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Abstract: Advances in blockchain technologies enable society toward trust-based applications. Smart contracts are the
scripts holding the properties to perform the activities in Blockchain. Smart contracts are prepared between
the parties to hold their requirements and promises. If the deal held by a smart contract is huge and expen-
sive, then there is a high chance of attracting issues and loss of assets. This necessitates the verification and
testing of a smart contract. In this paper, we demonstrate an approach for generating test cases to satisfy the
condition coverage of smart contracts using a solidity-bounded model checker. We show the annotation of
the original smart contract as per the condition coverage specification and drive the bounded model checker to
prove the feasibility of the asserted properties. Finally, we collect all feasible targets and show the condition
coverage score. Also, the proposed approach generates test input values for each feasible atomic condition.
The approach presented has been tested with 70 smart contracts, resulting in 57.14% of contracts with good
condition coverage scores. Our work can be utilized to certify any smart contract to check whether the Opti-
mal or Maximal condition coverage is achieved or not.

1 INTRODUCTION

Blockchains are distributed data structures to store the
agreed sequence of transactions in a user network.
They can be employed in many applications (e.g.,
such as banking, insurance, health applications, vehi-
cle networks, shipping, logistics, and cyber-security)
that need data exchange between different users. The
actions are stored in the form of a block and the
data is distributed over individual nodes after accep-
tance by the respective user. One of the major advan-
tages of blockchain technologies are to avoid temper-
ing data (that is, immutability) by anonymous users,
which in turn increases transparency and security. In
addition, blockchain has several unique and desir-
able properties including decentralization, auditabil-
ity, anonymity, and autonomously enforcing logic via
a smart contract.

Blockchains (such as Hyperledger (Buterin et al.,
2014) and Ethereum (Dannen, 2017; etherscan,
2021)) enforce consensus, if any, by the users in-
volved, as defined in the smart contract. A smart
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contract is a computer program, comprising exe-
cutable codes, residing on the blockchain and exe-
cuted once specific (pre-defined) conditions are met.
The transactions are programmable by smart con-
tracts. A smart contract pays attention to transactions
sent to it, executes application logic upon receipt of a
transaction, and depending on the need can generate
other transactions that can be received by participat-
ing users. Thus, a smart contract includes code and
data on which the smart contract operates. Also, a
smart contract can control other smart contracts.

Smart contract-enabled blockchains guarantee
that conditions in a smart contract are not modified
once they have been written and published. The code
for smart contracts is typically written in a high-level
programming language such as Go1 for Hyperledger2

and Solidity3 for Ethereum. Similar to traditional
software applications, there may be deviations, errors,
and vulnerabilities in the smart contract logic code.
Thus, coding smart contract logic as per the applica-

1“The Go programming language,” https://golang.org/.
2“Hyperledger project,” https://www.hyperledger.org/.
3“Solidity smart-contract language,”

https://solidity.readthedocs.io/.
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tion requirements and ensuring the correctness of that
code is very important and challenging. To the best
of our knowledge, there is very limited work in the
literature on the verification and testing of the smart
contract logic.

Our approach enables the annotation of a smart
contract with goal constraints or targets in the form
of “asserts" that ensures the specification of condi-
tion coverage. The solidity compiler with a bounded
model checking feature detects the targets in anno-
tated smart contracts. Later, we extract useful infor-
mation from the execution report and show the cover-
age information. The main contribution of this work
is to provide a system for the contributors of smart
contracts to test their scripts and certify the smart con-
tracts with three classes viz. Optimal, Maximal, and
Incomplete.

The rest of the paper is organized as follows. In
Section 2, we discuss the related work. Section 3
shows basic concepts. Section 4 presents the pro-
posed Condition Coverage analysis for Smart Con-
tracts using the Solidity Bounded Model Checker
(CC-SolBMC). Section 5 describes the experimental
results. Finally, We conclude the paper with future
insights in Section 6.

