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Abstract: Road network data models are a key element for many cycling services. However, cyclists often ride uncon-
ventional paths that may not be properly represented in those models. This may cause various types of map-
matching anomalies, where the map-matched route does not correspond to the real route. In this work, we
assess a set of classification models to automatically detect and classify these map-matching anomalies. Using
OpenStreetMap road network, we generated the map-matched routes for a dataset of 98 cycling GPS traces.
To produce ground-truth data, we visually inspected each result to identify and classify every map-matching
anomaly, and computed several similarity measures between each GPS trace and the respective map-matched
segment. Based on this data, we trained several classification models with different feature engineering ap-
proaches to perform binary and multi-class classification. The results show that binary classifiers can be very
effective in the identification of map-matching anomalies. The best model, a XGBoost classifier, obtained
an F1 Score of 0.906 and an accuracy of 0.893, which outperform other methods. However, the multi-class
classifiers had lower performance. This ability to automatically detect and classify map-matching anomalies
may help to systematically improve road network models and consequently improve information provided to
cyclists and decision-makers.

1 INTRODUCTION

Urban mobility is a key dimension in sustainabil-
ity strategies. Cities across the world are promot-
ing new mobility policies that foster urban cycling
to help them meet sustainability goals and respond to
net emissions’ mandates (Eguiluz et al., 2022). In-
formation Technology can have a major role in this
transition, empowering cycling mobility with digital
tools that allow citizens to select the best routes based
on their personal preferences, and enabling transit au-
thorities to obtain a rigorous account of cycling activ-
ity and develop data-driven policies. In this context,
Smart Cycling is emerging as a new paradigm based
on shared, real-time, and collaborative application of
data, communications and services, to help best move
people individually, and collectively, across the urban
environment (ECF, 2016).

OpenStreetMap (OSM) is an open-source and col-
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laborative project that is commonly used in many cy-
cling information systems and studies (Basiri et al.,
2016; Haklay and Weber, 2008). It represents mul-
tiple types of geographic entities, including the road
network, buildings and administrative limits. Its use
is claimed to be beneficial for reproducibility reasons
and accessibility (Reggiani et al., 2022).

The road network data model, in particular, is a
key enabler for many smart cycling services. It rep-
resents the road network infrastructure and provides
core information for many sorts of mobility services,
including route planning, navigation and vehicle man-
agement, which depend very heavily on the quality of
street network data (Graser et al., 2015).

The OSM road network data model is commonly
used to develop routing engines dedicated for cycling
(Nunes et al., 2021; de Matos et al., 2021; Bergman
and Oksanen, 2016) and to register information about
routes made by cyclists.
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1.1 Map-Matching Cycling Traces

Map-matching is a key process to analyse cycling ac-
tivity. Its aligns a GPS trace to the most suitable seg-
ments in the road network model. This eliminates the
errors and variations embedded in each trace and pro-
vides an aggregate context to analyse and characterize
traffic.

The efficacy of a map-matching process relies
very strongly on the ability of the road network data
model to offer a very complete representation of the
routes that are effectively being followed by vehicles.
While this is normally a reasonable premise for au-
tomobiles, it is most often not the case with bicy-
cles. Despite the common assumption that bicycles
and other micro-mobility modes will either share the
road with cars or follow some type of cycle path, the
reality of cycling routes is actually much fuzzier. A
realistic cycling journey may include frequent switch-
ing between very heterogeneous roads with very dif-
ferent profiles and purposes, such as footpaths, parks
and other unconventional paths that often are not rep-
resented on a road network model (Schweizer et al.,
2016).

Simply creating a road network composed of cy-
cle paths would be simple, but it would not be a realis-
tic solution. Even for the most bicycle-friendly cities,
there is no such thing as a fully segregated bicycle net-
work. Bicycle trips end-up being the result of a multi-
objective optimisation process that comprises the se-
lection of cycling tracks, but also many other types
of roads (Reggiani et al., 2022). Route selection is a
strongly personal choice, and cyclists may combine
very diverse criteria when selecting their preferred
route (Zimmermann et al., 2017). While there may
not be any universally accepted definition of what a
bike network is, Mekuria et al. (Mekuria et al., 2012),
describe two clearly opposing views on this topic:
from a municipality point of view, a bike network is
defined as the set of links that cyclists are permitted
to use, whereas, from a user perspective a bike net-
work is the set of streets and paths that do not exceed
people’s tolerance for traffic stress.

