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Abstract: Rapid global urbanization has resulted in burgeoning metropolitan populations, posing significant challenges 
for managing transportation infrastructure. Despite various attempts to address these issues, persistent 
challenges hinder urban growth. This study emphasizes the crucial need for effective traffic flow forecasting 
in city traffic management systems, with Catania serving as a case study due to its notable traffic congestion. 
Predicting traffic flow encounters obstacles, such as the cost and feasibility of deploying sensors across all 
roads. To overcome this, the authors suggest an innovative two-level machine learning approach, involving 
an unsupervised clustering model to extract patterns from extensive sensor-generated big data, followed by 
supervised machine learning models forecasting traffic within individual clusters. Notably, this method allows 
predictions for roads without sensor data by leveraging a small subset of alternative data sources.

1 INTRODUCTION 

According to recent studies, more than half of the 
population of the world currently resides in cities and, 
in a few decades, this percentage is expected to rise 
(ONU, 2019). This ever-increasing urban population 
has led to an exponential rise in the number of 
vehicles, putting transport systems under enormous 
pressure and causing problems such as congestion 
control, increased travel times, traffic, accidents, and 
traffic law violations (Xu et al., 2020). Despite the 
many attempts to mitigate these problems, traffic 
congestion with its associated issues persists and 
slows down the development of urban areas. 

In recent years, the evolution of big data 
technology has revolutionized problem-solving in 
transportation (Abouaïssa et al., 2016). The field of 
the Internet of Things (IoT) within Information and 
Communication Technologies has gained 
prominence thanks to possibility of creating a web of 
interconnected devices accessible via the Internet. 
This network facilitates easy data exchange through 
various communication channels like Wi-Fi, RFID, 
WSN, NFC, Bluetooth, and more (Swarnamugi and 
Chinnaiyan, 2018). The proliferation of connected 
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devices in smart city setups contributes to an 
exponential increase in collected data volumes 
(Zantalis et al., 2019). The growth of computational 
technologies coupled with the progressive 
development of models for the analysis of the 
abundant data, facilitates the development of 
sophisticated algorithms crucial for traffic analysis  

In the present paper, the authors propose a 
machine learning approach to predict traffic flow 
having input data available from sensors distributed 
around the transportation system of an urban 
scenario. This paper presents an extended version of 
the work developed in (Berlotti et al., 2023). The 
authors have enhanced the earlier research by 
introducing a more intricate model, trained using one 
year of data instead of the initial 3-month period. This 
model is capable of detecting diverse patterns, 
considering also variations across different months. 
Furthermore, additional experiments were conducted 
to test the models during holidays. 

The paper is structured as follows: Section 2 will 
provide an overview of the state of the art regarding 
the paper subject; its content will be finalized to the 
novelty of the proposed approach. In Section 3 the 
authors provide a detailed explanation of the 
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proposed approach. Section 4 will display the 
principal outcomes of the proposal testing. Finally, in 
Section 5 concluding remarks will summarize the 
contents of the paper. 

2 RELATED WORKS 

In this section, the authors provide an overview of the 
methods for the forecasting of traffic flow existing in 
the current literature to identify the differences with 
respect to the approach presented in this study. 

In the literature, current traffic flow prediction 
methods are broadly categorized into three groups. 
The first category comprises statistical methods based 
on mathematical theory. For instance, (J. Liu and 
Guan, 2004) proposed a History Average Model (HA 
model) for static prediction in urban traffic control 
systems.  Instead, according to (Lin et al., 2009) the 
Autoregressive Integrated Moving Average model 
(ARIMA model) is suitable for predicting stable 
traffic flow by considering the sequence as a random 
time sequence (Zhou et al., 2020). The second 
category involves machine learning (ML) techniques 
such as Regression analysis (Zhou et al., 2020) and 
Boosting algorithms (Y. Liu et al., 2020) like 
LightGBM (Chen and Guestrin, 2016), and CatBoost 
(Ke et al., 2017), often used to identify patterns within 
historical data progression and to forecasting and 
regression problems. Finally, the third category 
encompasses Deep Learning (DL) techniques, 
particularly neural networks like Back Propagation 
(BP) (Vijayalakshmi et al., 2021) and Long Short-
Term Neural Network (LSTM) (Li et al., 2020). 
Models such as ST-ResNet (Ma et al., 2015) and 
spatiotemporal graph convolutional networks 
(ASTGCN) (J. Zhang et al., 2017) use various 
architectures to predict traffic flow by modeling 
congested traffic and attention mechanisms. 