2 RELATED WORK

The first blockchain platform that supports smart con-
tracts is Ethereum (Dannen, 2017; Wood et al., 2014),
in which Solidity scripting language is used for de-
veloping smart contracts. There are some works (eg.
(Sánchez-Gómez et al., 2019; Liu et al., 2020)) in the
domain of smart contract testing

Wen and Miller (Wen and Miller, 2016) described
an automated bug identification in smart contracts,
however, our work proposed to measure the condi-
tion coverage. Praitheeshan et al (Praitheeshan et al.,
2019) presented a survey on vulnerability analysis
and formal verification methods in Ethereum smart
contracts. They surveyed 16 kinds of vulnerabilities
in smart contracts and presented the existing security
issues, analysis tools, and detection methods along
with their limitations. They have categorized the anal-
ysis method into three categories viz. formal verifica-
tion, static, and dynamic. These categories are com-
pared based on accuracy, vulnerability detection, and
performance.

Benitez et al. (Benitez et al., 2020) considered
the program for smart contracts as a chain of typed
programs (typechain) and provided verified properties
to ensure the smart contract correctness.

Andesta et al. (Andesta et al., 2020) have pro-

posed 10 classes of mutation operators and presented
a method of testing solidity smart contracts using mu-
tation testing. Their proposed method is capable of
regenerating the real bug in ten contracts out of fifteen
contracts and they have also provided their mutation
operators with a universal mutator tool.

Manticore (Mossberg et al., 2019) is a Dynamic
Symbolic Executor, used for analyzing smart con-
tracts. It uses z3 a constraint solver. However, it is
unable to analyze smart contracts if there are multiple
contracts in a single file. Due to its dynamic nature, it
takes more execution time compared to others.

Solanalyser (Akca et al., 2019) uses both static
and dynamic analyses of vulnerabilities in smart con-
tracts. It can also inject faults into the existing Smart
contract for testing purposes.

sFuzz(Nguyen et al., 2020) is a combination of
AFL fuzzer and a multi-objective adaptive strategy
that is useful for the verification of smart contracts.
This tool is prone to false positives and excludes the
view function.

ContractFuzzer (Jiang et al., 2018) uses Contract
Application Binary Interface (ABI) specifications for
generating test cases by fuzzing. However, it does not
check for Integer overflow/underflow, and in many
cases, it shows false negatives.

3 BASIC CONCEPTS

In this section we discuss, some important terminolo-
gies used in this paper.

As per IBM4 “Smart contracts are scripts stored
on a blockchain that run when all the previously es-
sential requirements are full-filled. Smart contracts
are used to automate the process of an agreement so
that all contributors can be immediately certain of the
outcome, without any intermediary’s involvement or
time loss. These can be automated in a workflow, trig-
gering the next action when requirements are met."

In Bounded Model Checking (BMC)(Clarke et al.,
2003; Clarke et al., 2004), a Boolean formula is con-
structed which is satisfiable if and only if the under-
lying state transition system can realize a finite se-
quence of state transitions that reach certain states of
interest.

Condition Coverage is the percentage of condi-
tions within decision expressions in a script that has
been evaluated to be both true and false by NIST 5

4https://www.ibm.com/topics/smart-contracts
5https://csrc.nist.gov/glossary/term/Condition_coverage
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Figure 1: The framework for CC-SolBMC.

4 PROPOSED APPROACH

In this section, we discuss our proposed framework
and provide a detailed explanation with a working ex-
ample.

4.1 Framework of CC-SolBMC

Fig. 1 shows a schematic representation of our pro-
posed approach CC-SolBMC. This framework mainly
contains three components namely 1. Source Con-
tract Annotator, 2. SolBMC, and 3. Extractor. The
flow starts with supplying the Original Smart Con-
tract into Source Contract Annotator to produce An-
notated Smart Contract. This modified version of the
smart contract has markings for true and false branch
edges for each atomic condition. These markings are
in the form of assertions.

Next, the Annotated Smart Contract is supplied
into a smart verifier SolBMC. Since SolBMC follows
the Satisfiability Modulo Theories (SMT) technique
using Z3 constraints solver, the reachability and fea-
sibility of each marked assertion can be done. The
SolBMC generates a detailed execution report. This
execution report contains the log of each assertion vi-
olation with the counter-example (test inputs). The
Extractor component analyses the Execution Report
and identifies the total number of assertion violations.
Each assertion violation represents a branch edge.
Also, the Extractor analyses the Original Smart Con-
tract to identify the total number of atomic condi-
tions present in if-else statements and in require state-
ments and counts the total number of calling mod-
ifiers. Finally, Condition Coverage Report is gen-
erated from Extractor, which contains the condition
coverage score.

