Analyzing MQTT Attack Scenarios: A Systematic Formalization and

TLC Model Checker Simulation

Amina Jandoubi' @2, M. Taha Bennani' @, Olfa Mosbahi2®¢ and Abdelaziz El Fazziki>®4

VLIPSIC Laboratory, Faculty of Sciences of Tunis, University of Tunis El Manar,
Tunis, 2092, Tunisia

2LISI Laboratory, National Institute of Applied Sciences and Technology (INSAT), University of Carthage,

Keywords:

Abstract:

1 INTRODUCTION

Tunis, 1080, Tunisia

3 Computer Science Dept, LISI Laboratory, Caddi Ayyad University of Marrakesh, Marrakech, Morocco

SIGIRO, MQTT, LTL, Formalizing, Attack Scenarios, TLC Model Checker.

The SIGIRO project seeks to create an intelligent system for managing water resources in Marrakech-Safi
and Tunisia’s northwest regions. The project introduces a systematic monitoring process to ensure adaptive
control to address climate change. SIGIRO gathers data using the MQTT protocol, which has been the target
of several cyberattacks in recent years. The absence of a formal description of these attacks leaves the field
open to interpretation, leading to distinct implementations for a given attack. In this article, we formalize these
attacks, provide descriptions, and check their exactness. We offer a systematic approach to formalizing seven
attack scenarios targeting the MQTT protocol. Using the LTL temporal logic formalism, we generate 12 LTL
formulas, each precisely describing a specific attack scenario. We classify these formulas into four categories
according to a sequence of observation and injection events. These events are the abstract elements needed
to control the attacks’ implementation. We verify our proposed formulas using the TLC Model Checker. We
show the procedure to encode the LTL formula using TLA+ language. For each attack formula, the verification
process generates a counterexample proving the occurrence of the formalized attack. These counterexamples
model the execution sequence leading to the breach while providing key metrics such as the number of states
generated, the number of pending states, the elapsed time, and the identification of redundant states. Based on
the execution traces obtained, we formulate proposals for enhancing the specification of the MQTT protocol.

sors used, network, data exchanged, and communi-
cation protocols associated with water resource man-

The SIGIRO project aims to set up an intelligent sys-
tem for the integrated management of water resources
in the Marrakech-Safi and Tunisia’s northwest regions
in response to the challenges imposed by climate
changes. The initiative is based on the systematic col-
lection of data relating to the quality, quantity, and
availability of water from various sources, including
rivers, lakes, water tables, reservoirs and groundwa-
ter. This information will serve as a basis for plan-
ning climate change adaptation measures in the re-
gion. The data is collected via an IoT platform re-
lying on IoT sensors. Monitoring the water manage-
ment platform encompasses monitoring the IoT sen-

(12 https://orcid.org/0000-0002-1824-1238
b@ https://orcid.org/0000-0001-6693-6352
¢ https://orcid.org/0000-0002-0971-2368
4@ nttps://orcid.org/0000-0002-0302-234X

370

Jandoubi, A., Bennani, M., Mosbahi, O. and El Fazziki, A.

agement. It ensures the correct functioning of the
platform, including hardware and software compo-
nents, data quality, security, and integrity. Indeed,
compromised or incorrect data can have a signifi-
cant impact on the quality of decisions taken. How-
ever, problems arise when protocols cannot preserve
data integrity, when hardware is misconfigured, ex-
posing it to the risk of intrusion, and when gaps are
found in the management platform. In such circum-
stances, there is no guarantee, for example, that wa-
ter level readings or pollution data will remain un-
changed. The consequences of such problems can
be severe, such as failure to detect pollution in water
used for irrigation or incorrect programming of dam
gate openings. That’s why the SIGIRO project is de-
ploying a systematic process to strengthen monitor-
ing at the water management platform level. It aims

Analyzing MQTT Attack Scenarios: A Systematic Formalization and TLC Model Checker Simulation.

DOI: 10.5220/0012625600003687
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 370-378

ISBN: 978-989-758-696-5; ISSN: 2184-4895

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

Analyzing MQTT Attack Scenarios: A Systematic Formalization and TLC Model Checker Simulation

I8 MQTT
In AMQP
COAP

Evaluation rate of number of attacks

0
2009 2012 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Figure 1: Evaluation rate of number of attacks by CVE.

to identify vulnerabilities and potential risks linked to
climatic factors.