The approach of the authors predominantly relies 
on the CatBoost model, employed differently from 
existing literature, as elaborated further in subsequent 
sections. In the present study, the input data given to 
the model are obtained from sensors installed on 
urban roads. Clearly, installing the sensors on all the 
roads of an urban scenario is not possible due to costs 
and other practical reasons. To address the challenge 
of expensive and limited sensor installations on every 
road, the authors use the data collected by sensors 
installed in a subset of roads to predict both traffic on 
the same roads and on roads lacking of sensor data. 

Most current approaches in literature tries to 
address this challenge by examining spatio-temporal 
characteristics between neighboring and distant 

sensors to predict traffic flow in urban areas lacking 
from data but similar to the ones of the collected data 
(Guo et al., 2019). For example, (Y. Zhang et al., 
2023) introduced a spatio-temporal traffic flow 
estimation model that utilizes data from multiple 
locations within the network. The approach 
incorporates various features beyond solely relying 
on traffic flow data. 

The approach of the authors revolves around 
utilizing a two-level machine learning method using 
only traffic flow data. An unsupervised clustering 
model organizes sensor data into clusters, while a 
supervised machine learning model predicts traffic 
flow for each cluster. This approach involves 
assigning roads to clusters using distance metrics, 
enabling precise prediction by employing specific 
forecasting models trained on comprehensive sensor 
data. Section 3 will delve into a detailed description 
of this proposed approach. 

3 PROPOSED APPROACH 

In this section, the authors will provide details 
regarding the proposed approach. In the analysis real 
data from a network of traffic sensors situated in 
Catania, Italy, were utilized. The most important 
problem today in the traffic flow of Catania is 
congestion. Over time, the population of the city 
expanses, forming a unified urban network that 
extends beyond municipal boundaries resulting in 
considerable traffic pressure on Catania, in daily 
congestion in the central area and in amplified 
environmental pollution levels. 

This situation intensified substantially leading to 
the critical need to effectively manage traffic flow in 
Catania through the implementation of forecasting 
methodologies. 

As previously stated, the primary idea proposed 
by the authors is to use a two-level machine learning 
approach, combining unsupervised and supervised 
models. First, an unsupervised model is utilized to 
extract patterns from the traffic flow time series 
collected from sensors, organizing them into multiple 
clusters. Within each cluster, a supervised machine 
learning model will be then developed to predict 
traffic flow for each time series belonging to the same 
cluster. Using distance metrics enables the allocation 
of roads to clusters with minimal observations, 
facilitating predictions. Once the relevant cluster for 
a specific road segment is identified, a machine 
learning model trained on the traffic flow of segments 
within that cluster is employed to predict traffic in the 
new segment. Essentially, distinct models are created 
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for each cluster, allowing the forecasting of traffic 
flow for roads with limited observations sharing 
similar patterns.  

The results outlined in this paper will underscore 
that each model, having been trained on extensive 
time series within the same cluster, can effectively 
generate forecasts for similar but unseen series 
requiring only a minimal number of observations 
from these new series. For these roads lacking 
sensors, since a small subset of traffic data is crucial 
for the forecasting models, it can be obtained from 
alternative sources such as Floating Car Data.  

3.1 Data Acquisition 

Data employed in the model refers to sensors-data 
about the traffic flow of Catania city. Located in the 
eastern part of Sicily, Italy, Catania has a population 
of around 300,000 inhabitants across approximately 
183 km2 (Medina-Salgado et al., 2022). The city is 
part of a larger metropolitan area encompassing the 
main municipality and 26 nearby urban centers. 