4.2 Algorithmic Description

In this section, we explain our proposed approach
with algorithmic descriptions.

Algorithm 1 shows the implementation of the
Source_Contract _Annotator. Here we supply Smart
Contract SC as an input and get Annotated Smart
Contract ASC as an output. Line 1 of Algorithm 1
shows an iteration for all the conditions (AllCondi-
tions) identified from SC. It is to be noted that, for
any conditional statement there are two branches viz.
True and False. The loop iterates for each condi-
tion identified at a specific line. For a TRUE branch
of Condition, create “assert(!(condition));". Simi-
larly, for a FALSE branch of Condition, create “as-
sert(!(!(condition)));". Line 8 of Algorithm 1 injects
the created assertions in Lines 3 and 6 of Algorithm 1
just above the location at line number where the con-
dition was identified. Finally, after iterating the loop
for all the conditions present in SC, Algorithm 1 re-
turns ASC.

Algorithm 1: Source_Contract_Annotator.
Input: SC
Output: ASC

1 while Condition ∈ AllConditions do
2 if TRUE Branch of Condition then
3 Create “assert(!(condition));"
4 end
5 if FALSE Branch of Condition then
6 Create “assert(!(!(condition)));"
7 end
8 Inject “assert(!(condition));" and

“assert(!(!(condition)));" above the line
where the Condition was identified;

9 end
10 return ASC ;

Algorithm 2 shows the logic of CC-SolBMC. We
provide a Smart Contract (SC) as an input to CC-
SolBMC and produce Condition Coverage6 Score
(CC%) as an output. Line 1 of Algorithm 2 invokes
Algorithm 1 i.e. Source_Contract _Annotator by sup-
plying SC and produces Annotated Smart Contract
(ASC). At Line 2, SolBMC is called with argument
ASC and generates Execution_Report. This report
contains all the useful information for detecting the
targets with counterexamples. Finally, the Extrac-
tor is called by supplying SC and Execution_Report
to produce Condition_Coverage_Report. Using the
Condition_Coverage_Report with the values of De-
tected unique assertions and Total injected assertions,
we compute CC% Line 4.

6It is to be noted that we consider atomic condition from
a decision with or without any logical operator(s).

CC-SolBMC: Condition Coverage Analysis for Smart Contracts Using Solidity Bounded Model Checker

389



Algorithm 2: CC-SolBMC.
Input: SC
Output: CC%

1 ASC←−Source_Contract_Annotator(SC);
2 Execution_Report←− SolBMC(ASC);
3 Condition_Coverage_Report←−

Extractor(SC,Execution_Report);
4 CC%= (Detected unique assertions / Total

injected assertions)X100

4.3 Working Example

In this section, we consider an example smart contract
namely Token.sol from the set of 70 smart contracts.
The original smart contract for Token.sol is shown in
Listing 1. The characteristics for Token.sol wrt. size
is 37 LOCs, 4 functions, and 3 atomic conditions. In
a smart contract the predicate and conditions can be
written in if-else, if-else-if, for-loop, while-loop and
require statements. It means, for the statements with
boolean logical operators and relational operators, we
consider those statements to be analysed. So, in this
contract, we have three require conditions as shown
below:

balanceOf(msg.sender) >= value

balanceOf(from) >= value

allowance[from][msg.sender] >= value

If the first two require conditions are true then the
“balance too low" message will be printed. Similarly,
for the third require condition “allowance too low"
message will be printed. So, it is very important to
check the other Branch of the conditions.

Next, using Source Contract Annotator compo-
nent of our proposed approach, we generate the An-
notated Smart Contract version i.e Token_mod.sol as
shown in Listing 2. In this version, we inject the tar-
gets using the “assert" syntax just above the predi-
cates or conditions identified in the contract. We pre-
pare the targets as shown below:

For Ist Condition:
balanceOf(msg.sender) >= value

TRUE branch of Ist Condition:
assert(!((balanceOf(msg.sender) >= value)));

FALSE branch of Ist Condition:
assert(!(!(balanceOf(msg.sender) >= value)));

For IInd Condition:
balanceOf(from) >= value

TRUE branch of IInd Condition:
assert(!((balanceOf(from) >= value)));

FALSE branch of IInd Condition:
assert(!(!(balanceOf(from) >= value)));

For IIIrd Condition:
allowance[from][msg.sender] >= value

TRUE branch of IIIrd Condition:
assert(!(( allowance[from][msg.sender] >= value)));

FALSE branch of IIIrd Condition:
assert(!(!(allowance[from][msg.sender] >= value)));

Note that there is a total number of 6 targets which
represent the six branch edges for three atomic condi-
tions.