The rapid expansion of the Internet of Things
(IoT) and the diversity of connected devices, often
need more adequate security measures. According to
the latest IoT analytic report published in May 2023
(IoT-Analytics, 2023), over 16.7 billion IoT devices
are expected to be connected worldwide, heighten-
ing concern about the increase in attacks in this area.
The NVD (National Vulnerability Database) is cru-
cial in addressing this issue. This public database is
managed by the National Institute of Standards and
Technology (NIST) in the USA. The NVD collects
information on software vulnerabilities from vari-
ous sources, including security researchers, software
manufacturers, government organizations, and public
reports (NVD, 2023). The NVD uses CVE (Common
Vulnerabilities and Exposures) to standardize refer-
ence vulnerabilities in its database, enabling IT secu-
rity professionals to track, report, and resolve these
vulnerabilities consistently and standardized (CVE,
2023). According to the latest data, there have been
1,210 IoT-related attacks since 2015. This significant
increase in attacks reflects growing security concerns
in the IoT field. In our IoT platform, data is transmit-
ted via the Internet using IoT communication proto-
cols such as CoAP, AMQP, and MQTT. As figure 1
shows, there is an annual assessment of the number
of attacks discovered. With the CoAP protocol, 24
attacks we recorded since 2018. On the other hand,
with the AMQP protocol, the number of attacks has
increased to 37 since 2009. Finally, we observed a
significant increase with the MQTT protocol, totaling
112 attacks. In 2023, domain experts discovered 30
new attacks linked to the MQTT protocol. This trend
underlines the importance of remaining vigilant and
reinforcing the security of IoT communications, par-
ticularly with the MQTT protocol.

We noted a crucial aspect in these sources, namely
that the descriptions of attacks are informal, provid-
ing only information on the nature of the incidents.
This poses challenges for attack prevention and re-

sponse, as the lack of detailed descriptions can make
it challenging to identify appropriate countermeasures
to avoid or mitigate attacks. Effective vulnerability
and incident management often require formal docu-
mentation, as informal descriptions can lead to a non-
deterministic interpretation. Such formal documenta-
tion would detail attacks and vulnerabilities and pro-
pose specific actions to prevent or mitigate risks. In
this context, we set out to systematically explain in-
tentional attacks, using a structured process to provide
a formal description of a set of vulnerabilities.

Our description approach uses a temporal logic
formalism called Linear Temporal Logic (LTL). In
this article, we present a formalization of seven com-
mon attacks against the MQTT protocol, which led to
the creation of 12 LTL formulas, each precisely rep-
resenting a specific attack scenario. We then verified
these formulas using the TLC simulator. TLC is a
software tool widely used for model checking, par-
ticularly in computer systems and protocols. When
a formula is violated, TLC generates a counterexam-
ple that models the execution sequence leading to the
violation while providing four key metrics: the num-
ber of states generated, the number of distinct states
found, the number of states waiting, and the elapsed
time. Based on the execution traces obtained with
TLC, it becomes possible to design a set of patches
aimed at improving the protocol, which has a signifi-
cant impact on IoT platform monitoring.

The remainder of this document is organized as
follows: Section 2 provides an overview of previous
work, reviewing related research and studies in the
field. The following section outlines the essential pre-
liminary elements for formalizing and verifying at-
tack scenarios. It establishes a contextual basis by
detailing two specific languages: the temporal logic
formalization LTL and the algorithmic modeling lan-
guage PlusCal-2.Section 4 examines the seven attack
scenarios and their classifications and explains the as-
sociated formalization method. Section 5 discusses
the formula verification process, illustrated by an ex-
ample run. Finally, Section 6 includes an evaluation
of the results obtained, concluding with a proposal for
a set of corrections to be made to the specification.

2 RELATED WORK AND
MOTIVATION

There are two main ways of verifying protocols: test-
ing and formalizing properties.