Sensor-based date have been collected through 21 
microwave traffic counters known as MOBILTRAF 
300 by FAMAS (www.famassystem.it/it/prodotto/ 
mobiltraf-300), placed across the Catania urban area. 
When any vehicle crosses the electromagnetic field 
generated by two MobilTraf300 sensors, these units 
capture different vehicle-related data, including  the 
date and time of passage, the travel direction, and the 
specific transit lane. To access and retrieve these data, 
FAMAS's traffic manager software, known as 
MobilTraf MANAGER, was used. 

Twelve traffic counters (TCs)—those that were 
operational at the time of data download—were 
chosen from among all the ones present. The period 
under analysis spans from January 1, 2022, to 
December 31, 2022 with data recorded at 5-minute 
intervals.  

Each traffic counter corresponds to a specific 
road, showcasing different characteristics. In the 
following section the authors will describe the steps 
involved in the preprocessing. 

3.2 Data Preprocessing 

The roads analysed can be categorized as single-lane 
roads, two-lane roads in the same direction, or two-
lane roads in the opposite direction. Based on the 
characteristics of each road, distinct data 
preprocessing steps were applied. In details, for roads 
with two lanes in the same direction, the vehicle 
counts from both lanes were summed up in a 
consolidated time series representing the total vehicle 

count for that road. Conversely, time series related to 
roads with two lanes in opposite directions were 
disaggregated into distinct time series to capture 
information about vehicles traveling in separate 
directions on the same road. 

Post a pivot transformation, the final dataset was 
composed of one column for Timestamp and 
additional columns representing the total vehicle 
count for each road and direction. 

The next step was the data cleaning. Two types of 
missing values were identified in the dataset: sensor 
malfunctions, when  a specific TC broke and failed to 
retrieve traffic information, and outliers. Outliers in 
the time series were detected using boxplots and 
replaced with missing values. 

To address missing observations, the technique 
chosen involves filling in missing values using a 
time-based averaging method. This function 
calculates the mean of traffic values for the same 
road, day of the week, and time within the same 
month.  

Lastly, aiming to train the machine learning 
model with hourly data, data have been aggregated 
per hour using the sum as the aggregation function, 
resulting in the total vehicle count recorded for a 
specific street per hour. 

The final dataset comprised 15 columns and 8769 
rows, encompassing all the hours of the day across 
365 days, equating to one year of data. 

3.3 Clustering 

The paper aims to create a ML solution to accurately 
predict traffic flows both on the roads with sensors 
and on the ones where sensors are not installed. To do 
this, the authors use a machine learning model trained 
on a set of sensors sharing similar characteristics to 
forecast traffic flow on a road with a very limited 
number of observations possessing resemblances to 
the sensor-equipped group. Consequently, a 
clustering step is applied.  

The study utilizes Time Series K-means 
(TSkmeans), an adapted version of the traditional K-
means algorithm designed specifically for clustering 
time series data (Huang et al., 2016). In contrast to 
standard K-means, which focuses solely on data point 
values, TSkmeans incorporates temporal 
relationships, considering both values and their 
temporal aspects in cluster formation. Notably, 
TSkmeans employs the Dynamic Time Warping 
(DTW) metric instead of the conventional Euclidean 
distance for measuring similarity among temporal 
sequences. The initial step in TSKmeans clustering 
involves determining the appropriate number of 
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clusters (K), achieved through the use of a silhouette 
score. 

Before clustering, since the time series considered 
exhibit widely varying value ranges, data 
normalization was needed. Normalizing the data 
enables to establish a uniform baseline to prevent the 
clustering algorithm from reacting to feature scales. 
The normalization technique used in the analysis is 
Min-Max scaling, which transforms the range of each 
variable to a standardized 0-1 scale.  