1 pragma solidity ^0.8.2;
2 contract Token {
3 mapping(address => uint) public

balances;
4 mapping(address => mapping(address =>

uint)) public allowance;
5 uint public totalSupply = 100000000000 *

10 ** 18;
6 string public name = "ELONBUCCS";
7 string public symbol = "BUC";
8 uint public decimals = 18;
9 event Transfer(address indexed from,

address indexed to, uint value);
10 event Approval(address indexed owner,

address indexed spender, uint
value);

11 constructor() {
12 balances[msg.sender] = totalSupply;
13 }
14 function balanceOf(address owner)

public view returns(uint) {
15 return balances[owner];
16 }
17 function transfer(address to, uint

value) public returns(bool) {
18 require(balanceOf(msg.sender) >=

value, ’balance too low’);
19 balances[to] += value;
20 balances[msg.sender] -= value;
21 emit Transfer(msg.sender, to,

value);
22 return true;
23 }
24 function transferFrom(address from,

address to, uint value) public
returns(bool) {

25 require(balanceOf(from) >= value,
’balance too low’);

26 require(allowance[from][msg.sender]
>= value, ’allowance too low’);

27 balances[to] += value;
28 balances[from] -= value;
29 emit Transfer(from, to, value);
30 return true;
31 }
32 function approve(address spender, uint

value) public returns (bool) {
33 allowance[msg.sender][spender] =

value;
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34 emit Approval(msg.sender, spender,
value);

35 return true;
36 }
37}

Listing 1: Original Smart Contract Token.sol.

1 pragma solidity ^0.8.2;
2 contract Token {
3 mapping(address => uint) public

balances;
4 mapping(address => mapping(address =>

uint)) public allowance;
5 uint public totalSupply = 100000000000 *

10 ** 18;
6 string public name = "ELONBUCCS";
7 string public symbol = "BUC";
8 uint public decimals = 18;
9 event Transfer(address indexed from,

address indexed to, uint value);
10 event Approval(address indexed owner,

address indexed spender, uint
value);

11 constructor() {
12 balances[msg.sender] = totalSupply;
13 }
14 function balanceOf(address owner)

public view returns(uint) {
15 return balances[owner];
16 }
17 function transfer(address to, uint

value) public returns(bool) {
18 assert(!(balanceOf(msg.sender) >=

value));
19 assert(!(!(balanceOf(msg.sender) >=

value)));
20 require(balanceOf(msg.sender) >=

value, ’balance too low’);
21 balances[to] += value;
22 balances[msg.sender] -= value;
23 emit Transfer(msg.sender, to,

value);
24 return true;
25 }
26 function transferFrom(address from,

address to, uint value) public
returns(bool) {

27 assert(!(balanceOf(from) >= value));
28 assert(!(!(balanceOf(from) >= value)));
29 require(balanceOf(from) >= value,

’balance too low’);
30 assert(!(allowance[from][msg.sender] >=

value));
31 assert(!(!(allowance[from][msg.sender]

>= value)));
32 require(allowance[from][msg.sender]

>= value, ’allowance too low’);
33 balances[to] += value;
34 balances[from] -= value;
35 emit Transfer(from, to, value);
36 return true;

37 }
38 function approve(address spender, uint

value) public returns (bool) {
39 allowance[msg.sender][spender] =

value;
40 emit Approval(msg.sender, spender,

value);
41 return true;
42 }
43}

Listing 2: Annotated Smart Contract Token_mod.sol.