The main consequence, therefore, is that when
we consider cycling, map-matching processes will of-
ten fail, not necessarily because of their algorithms,
but because the route that is being taken is not prop-
erly represented in the OSM road network model.
This can have a major impact in the quality of Cy-
cling Analytics Systems and the subsequent analy-
sis of travel behaviour (Berjisian and Bigazzi, 2023).
Mismatched routes could, for example, lead to erro-
neous data on walking and cycling volumes or incor-
rect inferences on travelling preferences. Detecting

and avoiding these anomalies is therefore essential
to ensure the quality of the insights being offered to
decision-makers and cyclists. However, there is still
limited research on detecting and understanding these
map-matching mismatches (Qu et al., 2023), and
the process of detecting the map-matching anomalies
still mainly resorts to visual inspection and reasoning
(Dey et al., 2022).

1.2 Objectives

In this study, we assess and propose a machine
learning approach for detecting and classifying map-
matching anomalies resulting from map-matching cy-
cling traces to OSM. Given a particular GPS trace rep-
resenting a route effectively taken by a cyclist, we de-
fine an anomaly as a portion of that trace for which
map-matching either fails to produce a match or pro-
duces a match to a segment that is not representative
of the GPS trace.

The research objectives are as follows:

• Define and assess a machine learning approach to
detect relevant discrepancies between a GPS trace
and the GPS route produced by a map-matching
algorithm.

• Define and assess a machine learning approach to
classify those anomalies according to their main
cause.

The main contribution of this work is a novel ap-
proach to detect and classify map-matching anoma-
lies using machine learning. This new approach
will open the door for the large scale assessment of
the representativeness of road network data models
across multiple cities, and subsequently inform pro-
cesses for improving those models or even the cycling
network itself.

2 RELATED WORK

Previous research has studied the topic of how accu-
rately OSM represents the cycling network infrastruc-
ture and how well it supports cycling-related services.
In this section, we explore three different perspec-
tives, namely OSM quality, map-matching and iden-
tification of map-matching anomalies.

2.1 OSM Quality for Cycling

A study by Hochmair et al. (Hochmair et al., 2015)
identifies two main types of errors, namely omission
and commission errors. Omission errors occur when
a cycle lane is not represented in the OSM database or
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does not include proper cycling tags. Commission er-
rors occur when a non-existing road is represented in
the OSM database, either by incorrect geometry defi-
nition or by incorrect use of cycling tags.

To assess OSM completeness, previous studies
(Ferster et al., 2020; Hochmair et al., 2015) com-
pared the OSM road network database against ref-
erence data obtained from municipalities, planning
agencies or from Google Maps. This assessment is
often achieved by comparing the total length of the
road network databases under analysis, either glob-
ally or separately for each road category.

In a study comparing OSM road network with
data for US and European cities, Hochmair et al.
(Hochmair et al., 2015) found that OSM data has rel-
atively good quality, and particularly high quality for
designated lanes. In another study, comparing OSM
data with reference data for six Canadian cities, Fer-
ster et al. found that OSM has very high concordance
in two cities and moderately high concordance in the
other four (Ferster et al., 2020). In some cases, OSM
data was even more detailed than reference datasets.In
their study, on-street bicycle lanes were the most con-
sistent, while cycle tracks and local street bikeways
were the least consistent. As the OSM database is de-
pendant of crowd-sourced contributions, a key chal-
lenge is to achieve consistent OSM tagging for differ-
ent bicycle infrastructures types, as people from dif-
ferent places can have different interpretations of the
same tag or the same interpretation for different tags
(Ferster et al., 2020).