Testing involves executing concrete tests to evalu-
ate the protocol’s behavior in various situations. The
study in (Stijn et al., 2017) offers a detailed exam-

371

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

ple of applying this method. Researchers are work-
ing to develop and apply a formal approach to eval-
uating protocol implementations, also known as con-
formance testing. Specifically, they examine whether
each protocol implementation conforms to standards
moderated by regulations previously defined by the
security community. In this article, the research
team reviewed the implementation of the MQTT pro-
tocol, recently standardized by ISO. To carry out
these compliance tests, the researchers used TTCN-
3, a specification and execution language that has
demonstrated its effectiveness in conducting compli-
ance tests. The researchers evaluated the compliance
of three open-source implementations of the MQTT
protocol, namely Mosquitto, Emqtt, and RabbitMQ.
The tests during this research involve sending mes-
sages to the SUT (System Under Test) and analyzing
the corresponding responses. The researchers suc-
ceeded in automatically running 13 tests, each rep-
resenting a test of a specific standard. According to
these tests’ results, all three evaluated implementa-
tions demonstrated partial compliance with the stan-
dard norms. While TTCN-3 can be crucial in validat-
ing telecommunications systems, it is not explicitly
oriented toward modeling security aspects such as at-
tacks or vulnerabilities.

Formalizing properties means expressing a sys-
tem’s characteristics or expected behaviors precisely
and formally. Using proper analysis tools, such as
model checking (UPPAL SMC, TLC), it is possible
to check whether the system respects the specified
formal properties automatically. In (Houimli et al.,
2017), the authors provided a semi-formal modeling
of the MQTT protocol using UML, followed by im-
plementing a formal model with timed and probabilis-
tic automata using the UPPAAL toolset. UPPAAL
offers the possibility of verifying the MQTT proto-
col using its SMC model-checker for in-depth qual-
itative and quantitative analysis. However, a notable
limitation of this approach lies in the general nature
of the properties verified, which need to be specifi-
cally formulated to capture particular attack scenar-
i0s. While important, general properties such as per-
manence, security, reachability, number of active and
inactive nodes, and message transfer and reception
success rates are not necessarily designed to detect
specific vulnerabilities to potential attacks. By focus-
ing exclusively on general properties, there is a risk
that particular attack scenarios will go undetected, as
generic properties are not always suitable for identi-
fying specific malicious behavior.

Temporal Logic of Actions (TLA+) is frequently
used to specify distributed and concurrent systems. In
(Akhtar and Zahoor, 2021), Akhtar and Zahoor ap-

372

plied a formal method based on TLA+ to verify the
correctness of the MQTT protocol. They used the
PlusCal-2 algorithmic language to define the three
components of the protocol, which were then trans-
lated into formal TLA+ specifications. These spec-
ifications were submitted to the TLC model checker
for validation of the safety and durability properties
defined for the system. Precisely, the TLC model-
checking tool reproduces specific unexpected system
behaviors. Compared with existing methods, TLC en-
ables a particular behavior or execution trace to be
generated each time a property is violated. The au-
thors have taken an initial step in attack formaliza-
tion. They have formalized a specific attack scenario
in which an attacker monitors the network traffic of
the MQTT broker. The attacker intercepts a CON-
NECT message sent to the Broker by any client and
substitutes his own CONNECT message instead. In
this context, the Broker authorizes the connection, as
no security measures are in place to detect or prevent
such an attack.

In this context, we have proposed a set of formu-
las specifying seven distinct attacks targeting MQTT
protocol services and their variants using Linear Tem-
poral Logic (LTL). Our LTL-based formalization re-
lies on the combination of event sequences model-
ing the moments when vulnerabilities are injected
into the protocol during the execution of the attack
scenarios. Before formalizing the attacks, we tested
whether or not these attacks existed in the MQTT pro-
tocol using the Mosquito tool (Mosquitto, 2018). We
have posted the code for the attack scenarios in the
following link : https://github.com/aminajandoubi/
formalization-of-attacks-MQTT. This formalization
is of crucial importance for describing vulnerability
injections. Further, we tested these formulas using
the MQTT specification proposed by the researchers
in (Akhtar and Zahoor, 2021). This specification of-
fers the possibility of tracing the violation of a for-
mula, enabling us to design solutions to prevent the
realization of these attack scenarios.

3 PRELIMINARIES

This section recapitulates the essential preliminary el-
ements for formalizing and verifying attack scenarios.
It establishes a contextual basis by detailing two spe-
cific languages: the temporal logic formalization LTL
and the algorithmic modeling language PlusCal-2.

Analyzing MQTT Attack Scenarios: A Systematic Formalization and TLC Model Checker Simulation

3.1 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) is a formal language
used to express and reason about systems’ temporal
properties. It is a type of temporal logic that deals
with ordering events in time. It specifies the expected
behavior of a transition system (TS) by selecting the
only possible future (Baier and Katoen, 2008).