The annotated Smart Contract is supplied
into SolBMC which is a solidity compiler with
SMTChecker engine, that is, Bounded Model
Checker. This component generates the Execution
Report as shown in Listing 3. If a target is reachable
and is feasible the SMTChecker engine will detect it
and give the counter example for that target. Here,
the counter example shows that the constraint has the
model and the test input values for the variables in
that constraints can be generated. The warning mes-
sage “Warning: BMC: Assertion violation happens
here." highlights the detected target along with the
specific line number in the source code of the smart
contract.

1 Warning: BMC: Assertion violation happens
here.

2 --> ./Results/Token/Token_mod.sol:19:2:
3 |
4 19 | assert(!(balanceOf(msg.sender) >=

value));
5 | ^^^^^^^^^^^^^^^^^^^^^^^^^
6 Note: Counterexample:
7 = false
8 balances[owner]=38, decimals=0,

owner=28100, to=0, totalSupply=0,
value=0

9 .........................skip..
10 Warning: BMC: Assertion violation happens

here.
11 --> ./Results/Token/Token_mod.sol:20:2:
12 |
13 20 | assert(!(!(balanceOf(msg.sender)

>= value)));
14 | ^^^^^^^^^^^^^^^^^^^^^^^^^
15 Note: Counterexample:
16 =false
17 balances[owner]=20537, decimals=0,

owner=1323, to=0, totalSupply=0,
value=20538

18 .........................skip..
19 Warning: BMC: Assertion violation happens

here.
20 --> ./Results/Token/Token_mod.sol:28:2:
21 |
22 28 | assert(!(balanceOf(from) >=

value));
23 | ^^^^^^^^^^^^^^^^^^^^^^^^^
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24 Note: Counterexample:
25 =false
26 balances[owner]=9725, decimals=0,

from=32278, owner=32278, to=0,
totalSupply=0, value=0

27 .........................skip..
28 Warning: BMC: Assertion violation happens

here.
29 --> ./Results/Token/Token_mod.sol:29:2:
30 |
31 29 | assert(!(!(balanceOf(from) >=

value)));
32 | ^^^^^^^^^^^^^^^^^^^^^^^^^
33 Note: Counterexample:
34 =false
35 balances[owner]=17887, decimals=0,

from=31597, owner=31597
36 to=0, totalSupply=0, value=17888
37 .........................skip..
38 Warning: BMC: Assertion violation happens

here.
39 --> ./Results/Token/Token_mod.sol:31:2:
40 |
41 31 |

assert(!(allowance[from][msg.sender]
>= value));

42 | ^^^^^^^^^^^^^^^^^^^^^^^^^
43 Note: Counterexample:
44 =false
45 allowance[from][msg.sender]=2331,

balances[owner]=14136, decimals=0,
from=22114, owner=22114, to=0,
totalSupply=0, value=0

46 .........................skip..
47 Warning: BMC: Assertion violation happens

here.
48 --> ./Results/Token/Token_mod.sol:32:2:
49 |
50 32 | assert(!(!(allowance [from]

[msg.sender] >= value)));
51 | ^^^^^^^^^^^^^^^^^^^^^^^^^
52 Note: Counterexample:
53 =false
54 allowance[from][msg.sender]=2747,

balances[owner]=2748, decimals=0,
from=28871, owner=28871, to=0,
totalSupply=0, value=2748

Listing 3: Execution Report with counter examples Listing
2.

Now, the execution report generated is supplied
into the Extractor component along with the original
smart contract to get the condition coverage report as
shown in Listing 4. As we have injected 6 targets,
SolBMC has detected all of them with counterexam-
ples. We have extracted the results and found that
there were 6 targets found dynamically and uniquely.
Here, we provide both the counting of dynamic and
unique targets. It is to be noted that, dynamic means
a target can be reached multiple times through differ-

Table 1: Generated test cases for Listing 2.
Variables TC1 TC2 TC3 TC4 TC5 TC6

allowance[from][msg.sender] - - - - 2331 2747
balances[owner] 38 20537 9725 17887 14136 2748

decimals 0 0 0 0 0 0
from - - 32278 31597 22114 28871

owner 28100 1323 32278 31597 22114 28871
to 0 0 0 0 0 0

totalSupply 0 0 0 0 0 0
value 0 20538 0 17888 0 2748

ent paths or traces. Whereas, unique means a target
at least reached through a path or trace once. This
counting is important to compute the condition cover-
age because statically we know how many targets or
branch edges we have and out of them how many we
have detected. So for this contract, we have a 100%
condition coverage score, which means it is Maximal.