With a different perspective, Wasserman et al.
evaluated the potential of OSM to assess the level of
traffic stress (LTS) (Wasserman et al., 2019), a promi-
nent metric to measure the facilities attractiveness for
cycling. The authors compared OSM-derived LTS
predictions with ground-truth LTS scores, and found
high concordance, with 89.9% of the length of the net-
work being correctly identified as either high or low
stress. However, some street typologies and urban
contexts are more prone to errors. It includes areas
that might be under-represented in tag completeness,
such as suburban or rural locations, and in denser ar-
eas, where street typologies might be more complex
and potentially misrepresented in OSM . Graser et al.
(Graser et al., 2015) analysed the quality of OSM road
network for performing vehicle routing. By compar-
ing OSM with the Austrian reference graph, the au-
thors conclude that there is a close alignment between
the one-way street and turn restriction information.

These studies suggest that OSM can effectively
represent cycling activities and be the foundation for
many cycling related studies. OSM has generally
good quality, but the level of completeness varies de-

pending on the region and the road category. The
problems identified, such as missing roads and incon-
sistent tagging, reduce the quality of routing and map-
matching processes, making it essential to have tools
and methodologies that can identify them and correct
them in a systematic way.

2.2 Map-Matching Algorithms

Map-matching algorithms are a key element for trans-
port modelling. Their purpose is to find the most suit-
able sequence of road network edges on which a ve-
hicle has travelled based on a GPS trace and a road
network model (Yang and Gidófalvi, 2018). How-
ever, applying map-matching on bicycle trips is par-
ticularly challenging as cyclists often use roads which
may not be represented by the road network model,
such as parks or dirty roads (Berjisian and Bigazzi,
2023; Schweizer et al., 2016). Additionally, the road
network data may be incomplete, thus map-matching
algorithms need to be tolerant to this lack of informa-
tion (Sultan et al., 2017).

The built environment has also a strong influ-
ence on the performance of map-matching algorithms
(Trogh et al., 2022). In areas with a sparser road net-
work (e.g. countryside), the chances of map-matching
anomalies are much smaller than in dense urban areas
where multiple parallel roads may exist and tall build-
ings may lead to noisy GPS signals. This makes the
process of map-matching urban cycling routes even
more challenging.

Several studies tried to address these limita-
tions by proposing new map-matching algorithms.
Bergman and Oksanen (Bergman and Oksanen, 2016)
proposed a method based on Hidden Markov Model
(HMM), which favoured bikeways extracted from
Open Street Map (OSM) to perform map-matching.
Schweizer et al. (Schweizer et al., 2016) proposed a
buffer-based map-matching algorithm that maximizes
the likelihood that a route is identical to the real route
from where the GPS trace has been sampled. They
create buffers that encircle edges to determine the
probability of finding GPS points near edges. It uses
network attributes to estimate the route in case of in-
complete GPS data and can identify if cyclists used
a reserved bikeway, where available. Trogh et al.
(Trogh et al., 2022) proposed a map-matching algo-
rithm that supports trajectories on foot, by bike, and
by motorized vehicles. It combines Markovian be-
haviour and the shortest path aspect while consider-
ing the type and direction of road segments, one-way
traffic, maximum speed, and driving behaviour. De-
pending on the transportation mode, some roads are
discarded from the grid based on their tags. For exam-
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ple, if the trace is labelled as on bike, highway roads
are excluded.

Other approaches acknowledge the incomplete-
ness of the road network and use the GPS trace to ex-
tract new road information. Sasaki et al. (Sasaki et al.,
2019) proposed an algorithm to interpolate missing
road segments by using vehicle trajectories based on
map-matching and clustering techniques.

Behr et al. (Behr et al., 2021) proposed an ap-
proach that allows map-matching of trajectories that
possibly contain on- and off-road sections, as cy-
clists and pedestrians can go through roads omitted
in the road network and through open areas, such as
parks. They called these semi-restricted trajectories.
They extend the road network by triangulating all
open spaces and add tessellation edges to the graph.
The approach is based on a state-transition model,
and consider each GPS point as possible (additional)
matching candidate. The unmatched candidates are
added as nodes in road network graph if no path in
the road network is similar to the trajectory.