Let K = (S,AP,L,R) be a Kripke structure, where
S is a set of states, AP is a set of atomic propositions,
L is a mapping L : S — 247 and R is a total relation.

The following grammar defines LTL:

D = true | false |a | PIADP2| D |op | P1UD2
| @1 = @2 | Bl ¢ D2

The semantics of a temporal formula is provided by
the satisfaction relation:

TS k= : (K x S x FORMULA) — {True, False}

LTL is given by the standard boolean logic enhanced
with temporal operators:

* {: “eventually” (eventually in the future)
* []: “always” (now and forever in the future)

* —: “Not” (negation)

3.2 PlusCal-2 Language

The PlusCal-2 version, developed by Sabina Akhtar,
extends and perfects the PlusCal algorithmic model-
ing language, initially designed by Leslie Lamport
under the name +Cal. Once a PlusCal-2 model has
been established, it can be compiled in TLA+ to en-
able model verification using tools such as The TLC
(The TLA+ Model Checker) (Akhtar et al., 2011).
To facilitate the verification of properties, PlusCal-2
offers a section within its code structure dedicated
to the definition of properties. In this section, we
use a temporal term marking the beginning of a
temporal assertion to express properties. PlusCal-2
uses temporal logic, more specifically TLA+ logic,
to formulate and verify temporal properties within
concurrent and distributed systems, according to the
following grammar:

* Propositional Logic

Propositional logic is the mathematics of the two
Boolean values TRUE/ FALSE, and the five oper-
ators (disjunction (or), conjunction (and), negation
(not), implication (implies), equivalence (is equiva-
lent to)) are as follows :

VAN~ [=>]<=>

e Sets

Sets denoted (S), represent groupings of elements.
They can be defined and manipulated in TLA+ speci-
fications to model states and transitions within a sys-
tem. The most common operations on sets are:

NJUTC]
 Predicate Logic

Once sets are available, asserting that a formula is
valid for all or some elements becomes natural. Pred-
icate logic extends propositional logic by introducing
the two quantifiers :

\A\E
The formula \A x € S : F, asserts that formula F is
true for every element x in the set S. In contrast, the
formula \E x € S : F asserts that formula F is valid
for at least one element x in S.

¢ Temporal Operators

Temporal operators are used to express temporal
properties about the behavior of a system. Three of
the most commonly used temporal operators are :

% [JF : Fis always true

« <>F:Fis eventually true

3.3 Rules for Transforming

Table 1 shows the equivalences between the symbols
we have used in LTL and the operators used in TLA+:

e ”Temporal”: This symbol is specific to TLA+
and represents the notion of time in logic. In LTL,
there is no equivalent symbol.

* ”Eventually”: indicates that a proposition will be
true at some point in the future.

* "y’ and "¢ are used to represent atomic propo-
sitions, where /.y = TRUE or I.0 = TRUE means
that the proposition is true.

* ”Implication”: indicates that if a proposition is
true, then another proposition will also be true.

* ”Negation”: is used to negate a proposition.

Table 1: Rules for transforming.

LTL TLA+
temporal
<>
Iy =TRUE
1.0 =TRUE
=>

~

1 ele|<o

373

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

4 ATTACKS SPECIFICATIONS

This section examines the seven attack scenarios and
their classifications and explains the associated for-
malization method.

4.1 Attack Scenarios

As a first step, we formalized seven common attacks
targeting the MQTT protocol. The attack scenarios
are detailed in (Wang et al., 2021) and (Jia et al.,
2020). Table 2 shows the main characteristics of each
attack scenario. The first three columns detail each
scenario’s identifier, the Attack Name, and impact.
First, an attacker intentionally publishes malicious
messages on a specific topic to mislead the system and
induce a subscription. The second attack involves the
interception and recording of communication data,
followed by re-transmission, which can lead to var-
ious consequences such as identity theft, data manip-
ulation, or violation of the integrity of the informa-
tion exchanged. The malware can return nine differ-
ent types of messages the MQTT client sends: CON-
NECT, PUBLISH, PUBREL, SUBSCRIBE, UN-
SUBSCRIBE, PUBACK, PUBREC, PUBCOMP, and
DISCONNECT. The third attack involves identity
theft. In the fourth attack, an attacker maliciously sub-
scribes to topics, violating confidential data. The fifth
attack consists of manipulating or surpassing a cus-
tomer’s will by injecting an unauthorized malicious
connection message (will) into the topic dedicated to
the will. The sixth attack involves maliciously inject-
ing PUBLISH (retain) messages into an unauthorized
issue. The last attack allows an attacker to take con-
trol of a client’s session to access confidential data.