1 assertion inserted : 6
2 assertion violation detected (dynamic) : 6
3 assertion violation detected (unique) : 6

Listing 4: Condition Coverage Report Listing 2.

In our analysis, we have also captured the execu-
tion time of testing the smart contract. The time anal-
ysis for the working analysis is shown in Listing 5.
We can observe that SolBMC took 1.36 sec for this
example. It is to be noted that our experiment has a
1-hour timeout, so to certify any smart contract as Op-
timal or Maximal it is required to finish the execution
within 1 Hr without any out of resources.

1 ***Time Analysis Report - Start***
2 ***Total runtime in seconds 1.365783207
3 Total runtime: 0:00:00:1.3658
4 ***Time Analysis Report - End***

Listing 5: Time Analysis for Listing 2.

Finally, we extract all the counter-examples or test
inputs as shown in Table 1. The variables of the smart
contract are taken as a working example. TC1 to
TC6 represents all the 6 test cases corresponding to
the 6 targets found. The dash “-" symbol shows that
the value of the variable is missing because the vari-
able was not present in the constraint checked. These
test cases are very much useful for post-processing,
and performing a mutation testing analysis. Also,
there may be many applications that might require test
cases.

5 EXPERIMENTAL RESULTS

In this section, we discuss the setup and benchmarks
tested, and demonstration scenarios for our system.

We used an Intel® Core™ i7-9700 CPU @
3.00GHz Linux box (64-bit Ubuntu 20.04.2 LTS)
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with 8 GB RAM and llvmpipe (LLVM 11.0.0, 256
bits) graphics in Oracle Virtualisation. We have used
PPAs for Ubuntu with the latest stable version of So-
lidity Compiler7. We have used the following com-
mand setting as shown in Listing 6:

solc ASC.sol --model-checker-engine bmc
--model-checker-targets assert

Listing 6: Command Line for SolBMC.

There are a total of 70 smart contracts were col-
lected and tested. 60 smart contracts were taken
from (etherscan, 2021). These contracts are real-time
smart contracts and we found them suitable to work
on. Second, we consider a set of 6 contracts from
(Azure, 2021). Other 4 contracts that we consid-
ered are: Ballot.sol (Ballot.sol, 2021), escrow.sol (es-
crow.sol, 2021), payments.sol (payments.sol, 2021),
and ptest.sol (ptest.sol, 2021).

We divide the results on 70 smart contracts with 1
Hr timeout, into three different groups:

• Group 1: In this group, we have contracts with
condition coverage lesser than 100%, and the
SolBMC finishes the execution within the 1 Hr
timeout. The rest conditions are uncovered or
dead. It means the condition coverage achieved
is Optimal.

• Group 2: In this group, we have the contracts with
100% condition coverage, and the SolBMC fin-
ishes the execution within the 1 Hr timeout. It
means the condition coverage achieved is Maxi-
mal.

• Group 3: In this group we have the contracts with
0% condition coverage and the SolBMC could not
finish the execution due to resource/time restric-
tions for quarries. It means the condition coverage
achieved is Incomplete
Tables 2,3, and 4 show the detailed results for 70

smart contracts. #LOCs and #MLOCs present the size
of the contract before and after the annotations for tar-
gets respectively. Here, #LOCs show the Lines of
Code, and #MLOCs show Modified Lines of Code.
Note that the targets or goal constraints are injected
into contracts, in a way that the semantics of the con-
tract will not be affected. #TB shows the total branch
edges for the conditions in the contract. #TDBC and
#TUBC show the covered branch edges. The #TDBC
shows the branches covered dynamically after execut-
ing the conditions more than once, whereas. #TUBC
shows the unique branches covered. CC% shows the

7https://docs.soliditylang.org/en/develop/installing-
solidity.html#linux-packages

Condition Coverage score calculated using Eq. 1.