In other study, Murphy et al. (Murphy et al., 2019)
proposed a map-matching algorithm for on and off-
road tracking. For this, the algorithm switch between
two modes as necessary: It uses standard HMM (Hid-
den Markov Model) to perform on-road vehicle map-
matching, and uses a closed form Kalman Filter for
free-space tracking. Off-road trajectory portions are
generated to be used as fall-back when the road can-
not accommodate the observed vehicle motion. The
sIMM (semi-interacting multiple model) filter is used
to calculate model probabilities at each step. In cases
where it detects map errors or omissions, the algo-
rithm tries to correct them.

2.3 Automated Identification of
Map-Matching Anomalies

The common way to identify map-matching anoma-
lies is through visual inspection (Dey et al., 2022).
This is a tedious and time consuming task, that is only
viable for small scale studies.

Dey et al. (Dey et al., 2022) proposed a method
to identify map-matching anomalies with two distinct
phases. In the first phase, using unsupervised learn-
ing, they classify each GNSS point as good or bad
based on its orthogonal distance to the map-matched
segment and the estimated GNSS error obtained from
a Gaussian mixture model. Then, the map-matched
segments are voted as good or bad, based on the ma-
jority of points associated with them. In the second
stage, they use the ”edit distance” to detect unrealistic
behaviour based on trajectory reversal. However, they
assume that the road network is complete and do not

consider the specific behaviour of cycling. Unlike au-
tomobiles, cyclists can easily reverse their trajectory,
thus making this method unsuited for cycling routes.

In a another study, Berjisian and Bigazzi
(Berjisian and Bigazzi, 2023) evaluated several open-
source map-matching algorithms for active travel.
They concluded that pgMapMatch is the best algo-
rithm, however, it is not designed specifically for cy-
cling. They also proposed an error detection measure
to flag potential map-matching anomalies requiring
visual inspection. Their method is based on the sim-
ilarity between the GPS trace and the map-matched
route. In our study, we re-purpose some of the sim-
ilarity measures, but the novelty is their use as in-
put data for a supervised machine learning process
that can automatically detect and classify the map-
matching anomalies.

3 METHODOLOGY

The methodology for this study is based on a se-
quence of steps aiming to collect the necessary data
(GPS traces and road network data models), map-
matching the routes, analysing the results of the
map-matching process and training a machine learn-
ing model to identify and characterize map-matching
anomalies.

3.1 Data Acquisition and Preparation

To guarantee diversity and authenticity, we acquired
real routes from four very distinct cities, regarding
their size, cycling culture, and mobility policies, more
specifically: Braga (Portugal), Seville (Spain), Paris
(France) and Amsterdam (Netherlands). Using the
wikiloc1 website, we searched for cycling routes in
the selected areas and downloaded a set of at least 20
GPS traces of routes that had been effectively made
by cyclists in each of those cities, resulting in a total
of 98 GPS traces with a total length of 894 Km.

To improve the granularity of the analysis and
fully understand the behaviour of the map-matching
process, we divided these traces in slices of approx-
imately 1000 meters, depending on the distance be-
tween consecutive GPS points. The last slice of
each GPS trace was composed of the remaining GPS
points, and would thus be smaller than 1000 meters.
This resulted in 935 trace slices.

1https://www.wikiloc.com/
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3.2 Road Network Data

For each of the selected cities, we created a database
with the respective OSM road network model. We
started by obtaining the road network data, using the
geofabrik2 website. Secondly, we used the osmium3

tool to select the data corresponding to the main ur-
ban area. Then we applied the osm2po4 tool to con-
vert the selected road network model into a routable
model. For this conversion, we considered car, pedes-
trian and cyclist roads. Finally, we created an instance
of a PostgreSQL5 database with PostGIS extension
and imported the topology data using the psql6 tool.

3.3 Map-Matching

In this study, our focus is not on the quality or any par-
ticular properties of map-matching algorithms. We
are only concerned about the discrepancies between
the road network model and the real routes used by
cyclists. To reduce any effects of the algorithm selec-
tion on the results of our study, we opted for pgMap-
Match (Millard-Ball et al., 2019). This is a widely
used algorithm, which has been classified as the best-
performing algorithm in a study by Berjisian and
Bigazzi (Berjisian and Bigazzi, 2023) and seemed ac-
ceptable as a representative example of the current
state of art in map-matching algorithms.