In the fourth column, we have specified the se-
curity attributes impacted by each attack. These
attributes are essential to ensure confidentiality, in-
tegrity, availability, and other security-related aspects,
where each attack can impact two aspects, either data
or system behavior. As the table shows, attacks 1, 2
and 4 affect behavioral integrity and data confiden-
tiality, while attacks 3 and 7 affect confidentiality.
The last two attacks 5 and 6 only affect behavioral
integrity.

Each attack scenario is characterized by a specific
set of events. This is crucial, as it facilitates under-
standing of the sequential stages of the attack. More
precisely, by examining these events, we can under-
stand the different stages leading to the satisfaction of
the attack scenario. This detailed understanding of the
events associated with each attack scenario can con-
tribute significantly to formalizing these attacks. In
short, formalizing attacks based on this in-depth un-

374

derstanding of events offers a powerful means. It en-
ables attacks to be simulated using a model checker
and provides a formal, systematic system analysis.

4.2 Classification of Attack Scenarios

Table 3 presents a classification of the seven attack
scenarios into four classes based on the LTL formula.

In our formalization approach, the formulas are
divided into two types of properties, namely ¢ and
V. The ¢ properties encompass events related to fault
injection, while the W properties designate observa-
tional events concerning system behavior in the event
of possible fault injections. The table shows that the
classes are classified according to their implementa-
tion complexity. For example, class 1 is considered
the simplest to implement, as it contains only injec-
tion properties. However, class 4 is the most com-
plex, incorporating two observation properties, mak-
ing it more delicate to implement. We can conclude
that the presence of observation properties makes sce-
narios more challenging to realize.

We have created graphical representations for all
the LTL formulas we have formulated.

4.2.1 Class C1

As depicted in Figure 2, the formula asserts that, at
some future point, ¢1 will inevitably lead to ¢2 being

Figure 2: Graphic representation of C1.

4.2.2 Class C2

As we mentioned in figure 3, the formula is eventually
true that if is true, then ¢ will be accurate at some
point in the future.

Figure 3: Graphic representation of C2.

4.2.3 Class C3

This formula ensures that at some time in the future,
if ¢1 and W2 become true, then ¢2 will necessarily be
true later. Figure 4 shows the graphical representation
of this formula. There are two possible representa-
tions due to the flexibility in the order of occurrence
of the first two properties ¢1 and .

4.2.4 Class C4

This formula means that if y1 is accurate at a given
time, then at a later time, W2 will become true. If

Analyzing MQTT Attack Scenarios: A Systematic Formalization and TLC Model Checker Simulation

Table 2: Characteristics of attack scenarios.

ID | Attack Name

Attack Effect

Security Attributes

1 | Malicious Response Topic Publish

Force the subscription

* Behavioral integrity
* Data confidentiality

2 | Replay Attack

Violation of the integrity
of exchanged information

* Behavioral integrity
* Data confidentiality

3 | Client Identity Hijacking

Usurpation of identity

* Confidentiality

4 | Malicious Topic Subscription

Duplication of subscription

* Behavioral integrity
* Data confidentiality

5 | Unauthorized Will Message

Publication via the
connection

* Behavioral integrity

Unauthorized Retained Message

Force publication (retain)

* Behavioral integrity

7 | Faults in Managing MQTT Sessions

Access to confidential data

* Confidentiality

Table 3: Classification of attack scenarios.

Events
LTL formula ID REP v 0
5 1: CONNECT
Cl1 TS =091 = 092) 3 ¢¢2 : PUBLISH
2 msg msg
C2 TS = O(y = 09) 3 CONNECT CONNECT
| SUBSCRIBE ¢¢12:.CP%1§EESCHT
C3 | TSk O((01 A 0W) = 092) T CONNECT
4 SUBSCRIBE o1:
02 : SUBSCRIBE
1: CONNECT
C4 | TS E=O((wl=0y2) = 00) | 7 q;;V . DISCONNECT |~ CONNECT
Rep1l: - @—*O ‘ @"O) @ 5.1 Compilation Phases for the MQTT

Rep2: - @..O@_,O@

Figure 4: Graphic representation of C3.

this implication occurs, then at an even last time, ¢
will become true. A graphical representation of the
formula is given in figure 5.