CC% =
#TUBC

#T B
(1)

Table 2: Result Analysis for Optimal group.
Contracts #L #ML #B #DB #UB CC% T(sec)

AnyswapV5ERC20 357 446 88 216 42 47 18.94
Ballot 79 106 26 26 23 88 3.36

TokenVesting 177 238 60 93 58 96 5.80
MiraNft 390 481 90 167 56 62 262.06

COINNetwork 452 510 72 240 68 94 19.33
CyberFox 199 248 48 129 46 95 6.30
wLitiSale 196 245 50 97 48 96 17.75

WrappedToken 470 569 98 180 56 57 262.41
Address 504 623 118 169 53 44 1287.10
eMuppy 174 213 42 140 38 90 6.91

MJCoinToken 155 184 28 108 26 92 4.50
Galaxium 174 209 34 92 33 97 5.11

RIAS 203 248 44 130 42 95 5.45
kiaquiz 38 51 12 15 11 91 3.26

Table 3: Result Analysis for Maximal group.
Contracts #L #ML #B #DB #UB CC% T(sec)
payments 36 45 8 8 8 100 3.02
Kyuseishu 152 180 30 81 30 100 5.77
MayoOcho 308 333 24 73 24 100 4.68
PipiCoin 125 142 20 96 20 100 4.27

RBC 117 138 20 96 20 100 4.68
GOLIATH 156 179 22 61 22 100 3.91
salvador 56 63 6 6 6 100 3.04

ShibaAstronaut 37 44 6 6 6 100 3.15
StarNFTProxy 169 196 26 106 26 100 9.47

UniswapV3MigratorProxy 16 19 2 2 2 100 3.09
VamprireDoge 37 44 6 6 6 100 2.81

BasicProvenance 42 53 10 10 10 100 2.86
ClockBoxContract 192 217 24 74 24 100 4.16

DigitalLocker 128 149 20 20 20 100 2.91
ERC20 308 333 24 73 24 100 4.51

AssetTransfer 191 276 84 84 84 100 4.07
RefrigeratedTransportation 117 150 32 32 32 100 3.45

escrow 43 52 8 16 8 100 3.00
ptest 17 28 10 10 10 100 2.87

SimpleMarketplace 61 74 12 12 12 100 3.04
RoomThermostat 42 55 12 12 12 100 3.09

Token 37 44 6 6 6 100 3.47
DogeMojo 37 44 6 6 6 100 3.11

Benu 156 185 28 130 28 100 6.29
FrontRunner 265 270 4 14 4 100 3.61

BurnableERC20 167 185 24 111 24 100 6.71

Figure 2: Condition Coverage scores for Groups 1 and 2
contracts.

We compute the total execution time (seconds) to
analyse the contract. Table 2 shows the result analysis
for the Optimal group of 14 smart contracts. Here the
optimal means the executor has finished the execution
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Figure 3: Execution time in sec for Groups 1 and 2 con-
tracts.

Table 4: Result Analysis for Incomplete group.
Contracts #L #ML #B #DB #UB CC% T(sec)

eNew 329 395 70 0 0 0 189.41
DogeRocket 475 566 90 0 0 0 118.23
ChinaCoin 330 413 82 0 0 0 127.87
BERNIE 356 443 86 0 0 0 181.43

shibabread 330 413 82 0 0 0 127.37
AIRBets 301 362 60 0 0 0 158.14
Animalia 616 727 110 0 0 0 318.80

TESTDONTBUY 349 452 102 0 0 0 118.54
SimpleECR20 154 171 22 0 0 0 2.94

EStack 330 413 82 0 0 0 125.74
goldinu 335 426 90 0 0 0 230.18

KizunaInu 475 566 90 0 0 0 114.05
LILY 321 385 68 0 0 0 182.94
Lunar 324 395 70 0 0 0 167.65
PONY 329 395 70 0 0 0 168.77

PORCUPINE 329 395 70 0 0 0 169.85
PROGEV2 356 437 80 0 0 0 142.74

Ryujin 349 452 102 0 0 0 100.71
SATURNITE 330 413 82 0 0 0 112.18

ShibaJail 469 560 90 0 0 0 108.29
ShibaKiyo 731 844 112 0 0 0 161.05

ShibaSamurai 539 616 76 0 0 0 219.00
SOTH 330 413 82 0 0 0 119.82
Thicc 271 326 60 0 0 0 2.62
TOAD 321 385 68 0 0 0 175.07

WickedCraniums 626 745 132 0 0 0 357.70
HOTDOGE 352 435 82 0 0 0 237.88

HotinuFinance 730 843 112 0 0 0 144.59
KOALA 329 395 70 0 0 0 168.48
eMastiff 321 414 92 0 0 0 105.30

Table 5: Aggregate and Average Result Analysis for 70 con-
tracts.