After clustering data, the next step for the analysis 
involves the creation of the forecasting model; next 
paragraph will describe more in detail this step. 

3.4 Forecasting 

The purpose of this step of the analysis is to find out 
the most suitable machine learning algorithm for 
traffic flow forecasting. All the machine learning 
models proposed, were implemented using Darts, 
Python library. (Time Series Made Easy in Python — 
Darts Documentation, n.d.) 

First, the dataset was divided into a training set 
spanning from January 1, 2022, to December 16, 
2022, and a test set spanning from December 17, 
2022, to December 31, 2022. 

Next, the Catboost algorithm was compared with 
various machine learning algorithms, with default 
hyperparameters.  

The authors considered the following metrics to 
evaluate models’ performances: mean absolute error 
(MAE) (Prokhorenkova et al., 2019), symmetric 
mean absolute percentage error (SMAPE), mean 
squared error (MSE) (Dorogush et al., 2018) and the 
root mean square error (RMSE). For each of these 
metrics, lower values denote better model 
performance. It is important to note that while 
SMAPE is the main performance metric used to 
choose the best model, other metrics like MAE, MSE, 
and RMSE are also taken into consideration as 
supporting indicators during the evaluation process.  

According to all these metrics, Catboost emerged 
as the best-performing algorithm and was considered 
to proceed with the analysis. 

Proposed by (Herzen et al., 2023), the CatBoost 
algorithm is a Gradient Boosting Decision Tree 
(GBDT) framework that merges weak learners as 
symmetric decision tree, to generate a stronger 
predictive model. Ensemble methods like CatBoost 
process sequentially a series of simple decision trees, 
trying to reduce the errors done in the models 
previously trained for optimizing performances.  

To test the approach multiple times, different 
models were trained repeatedly, leaving out one 

specific time series from the training data each time, 
and then evaluating the model's performance based 
on the omitted time series. The purpose of this 
methodology is to assess robustness and 
generalization capabilities of the approach training 
models on various combinations of the available time 
series data.  

Different CatBoost models were created and 
tested for different sets of hyperparameters, using 
Optuna Python library (Optuna: A Hyperparameter 
Optimization Framework — Optuna 3.5.0 
Documentation, n.d.). A total of 100 trials were used 
to create and compare 100 different models. 

 The chosen objective function to be optimized 
for each training set was the validation loss, used to 
quantify the performance of machine learning models 
on a validation dataset during hyperparameter 
optimization. The last 24 hours of the training set 
were used for validating the model. 

Walk-forward validation method was 
implemented as a validation technique. This 
validation method stands out from standard cross-
validation approaches by maintaining the temporal 
order of data, making it particularly suitable for 
capturing time-dependent patterns in time series data. 

The validation process initiates with an initial 
training period covering historical time series data 
from January to December 16th. Subsequently, the 
model undergoes iterative phases, where it is 
retrained and makes predictions for upcoming time 
steps within the sequence. The performance 
assessment occurs continuously as predictions are 
compared with actual values, mimicking the dynamic 
nature of real-world scenarios. This regular retraining 
process enables the model to adapt dynamically to 
evolving data distributions or patterns over time, 
thereby significantly enhancing its practical efficacy.  

4 RESULTS 

In this section, the authors will present the results and 
discuss the outcomes obtained from the clustering and 
forecasting phases. 

4.1 Clustering 

As a result of the clustering process, a specific 
configuration emerged, yielding a silhouette score of 
0.52. This outcome is favorable, indicating a 
reasonably clear distinction between the clusters 
formed. Experts in the field have also validated the 
effectiveness of the clustering algorithm in grouping 
roads that share similar characteristics. 
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The results of the clustering procedure are 
visually depicted in Figure 1. Due to limitations in 
space, the figure showcases data collected over just 
one week, despite the algorithm utilizing an entire 
year of data as input. Upon observation, it becomes 
apparent that the first cluster comprises 5 time series, 
the second cluster consists of 3 time series, and the 
third cluster encompasses 5 time series. The fourth 
cluster, comprising only one time series, was omitted 
from the visual representation due to its singular 
nature. 