We thus used pgMapMatch to perform a map-
matching operation in each of the slices obtained in
the previous step. For each city, we started by con-
figuring the pgMapMatch7 tool to use the respective
database instance as the source data for map-matching
processes. Finally, we map-matched each GPS trace
slice into the OSM road network model and built the
resulting geometry.

3.4 Ground-Truth Data

To obtain ground-truth data, we visually inspected the
map-matching results to identify and categorize every
anomaly. For each slice, we generated a map visu-
alization representing the road network, the original
GPS trace slice and the map-matched route. We then
analysed each of the 935 visualizations to identify any
anomalous situations. In this context, an anomaly was
a case where it was obvious from visual inspection

2https://www.geofabrik.de
3https://osmcode.org/osmium-tool/
4https://osm2po.de
5https://www.postgresql.org
6https://www.postgresql.org/docs/current/app-

psql.html
7https://github.com/amillb/pgMapMatch

that the map-matched route was not the best option
for representing the route taken by the cyclist. Ex-
cept for some concurrent roads, this is one of those
problems where Human reasoning can be very effec-
tive at disambiguating anomaly situations by consid-
ering background knowledge about cycling and land
usage in the area represented by the map. The catego-
rization was based on the type of apparent source of
the anomaly. In some cases, assessing the cause for
the anomaly required the inspection of the OSM road
network data to get details about road types and tags.

3.5 Generation of Similarity Measures

At this stage, we computed several similarity mea-
sures for each GPS trace slice and the corresponding
map-matched route. They are all based on literature
and some of them were also used by Berjisian and
Bigazzi (Berjisian and Bigazzi, 2023).

GPS Trace Slice Length (TL). The total length of
the GPS trace slice.

Map-Matched Route Length (ML). The total
length of the map-matched route.

Length Index (LI). The ratio between the length
of a GPS trace slice and the respective map-matched
route (Schweizer et al., 2016). In optimal scenarios,
this value would be close to 1.

Average Distance (AD). The average value of the
distances between each GPS trace and the respective
map-matched route. This metric uses the distance
between each point in the GPS trace and the near-
est point in the map-matched route. The order of the
points is not considered (Schweizer et al., 2016).

Average Distance Error per Record (ADE). The
average value of the distances between each GPS
trace and the map-matched route, as proposed by
Berjisian and Bigazzi (Berjisian and Bigazzi, 2023).
This approach considers the distance to two possible
map-matched route segments, particularly the one as-
signed to the last GPS point and the following. The
smaller distance is used. However, if the cumulative
distance between the first GPS point assigned to the
first segment and the current GPS point is longer than
the length of the first map-matched segment, the dis-
tance to the second is always used, and this process
recommences.
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Discrete Fréchet Distance (FD). The Fréchet Dis-
tance assesses the similarities between two geome-
tries. It can be explained as: A man walks a dog with
a leash. They walk on two curves independently with
varying speeds. The Fréchet distance is the minimum
leash length required to traverse both curves (Eiter
and Mannila, 1994). The higher the Fréchet distance
is, the less similar both curves are. There are multiple
variants of this metric. In the weak Frechet variant,
one or both ”entities” can walk backwards. We use
the strong Fréchet variant, where only movement for-
ward is allowed. The discrete variant is an approxi-
mation for polygonal curves.

Dynamic Time Warping (DTW). Dynamic Time
Warping (DTW) is used in many areas to measure
the similarity or the distance between two sequences
(Toohey and Duckham, 2015). In the context of our
study, the sequences are composed of long/lat pairs,
one represents the GPS trace and the other the map-
matched route. The distance between each pair of
points is computed with the haversine formula.

Alignment (A). The alignment metric, as proposed
by Berjisian and Bigazzi (Berjisian and Bigazzi,
2023), describes the average difference between the
bearings of the GPS trace and the corresponding map-
matched route over each 5 consecutive GPS points.
To obtain the start point of the corresponding map-
matched route segment, the first GPS point of the in-
terval is projected into the map-matched route. The
last point of the map-matched route segment is ob-
tained by walking on the map-matched route a dis-
tance equal to the cumulative distance between the
GPS points considered.