Figure 5: Graphic representation of C4.

S ATTACKS VERIFICATION

This section outlines the steps in compiling the
MQTT specification. We then put these concepts into
practice by implementing an example. This example
illustrates the compilation process by examining the
attack scenario with ID 3 (Client identity hijacking).

Specification

Compiling the MQTT specification takes place in
three stages, as shown in the figure 6. The first
phase involves drafting the various MQTT function-
alities, formulating the LTL formula to be verified,
and representing the attack scenario in the PlusCal-
2 language. This step serves as a prerequisite for
the next phase of the process. This next phase in-
cludes a PlusCal-2 compiler that translates these into
TLA+ specifications. It is responsible for creating the
TLA+ specification. More specifically, the primary
role of this phase is to produce two files for the TLC
model checker. The first file, called "TLA”, contains
the TLA+ specifications for the algorithm, while the
second file, the configuration file, contains the algo-
rithm’s configuration parameters. We used the MQTT
protocol specification written by Sabina (Akhtar and
Zahoor, 2021). Sabina has modeled the protocol’s
roles: Broker, Publisher, and Subscriber. Our arti-

375

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

Specification MQTT +

Formula 4+ Attack scenario

\Llnput

| PlusCal-2 compiler |

| Output

4 1

TLA file | Configuration file |

| TLC checker |

Figure 6: The compilation phases for the MQTT specifica-
tion.

cle only includes the code for one attack scenario.
We have grouped all the code for the other attack
scenarios in the following link: https://github.com/
aminajandoubi/formalization-of-attacks-MQTT.

5.2 Example of Verification of Scenario

We have chosen to illustrate this compilation process
by examining one attack scenarios. In this attack
an attacker can use the victim’s identity to connect
to the server and take the victim offline. Figure 7
shows the structure of the input file. The first part
of the file presents the three-component MQTT spec-
ification developed by Sabina (Akhtar and Zahoor,
2021). The second part covers the specification that
models the attack scenario. The attack process be-
gins by monitoring packets on the broker’s network.
When the length of the list of “network[BrokerID]”
packets is more significant than zero, it retrieves the
first packet in the list, checks its type, records the
sender’s identifier in the ”pk” variable, then sends a
new "CONNECT” packet to the "BrokerID” address.
This attack can allow the attacker to access private
information or disrupt communication between the
client and the broker, leading to significant security
and confidentiality risks in networks using MQTT.
The final section of the file contains the formula to
be checked, which in our example corresponds to the
formula for class C2 explained in the table 3. In ac-
cordance with the transformation rules for the table 1,
this LTL formula is presented in 1.

temporal— (VI € attaque : (I.OBS
= TRUE = ¢(I.INJ = TRUE)))
We performed the negation of all formulas to iden-

tify possible counterexamples using the TLC checker.
The result is shown in figure 8, clearly indicating

(D

376

\\ Spec MQTT
\\ Spec attacker
process attaque[1]
CONNECT:
when Len(network[BrokerID]) > 0;
with packet = Head(network[BrokerID])
if packet.type = "CONNECT” then
pk := packet.sender;
network := send(BrokerID, [type |-> "CONNECT”,
sender |—> packet.sender]);
10 network[BrokerID] := Tail(network[BrokerID]);
11 OBS := TRUE;
12 end if;
13 end with;
14 if OBS = TRUE then
15 INJ := TRUE;

o 0 AN B W N -

16 break;
17 endif;
18 end loop;

19 end process
20 \\ Formula to be verified

Figure 7: Structure of the input file for the Client identity
hijacking attack scenario.

the detection of a violation of the temporal proper-
ties specified in our input file. The “Error” section

1 TLC Model—checking

2 Error: Temporal properties were violated.
3 The following counter—example:

4 STATE 1: <Initial predicate>

5

6 STATE 17: Back to state 16.

7 1297 states generated, 534 distinct states found, 0
8 states left on queue.Time elapsed:3.481(s)

Figure 8: Execution results produced by TLC model
checker.

suggests that specific temporal properties were not
respected during the state space exploration. Subse-
quently, the output generates a “counterexample” de-
tailing 17 system states violating the specified prop-
erties. Within this sequence of conditions, we can
observe the temporal evolution of a series of events.
Initially, the system is in a state where no client is ac-
tive, three subjects are in the pool, and an “attacker”
process is defined, listening to the broker’s network.
The following states allow processing to be applied
until a state is found that helps the value of the OBS
variable, which represents the y property, change to
TRUE. In the following states, up to state 17, the
INJ variable representing the ¢ property is changed to
TRUE, which causes the TLC model checker to stop
the state exploration process. The complete execution
can be found at the following link: https://github.com/
aminajandoubi/formalization-of-attacks-MQTT.