 

 

 
Figure 1: Time series divided into clusters. 

4.2 Models Comparison 

Taking as reference clustering results, short-term 
forecasting was implemented.  

Initially, the authors compared the performances 
of different machine learning models to identify the 
best performing algorithm. 

Two critical hyperparameters had to be set: the 
input chunk length fixed at 168 hours (equivalent to 7 
days), and the output chunk length was set to 24 
hours. Essentially, this configuration means that the 
model utilized data from the previous 7 days to 
predict the forthcoming 24 hours. All the others 

hyperparameters were set to the default values. The 
results are documented in Table I. 

Table 1: Performances comparison with default 
hyperparameters. 

Algorithm 
Performance Metrics 

SMAPE MAE MSE RMSE 

LR 33.301 0.082 36.565 0.112 

LSTM 199.406 0.571 125.61 0.596 

CatBoost 32.985 0.078 28.441 0.013 

DLinear 33.915 0.084 31.366 0.014 

LightGBM 33.8 0.08 26.767 0.014 

N-Hits 34.328 0.084 31.585 0.014 

Transf 38.71 0.099 36.165 0.019 

N-Beats 34.944 0.087 32.011 0.015 

B-RNN 51.067 0.152 68.324 0.034 

N-Linear 34.385 0.088 37.116 0.014 

TCN 40.699 0.118 39.194 0.022 

TiDe 35.631 0.095 49.398 0.015 

As can be seen from Table 1, CatBoost emerged 
as the best-performing algorithm, leading to its 
selection for creating the final models. 

Next step of the analysis was the optimization of 
the CatBoost model. As explained in Section 3.4, 
each time an optimized forecasting model is created 
for a cluster, a time series belonging to that group is 
excluded from the training to be used as a test.  

It is important to note that upon examining the 
resulting optimized models for the three clusters, it is 
evident that the longest duration needed to generate 
forecasts is 383 hours, equivalent to approximately 16 
days, a minimal number of observations. 

4.3 Forecasting 

As previously said in Section 3.5, the CatBoost model 
was tested on two weeks comprising data from 17th,  
to 31st  December, 2022. This choice was dictated by 
the fact that in Italy last week of December is 
Christmas week, during which traffic flow is different 
from the normal.  

Table 2 and Table 3 show the results obtained for 
each sensor in the three clusters, for the roads 
included in the training of the model.  
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Table 2: Performances test week from 17th to 23rd Dember 
2022 for roads included in the training. 

C Sensor
ID 

Performance Metrics 
MAE SMAPE MSE RMSE 

1 

MT10a 0.0519 16.7697 0.0044 0.0133 
MT10

b 0.0483 9.9464 0.0047 0.0124 

MT6 
a 0.0568 18.5326 0.0061 0.0139 

MT6 
b 0.0451 14.1015 0.0040 0.0115 

MT7 
a 0.0481 14.4138 0.0042 0.0138 

 
2 

MT13a 0.1258 37.1682 0.0322 0.0416 
MT13

b 0.1223 41.9823 0.0273 0.0425 

MT17a 0.0963 31.4148 0.0163 0.0333 

3 

MT14a 0.0423 25.3374 0.0056 0.0134 
MT14

b 0.0878 34.5072 0.0123 0.0265 

MT18
b 0.0473 19.2189 0.0064 0.0194 

MT9 
a 0.0732 24.1288 0.0124 0.0218 

MT9 
b 0.0981 44.1747 0.0185 0.0343 

Table 3: Performances test week from 24th to 31st 
December 2022 for roads included in the training. 