3.6 Classification Models

Supervised machine learning classification aims to
categorize data or predict outcomes based on prior
labelled information (Singh et al., 2016). It is used
in many data science problems and comprehends two
phases. First, the classifier is trained using a training
dataset. Then, the performance of the resulting model
is evaluated against a labelled test data.

In the context of our work, we started by train-
ing a set of binary classifiers using the similarity mea-
sures as features and the ground-truth data as labels.
The objective of these models was to detect the map-
matching anomalies.

Later, using the same dataset, we trained and
tested several multi-class classifiers to identify the
probable cause of these anomalies.

In each stage, we tested different feature engi-
neering approaches, and conducted hyperparameteri-
zation with cross validation to improve the confidence
on the results.

We considered several metrics for assessing the
performance of the classification models. For the bi-
nary classification models, we computed the accu-
racy, precision, recall, and F1 Score (Iwendi et al.,
2020; Gyawali and Qian, 2019), and for the multi-
class models, we considered accuracy and macro pre-
cision, recall, and F1 Score (Takahashi et al., 2022).
These metrics are well known, and used frequently in
machine learning related studies.

4 RESULTS

In this section, we describe the results of our study.
We start by describing and analysing the results ob-
tained by applying the map-matching algorithm into
selected GPS traces. After, we proceed to describe
the training and application of the binary classifiers.
Then, we present the results of performing multi-class
classification. Finally, we assess the Berjisian and
Bigazzi method to detect map-matching anomalies
(Berjisian and Bigazzi, 2023) and compare its perfor-
mance against our binary classification.

4.1 Analysis of the Map-Matching
Process

The first part of this study involved collecting GPS
traces representing bicycle activity, slice them into
smaller portions, map-matching the resulting slices
into OSM and performing visual inspection of the re-
sults to produce ground truth data. We used the GPS
trace slice as our unit of analysis.

The visual inspection of the routes produced by
the map-matching algorithm, allowed us to identify
and classify the map-matching anomalies. Table 1 de-
scribe the overall results and figure 1 shows 6 exam-
ples of common map-matching anomalies.

Out of the 935 slices analysed, 417 cases (44,6%)
were entirely map-matched with success. The re-
maining 518 slices (55,4%) had at least a small por-
tion with a faulty map-matched situation. In some
cases, the map-matching process failed at several por-
tions across the slice. In 45 of those slices (4,8%),
the map-matching even failed due to different reasons.
As result, these cases were assigned to multiple cate-
gories.

Comparing the map-matching results for each
city, we observe that the success rate varied slightly.
Amsterdam had the lowest success rate with 39,8%,
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Table 1: General stats: Map-matching anomalies.

Braga Amsterdam Paris Sevilha Total
GPS Traces 24 22 20 32 98

Total Length (Km) 213 179 96 406 894
GPS Trace Slices 226 191 98 420 935

% of Slices Without Error 44,7 39,8 42,9 47,1 44,6
% of Slices With At Least 1 Error 55,3 60,2 57,1 52,9 55,4

% of Slices Assigned to One Error Category 50,9 59,2 45,9 47,6 50,6
% of Slices Assigned to Multiple Error Categories 4,4 1,0 11,2 5,2 4,8

Figure 1: Examples of common map-matching anomalies:
1- Competing roads; 2- GPS error; 3- Missing Segment; 4-
One-way; 5- Map-matching; 6- Open Area.

while Seville has the highest one with 47,1%. This
can be somewhat explained by the source of the
anomalies. In Amsterdam, the majority of these
anomalies were caused by ”one-way” travel against
traffic direction, which the map-matching algorithm
does not consider, even in cases where the cyclist used
cycleways.

The manual classification of the anomalies is rep-
resented in Table 2, which summaries the occurrences
per category in each city. Since the total number of
slices varies substantially across cities, we computed
two ratios. The first, Rt, shows the ratio of occur-
rences of each category per GPS trace slice. The sec-
ond, Re, shows the ratio of occurrences of each cate-
gory per anomaly. Since one map-matching anomaly
can be assigned with one or more categories, the sum
of Re can be higher than 100%. As we can see, de-
spite similar map-matching success rates, the main
source of error varies substantially across city.

