariate time series fore-
casting models were applied to the resampled datasets
with different time intervals to forecast the SoC of
the battery. Both machine learning and deep learn-
ing modeling approaches were used in this study.
Initial benchmarks were established using machine
learning models such as DT and RF. The data was
then modeled using deep learning models including
CNN, LSTM, GRU, Bi-LSTM, and Bi-GRU, in or-
der to capture complex temporal patterns. Forecast
horizons of 2 hours, 5 hours, and 10 hours were
used to evaluate the effectiveness of these models.

Training and testing of the models were conducted
on resampled subsets of data for each forecast hori-
zon. Using this approach, we were able to evaluate
model performance over various time intervals and
forecast horizons. The look-back window determines
the amount of historical data used for forecasting fu-
ture time steps. In this study, the look-back windows
are set to the same duration as the forecast horizons
in each model. Adam optimizer is used for tuning
the developed deep learning models, and the dropout
regularization to avoid overfitting. The forecasting
models were implemented using Keras 2.6.0 API with
Tensorflow 2.12.0 as the backend, within the Python
3.11.4 environment. Table 2 presents the parameters
used for training and evaluating the forecasting mod-
els,

Table 2: Parameters Set for the Models.

Parameter Value
Training and Testing portion 85% and 15% of total data

Validation portion 30% of training data
Normalization MinMax normalization (range 0 to 1)
Regularization Dropout = 0.2 in each layer

Early stop to avoid overfitting Patience = 30
Look-back window size range 2-40 data points

Optimization algorithm Adam
Maximum number of epochs 150

4.3 Evaluation

The forecasting models were assessed using mean
absolute error (MAE) and root mean squared error
(RMSE) to evaluate the accuracy of SoC forecasts.
MAE measures the average magnitude of prediction
errors. It is calculated as the mean of the absolute dif-
ferences between the predicted values (ŷi) and the ac-
tual values (yi) for each observation in the dataset, as
shown in Equation 4. In this equation, n is the number
of observations.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (4)

RMSE is the square root of the average of the squared
differences between the predicted values (ŷi) and the
actual values (yi) for each observation in the dataset,
represented by Equation 5.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (5)

Both MAE and RMSE express average model predic-
tion error in units of the variable of interest, which, in
this study, is the SoC of the battery. The SoC is ex-
pressed as percentage with 100% representing a fully
charged battery and 0% indicating an empty battery.
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Figure 4 provides a detailed comparison of the
forecasting models used in this study, based on the
MAE and RMSE performance metrics. Three resam-
pled datasets with 15-minute, 30-minute, and 1-hour
scales are used to evaluate the forecasting models,
covering forecast horizons of 2 hours, 5 hours, and 10
hours. The figure displays the errors for each model’s
last time step forecast, providing insights into the ef-
fectiveness of the models for long-term forecasting.
It is observed that RMSE errors are generally higher
than MAE errors, indicating RMSE’s sensitivity to
large errors. Additionally, and as expected, errors for
all models tend to increase with increasing forecast
horizons, reflecting the complexity and uncertainty
of long-term forecasts. The Bi-GRU model outper-
forms other models across various forecast horizons
and dataset scales, making it a good choice for more
accurate predictions.

Figure 4: Comparison of forecasting models for the last
time step on each dataset.

Further quantative evaluation of forecasting mod-
els was conducted in addition to visual analysis from
the figure. While the figure enabled comparison of
forecasts for the last time step, Table 3 provided an
assessment of the models’ overall performance. This
evaluation involved comparing the average errors for
all time steps across the longest forecast horizon of 10
hours. In this way, the assessment allowed for eval-
uating the model’s accuracy and reliability across the
entire forecast period, gaining a better understanding
of their overall performance and forecasting capabili-
ties. Bi-GRU model has the lowest MAE and RMSE,
indicating the highest accuracy among all models.

Table 3: Overall Forecast Performance on Test Data for the
Horizon of 10 Hours.

Models 15 min dataset 30 min dataset 1 hour dataset
MAE RMSE MAE RMSE MAE RMSE

DT 6.02 7.33 4.76 6.91 6.20 7.46
RF 4.49 5.71 3.56 5.36 4.70 5.84
CNN 4.45 5.60 3.91 4.92 4.39 5.59
LSTM 4.63 5.34 3.88 4.69 4.24 5.46
GRU 4.46 5.30 3.71 4.55 3.39 4.34
Bi-LSTM 3.88 4.69 3.70 3.42 2.93 3.72
Bi-GRU 3.61 4.57 2.55 3.26 2.79 3.66

Considering both visual and quantitative assess-
ments, the Bi-GRU model consistently outperforms
other models, highlighting the effectiveness of its
bidirectional architecture and gated recurrent units for
Battery SoC forecasting.

5 CONCLUSION

The integration of AI and IoT in AIoT-driven solu-
tions presents innovation, but also energy challenges.
To tackle these challenges while adhering to the prin-
ciples of responsible AI, it is crucial to prioritize the
sustainability of these solutions through the promis-
ing adoption of renewable energy sources. Despite
the benefits of renewable energy, challenges such as
its intermittent nature necessitate the implementation
of an effective power management system. This study
focused on developing an effective power manage-
ment system, serving as a decision-making frame-
work for AIoT solutions. It was exemplified by
the development of a battery-powered AIoT device
charged through a solar panel named “SCiNe”, with a
specific emphasis on accurate battery State of Charge
(SoC) forecasting. To understand the behavior of
system, an experiment was designed and a custom
data logging system was developed to gather relevant
data, enabling accurate analysis and model develop-
ment. The study explored the multivariate and multi-
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step time series forecasting domain, using a variety of
models, including DT and RF, to deep learning mod-
els of CNN, LSTM, GRU, Bi-LSTM, and Bi-GRU.
The models were evaluated using both last time step
forecasts for a comparative view and average errors
over the entire forecast period for a comprehensive
evaluation. The Bi-GRU model outperformed other
models across datasets with varying time intervals and
forecast horizons. These findings highlight the poten-
tial of the Bi-GRU model for real-world applications
in similar systems. Incorporating additional input fea-
tures, such as weather and solar data, exploring alter-
native time series forecasting models, and integrating
the SoC forecasting solution into the decision-making
system, offer promising avenues for future enhance-
ments in the study. This study has primarily ad-
dressed the first phase of the decision-making system
for managing AIoT device power – accurate battery
SoC forecasting. The next step is to design and im-
plement control strategies that enable dynamic adjust-
ments to service levels of the device. These service
levels define specific operating modes for the device,
with each level corresponding to different function-
alities and power consumption limits, ensuring both
system stability and power efficiency. These enhance-
ments lead to the development of a sustainable power
management system for AIoT applications.
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