C Sensor 
ID 

Performance metrics 
MAE SMAPE MSE RMSE 

1 

MT10a 0.0705 20.5463 0.0093 0.0342 
MT10

b 0.0568 13.6693 0.0081 0.0287 

MT6 
a 0.0654 20.0405 0.0088 0.0345 

MT6 
b 0.0555 17.7132 0.0064 0.0306 

MT7 
a 0.0704 26.9439 0.0114 0.0438 

 
2 

MT13a 0.0980 27.7650 0.0144 0.0503 
MT13

b 0.1015 32.6417 0.0187 0.0544 

MT17a 0.1116 38.1443 0.0178 0.0500 

3 

MT14a 0.0531 36.9480 0.0082 0.0246 
MT14

b 0.0764 30.1027 0.0112 0.0337 

MT18
b 0.0682 32.9566 0.0128 0.0365 

MT9 
a 0.0811 36.6931 0.0168 0.0399 

MT9 
b 0.0865 52.2013 0.0164 0.0376 

 

The next step of the analysis was to test optimized 
models each time on the excluded time series.  

Table 4 and 5 report the average performance 
metrics computed each time a time series was 
excluded from the three clusters, for the two test 
weeks going from 17th to 31st December, 2022. 

Table 4: Average performances test week from 17th to 23rd  
December 2022 for roads excluded in the training. 

C
Performance Metrics 

MAE SMAPE MSE RMSE 
1 0.0557 17.6324 0.0059 0.0169 
2 0.1209 36.8653 0.0259 0. 0388 
3 0.0740 31.6346 0.0116 0.2333 

Table 5: Average performances test week from 24th to 31st   
December 2022 for roads excluded in the training. 

C
Performance Metrics 

MAE SMAPE MSE RMSE 
1 0. 0673 21.6607 0.0093 0.0298 
2 0. 1110 34.3332 0.0190 0.0560 
3 0. 0732 39.9600 0.0131 0.3142 

Figures 2-4 display the true traffic values versus 
the traffic flow predicted by CatBoost models during 
the two test weeks from 17th to 31st December 2022, 
on sensors that were excluded from the training 
dataset. 

 
Figure 2: Test excluded sensor cluster 1. 

 
Figure 3: Test excluded sensor cluster 2. 
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Figure 4: Test excluded sensor cluster 3. 

As can be seen, the optimized CatBoost models 
tested for each cluster show relatively low SMAPE 
values as concerns the tested week from 17th to 23rd 
December, 2022. Instead, for the second tested week 
which is the Christmas week, SMAPE tends to 
increase suggesting that the predictions of the models 
have some degree of error.  

Results obtained depend on a model that has been 
trained for one year. Thus, the model has never seen 
during the training traffic flow patterns generated in 
every street during the Christmas week. Moreover, 
the only variable considered is the traffic flows. 
Knowing such a limited time range, the results must 
be considered impressive.  

5 CONCLUSIONS 

In this study, the authors propose a solution for a 
traffic flow prediction both for roads where  sensors 
data are available and roads lacking from data for cost 
and practicality reasons of sensors’ deployment on 
every road. The authors address it with a novel two-
level machine learning approach, involving clustering 
and forecasting models. The city of reference is 
Catania, because of its complex transportation 
network.  

Using TSKMeans algorithm, time series were 
divided into different clusters, highlighting not only 
roads with similar patterns but also roads with similar 
physical characteristics, as confirmed by domain 
experts.  

The forecasting process, where a distinct model 
was generated for each cluster, yielded outstanding 
outcomes when applied to the time series used in 
training, employing the CatBoost algorithm. 
Moreover, a tailored parameter optimization process 
for each cluster facilitated the customized 
configuration of hyperparameters.  

Finally, this approach enables predictions for 
roads lacking sensor data by utilizing a really small 

subset of these new data, needing in input ranges 
between 199 and 383 hours.  

Future works plan to repeat this study with a 
greater time range of data, to make the CatBoost 
model more accurate in making predictions in the 
presence of traffic flow patterns different from 
normal, as it could happen during Christmas week.  
Moreover, the authors plan to increase the number of 
sensors considered in the analysis. Furthermore, data 
from different sources (e.g. weather data, road 
conditions as traffic jams and road works) will be 
collected and given to the model to improve 
forecasting. 
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