The three main sources of anomalies were di-
rectly related to the road network, namely one-way,
competing-roads, and missing segments. This is

in line with the results from Berjisian and Bigazzi
(Berjisian and Bigazzi, 2023). They also point out
that the most common sources of error were cyclists
travelling in the wrong direction on a one-way street,
travelling on missing links, and traces being map-
matched to a parallel street.

The map-matching algorithm itself led to 78
anomalies. In those cases the algorithm wrongly re-
turned the last portion of the map-matched segment
duplicated. This would mean that the cyclist inverted
his direction of travel. However, by visually inspect-
ing the results, we could observe that it was not the
case.

Bad GPS trace quality led to 44 map-matching
anomalies. In some cases, strong interferences on the
GPS signals led the measurements to be recorded as
being above buildings or rivers. In other cases, the
GPS traces had a very low sampling rate or had long
intervals without recordings. These situations jeopar-
dised the map-matching process.

Finally, we tagged 5 cases as ”unknown” as we
could not properly identify their main cause.

4.2 Binary Classification for Anomaly
Detection

After performing the ground-truth analysis, we com-
puted the similarity measures between each GPS trace
slice and the corresponding map-matched route. We
then developed a Python script to train and test binary
classification models, using sklearn8 library. We con-
sidered 8 different classifiers, namely: Logistic Re-
gression, SVC, K-Neighbors (KNN), Decision Tree,
Random Forest, Gaussian Naive Bayes, XGBoost and
Adaboost.

We used 75% of the labelled data as the training
dataset and the remaining 25% to evaluate their per-
formance. The data were shuffled randomly before
splitting. We performed Random Search with 4-fold
cross validation to find the best hyperparameters for
each classifier and to increase confidence on the re-
sults.

8https://scikit-learn.org/stable/
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Table 2: Category occurrences per city.

Dataset Braga Amsterdam Paris Sevilha Total
Category Cnt Rt Re Cnt Rt Re Cnt Rt Re Cnt Rt Re Cnt Rt Re
One-Way 53 23,5 42,4 71 37,2 61,7 30 30,6 53,6 52 12,4 23,4 206 22,0 39,8

Competing Road 9 4,0 7,2 21 11,0 18,3 20 20,4 35,7 72 17,1 32,4 122 13,0 23,6
Missing Segment 39 17,3 31,2 2 1,0 1,7 3 3,1 5,4 54 12,9 24,3 98 10,5 18,9

Map-Matching 24 10,6 19,2 2 1,0 1,7 3 3,1 5,4 49 11,7 22,1 78 8,3 15,1
GPS 2 0,9 1,6 18 9,4 15,7 11 11,2 19,6 13 3,1 5,9 44 4,7 8,5

Open-Area 5 2,2 4 0 0 0 0 0 0 2 0,5 0,9 7 0,7 1,4
Uknown 2 0,9 1,6 2 1,0 1,7 0 0 0 1 0,2 0,5 5 0,5 1,0

Circular Street 0 0 0 0 0 0 0 0 0 1 0,2 0,5 1 0,1 0,2
Complex Crossing 1 0,4 0,8 0 0 0 0 0 0 0 0 0 1 0,1 0,2

No Bicycle 0 0 0 0 0 0 1 1,0 1,8 0 0 0 1 0,1 0,2

We used four different feature engineering ap-
proaches namely ANOVA, Principal Component
Analysis (PCA), Mutual Information and the Spear-
man correlation between features (Khalid et al.,
2014). For each approach we also tested with stan-
dardised valued (STD). Depending on the approach,
we used different set of features:

• ”None”. We used every feature available.

• ”Corr”. Based on the Spearman correlation be-
tween features shown figure 2, we removed highly
correlated features, using only the TL, ADE,
DTW, and A.

• ”Info-Gain”. We considered the features with
most dependency with the result, namely DTW,
FD, AD, and LI. The results of mutual informa-
tion analysis is shown in figure 3.