Analyzing MQTT Attack Scenarios: A Systematic Formalization and TLC Model Checker Simulation

6 EVALUATION

This section includes an evaluation of the results ob-
tained, concluding with a proposal for a set of correc-
tions to be made to the specification.

6.1 Results and Discussion

We have compiled a table containing the information
that appears to result from running the TLC model
checker on the attack scenarios.

The three key measures in the table 4 are:

Table 4: Test results for attack scenarios.

States Distinct Time
generated states found elapsed (s)
2 | CONNECT 3606 1386 3.882
2 PUBLISH 5046 1799 4.119
8 2 PUBREL 593 235 2.496
2 | susscrisE | 1081 431 2.636
3 1297 534 3.481
S 4 1800 | 669 | 4.234

1. Number of States Generated. This first measure
indicates the number of system states generated
during model execution. This measure is essential
for assessing the performance of model checking
and indicates the time needed to complete the pro-
cess.

2. Number of Distinct States Found. The second
measure represents the number of unique and dif-
ferent states among those generated. A high num-
ber of distinct states concerning the total num-
ber of states generated may suggest the presence
of redundancies in the model, requiring optimiza-
tions to speed up the verification process.

3. Time Elapsed. The fourth measure indicates the
time that has elapsed since the start of the opera-
tion or process.

A fourth metric is the number of states remaining in
the model checker’s queue. As the tool explores sys-
tem states, it places them in a queue for subsequent
verification. In our verification of these attack sce-
narios, we obtained a value of zero for this metric,
testifying to the effectiveness of the proof.

The results in the table show that we have suc-
cessfully tested the attack scenarios with the respec-
tive identifiers 2, 3, and 4, except for five message
types in attack 2: UNSUBSCRIBE, PUBACK, PUB-
REC, PUBCOMP, and DISCONNECT. In addition,
we could not test the attacks on identifiers 1, 5, 6,
and 7 due to the lack of certain features in the MQTT

protocol specification. This highlights the importance
of updating the existing specification to include these
missing aspects, allowing the verification model to
consider these essential elements. By ensuring that
the specification is updated correctly, we can close
the identified gaps and guarantee more comprehen-
sive protection against all classes of potential attacks.

6.2 Recommended Modifications

In this section, we have suggested modifications to the
specification developed by researcher Sabina (Akhtar
and Zahoor, 2021). All corrections apply to the code
specifying the Broker process, which constantly lis-
tens on the network. As a first step, we’ve rec-
ommended adding a condition when a "CONNECT”
packet is received, enabling verification of the client
ID. This is intended to prevent class C2 and C3 at-
tacks. The condition consists of checking the ID of
each connection request received in the client list be-
fore accepting it. This measure aims to prevent the
duplication of users with the same ID number, thus
preventing the attacker from reusing messages in the
event of a connection failure. In other words, adding
this condition would reinforce system security by pre-
venting both attacks based on reusing client ID num-
bers and repeated attempts to send the same message.
Secondly, in line with scenario 4 of class C3, it would
be necessary to incorporate a new index at the MQTT
broker level listing all the clients in the network with
which it needs to communicate. Before processing
each connection request, checking whether the re-
quester belongs to our network would be impera-
tive. This verification would prevent attacks seeking
to connect to the network, which could result in ac-
cess to shared sensitive data or data tampering.

7 CONCLUSION

The observation that attack descriptions are often in-
formal is of crucial importance in the security field.
The lack of formality in these descriptions defines a
significant challenge by restricting the clarity and pre-
cision necessary for a thorough understanding of inci-
dents. This shortcoming compromises effective pre-
vention and response measures, as it hinders the accu-
rate identification of vulnerabilities and the formula-
tion of appropriate countermeasures. This underlines
the imperative need to formalize attack descriptions.
In this context, we have developed a proposal to
remedy this shortcoming. We have introduced a sys-
tematic and structured process specifically designed
to formalize a set of vulnerabilities. This approach

377

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

aims to create a robust basis for a deeper understand-
ing of attacks, facilitating the implementation of more
precise and appropriate security measures. By for-
malizing these descriptions, we intend to enhance the
resilience of systems in the face of threats, thus con-
tributing to the overall improvement of the security
posture. We used a temporal logic formalism known
as Linear Temporal Logic (LTL) for our formaliza-
tion. This article outlines our approach to formalizing
seven common attacks against the MQTT protocol,
creating 12 distinct LTL formulas. Each of these for-
mulas precisely represents a specific attack scenario.
We have classified these attacks into four categories
based on their formulation, where each class is char-
acterized by two distinct property types, ¢ and y. The
number of properties in each formulation varies ac-
cording to the events modeling the attack scenario,
thus presenting an essential key to attack classifica-
tion.