Groups #LOCs #MLOCs #TB #TDBC #TUBC Avg_CC% Time (sec)
Group 1 3568 4371 810 1802 600 81.71 1908.28
Group 2 3012 3498 474 1151 474 100 105.03
Group 3 11737 14195 2484 0 0 0 4657.33
#Total 18317 22064 3768 2953 1074 53.4 6670.65

within the time out given. The condition coverage is
lesser than 100%, which means the uncovered code
cannot be reached or executed for the contract, hence
the dead code. In aggregate for 14 contracts, a total
of 810 branches were checked and 600 branches were
uniquely covered in 1908.28 sec. On average Condi-
tion Coverage for Group 1 is 81.74% in an average
time of 136.30 sec.

Table 3 shows the result analysis for the Maximal
group of 26 smart contracts. Here the maximal means

the executor has finished the execution within the time
out given and achieved 100% condition coverage. It
means no part of the code is dead. This is the expec-
tation of achieving 100% for any contributor writing
a smart contract. In aggregate for 26 contracts, a total
of 474 branches were checked and 474 branches were
uniquely covered in 105.03 sec. On average Condi-
tion Coverage for Group 2 is 100% in an average time
of 4.03 sec.

Collectively, in Groups 1 and 2 we have 40 con-
tracts for which we were able to compute condition
coverage in reasonable time. Except for 5 contracts
out of 40 contracts the condition coverage is below
90%. That is, 87.5% of contracts from Groups 1 and
2 have a good condition coverage score and the level
of quality and reliability of the contract written is en-
sured. Fig. 2 shows the Condition Coverage com-
puted for the contracts from Groups 1 and 2. Fig. 3
shows the chart in logarithm format for Lines of Code
vs. Execution time in sec (increasing order). In most
cases the bigger contracts take more execution time as
shown in Fig. 3.

Table 4 shows the result analysis for the Incom-
plete group of 30 smart contracts. Here the Incom-
plete means the executor has not finished the exe-
cution due to some resource restrictions. The aver-
age LOCs for 30 contracts is 400 with 82 average
branches. So, it is showing the complexness of the
contracts for which the queries are too long and com-
plex so the solidity bounded model checker can not
process, and the process has to be killed. The so-
lidity compiler checks the resources of the machine
during the process, and if some resources are out then
the query cannot be processed. Also, BMC can only
report anything once it is finished. But for Group
3, SolBMC has run out of resources so no cover-
age information has been generated and the values
of #TDBC, #TUBC, and CC% are 0 (highlighted in
red color). Note that, for this group, none of the con-
tracts reached 3600 sec. In case any contract would
have reached timeout then we would have included
that contract in Group 3.

Table 5 shows the aggregate and average results
for all the 70 contracts in Groups 1,2, and 3. So, in ag-
gregate we processed 18.31 KLOCs of original smart
contracts and executed 22.06 KLOCs. There was a
total number of 3.76K Branch edges out of which
1.07K Branch edges were covered uniquely. Also, the
same atomic conditions can be executed several times
in the contract due to several calls, hence dynamically
2.95K Branch edges were covered. We have achieved
53.4% of the average condition coverage score for 70
contracts. These 70 contracts took 1.85 Hrs to finish
the process. Finally, we claim that for 40 contracts
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(57.14%) out of 70 contracts we have good condition
coverage scores.

6 CONCLUSION

The main objective of this work is to certify the smart
contract wrt. the condition coverage analysis. It is
very important to test smart contracts by looking at
the critical business in the blockchain. If an incor-
rect contract or bug in the contract exists, then there
is a high chance of losing the expensive assets. In this
paper, we proposed a novel approach to compute con-
dition coverage for a smart contract using a solidity
compiler with a bounded model checker. We tested
70 contracts and showed that for 40 contracts i.e.,
57.14% have optimal or maximal condition coverage
scores. However, the rest 30 contracts were incom-
plete due to resource issues. We will explore other
techniques such as Fuzzing and Symbolic execution
for a more detailed analysis.
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