Next, we implemented a set of rules to transform
LTL formulations into TLA+ for verification using
the TLC simulator. When a formula is violated, the
TLC simulator generates a counter-example that mod-
els the execution sequence leading to the violation.
We successfully tested the attack scenarios with iden-
tifiers 2, 3, and 4, except for five message types in at-
tack 2: UNSUBSCRIBE, PUBACK, PUBREC, PUB-
COMP, and DISCONNECT. In addition, we could not
test the attacks on identifiers 1, 5, 6, and 7 due to the
absence of certain functionalities in the MQTT proto-
col specification. This highlights the importance of
updating the existing specification to include these
missing aspects, allowing the verification model to
consider these essential elements. By ensuring that
the specification is updated correctly, we can close
the identified gaps and provide more comprehensive
protection against all classes of potential attacks. By
analyzing the execution traces obtained with TLC, we
have developed a set of patches to improve the speci-
fication.

For future systematic work, it is important to ex-
plore several avenues of research to improve security
verification and extend the study. Firstly, developing
the specification used to cover all the missing attack
scenarios is imperative. Secondly, it is essential to
consolidate all the attack scenarios in a single specifi-
cation code and compare the results obtained.

ACKNOWLEDGEMENTS

The Moroccan-Tunisian Research and Development
project PR&D-19/23: SIGIRO funds the work intro-
duced in this paper. This project aims to monitor wa-

378

ter reservoirs in water-stressed regions.

REFERENCES

Akhtar, S., Merz, S., and Quinson, M. (2011). A High-
Level Language for Modeling Algorithms and Their
Properties. In Davies, J., Silva, L., and Simao, A., edi-
tors, Formal Methods: Foundations and Applications,
volume 6527, pages 49-63. Springer Berlin Heidel-
berg, Berlin, Heidelberg. Series Title: Lecture Notes
in Computer Science.

Akhtar, S. and Zahoor, E. (2021). Formal Specification and
Verification of MQTT Protocol in PlusCal-2. Wireless
Pers Commun, 119(2):1589-1606.

Baier, C. and Katoen, J.-P. (2008). Principles of model
checking. The MIT Press, Cambridge, Mass. OCLC:
ocnl71152628.

CVE (2023). CVE. page https://cve.mitre.org.

Houimli, M., Kahloul, L., and Benaoun, S. (2017). For-
mal specification, verification and evaluation of the
MQTT protocol in the Internet of Things. In 2017
International Conference on Mathematics and Infor-
mation Technology (ICMIT), pages 214-221, Adrar,
Algeria. IEEE.

IoT-Analytics (2023). Iot analytics 2023. pages https://iot—
analytics.com/number—connected—iot—devices/.

Jia, Y., Xing, L., Mao, Y., Zhao, D., Wang, X., Zhao, S.,
and Zhang, Y. (2020). Burglars’ IoT Paradise: Un-
derstanding and Mitigating Security Risks of General
Messaging Protocols on IoT Clouds. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 465—
481, San Francisco, CA, USA. IEEE.

Mosquitto (2018). Eclipse Mosquitto. page
https://mosquitto.org/.

NVD (2023). Nvd,. page https://nvd.nist.gov/.

Stijn, v. W., Chris, M., and KPMG, C. (2017). Formal veri-
fication of the implementation of the mqtt protocol in
iot devices. Amsterdam: University of Amsterdam.
Amsterdam: University of Amsterdam.

Wang, Q., Ji, S., Tian, Y., Zhang, X., Zhao, B., Kan, Y., Lin,
C., Deng, S., Liu, A. X., and Beyah, R. (2021). MPIn-
spector: A Systematic and Automatic Approach for
Evaluating the Security of IoT Messaging Protocols.
30th USENIX Security Symposium.