• ”PCA”. We considered 4 components.

• ”ANOVA”. We used 6 features.
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Figure 2: Spearman Correlation between features.

Regarding the dataset, out of the 935 map-
matching requests, 518 (55%) had anomalous results,
showing that our dataset is balanced for the error iden-
tification phase. Table 3 shows a summary of the
results for the binary models, ordered by accuracy
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Figure 3: Information Gain.

Table 3: Binary Classification Results - Short Version.
ID Model Version Prec. Recall F1 Acc.
1 XGB ANOVA 0,883 0,931 0,906 0,893
2 XGB ANOVA-STD 0,883 0,931 0,906 0,893
3 DT Info-Gain 0,888 0,915 0,902 0,889
4 KNN Corr 0,876 0,923 0,899 0,885
5 KNN None 0,876 0,923 0,899 0,885
6 KNN ANOVA 0,887 0,908 0,897 0,885
7 XGB Corr 0,887 0,908 0,897 0,885
... ... ... ... ... ... ...
56 SVC None 0,573 1,000 0,728 0,585

score. ”Version” column correspond to the feature se-
lection algorithm.

Results show that the performance of the models
varied considerably, depending on the classifier algo-
rithm and the feature engineering method used. Some
models had a very low performance, with accuracy
below 0.6.

However, other models had a very good perfor-
mance, with accuracy close to 0.89. The best per-
forming model was a trained Extreme Gradient Boost
(XGB) with ANOVA feature selection. It was also the
model with best F1 Score, slightly above 0.9. Addi-
tionally, there were several other models which were
very similar in performance, including Decision Tree,
Adaboost and Logistic regression.

This results show that with binary classifica-
tion models it is possible to identify map-matching
anomalies with very good confidence.
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4.3 Multi-Class Classification for
Anomaly Classification

In the second phase of our work, we trained a slightly
different set of multi-class classifiers. This included
Naive Bayes (NB), Random Forest (RF), Logistic Re-
gression (RF), Decision Tree (DT), KNN, and SVC.

We used the same ground-truth data and similar-
ity measures. However, we excluded the occurrences
tagged with multiple categories and the categories
with less than 20 occurrences, due to low represen-
tativeness.

We used 75% of the dataset for training, and the
remaining 25% for testing. We conducted Random
Search of the hyperparameters with 4-fold cross val-
idation. We tested these models using different types
of feature engineering, namely PCA, mutual informa-
tion, Spearman correlation, and ANOVA. In some it-
eration, we applied SMOTE preprocessing algorithm
(Fernandez et al., 2018) to balance the error cate-
gories. In the iterations tagged as ”-SMT-U”, we as-
sessed how the performance of these models varied
if we performed SMOTE to oversampling the minor-
ity categories up to 100 entries and downsampling the
”OK” category to just 200 occurrences. Table 4 shows
the initial training dataset, and the training dataset af-
ter performing feature engineering for this iteration.

Table 4: Train Dataset for the iteration: ”-SMT-U”.

Train Dataset Test Dataset
Category Before After (SMT-U) Count
OK 309 200 108
Missing Segment 58 100 20
Competing Road 72 100 29
Map Matching 59 100 8
One-way 128 128 47
GPS 31 100 7
Total 657 728 219

Table 5 presents the performance of the top trained
models, sorted by accuracy.

Table 5: Multi-class classification Results - Short Version.
ID Model Version Prec. Recall F1 Acc.
1 RF None 0,63 0,57 0,59 0,71
2 RF Info-Gain 0,57 0,54 0,53 0,68
3 RF ANOVA 0,59 0,53 0,54 0,68
4 RF Corr 0,47 0,41 0,41 0,68
5 DT ANOVA 0,54 0,51 0,50 0,68
6 LR PCA 0,45 0,40 0,39 0,68
... ... ... ... ... ... ...
90 LR Info-Gain-SMOTE 0,04 0,26 0,05 0,06

In general, the results indicate that the perfor-
mance of multi-class classification models is bad. The
majority of these models can easily identify that an
anomaly has occurred. However, they often fail to
identify their probable cause.

Figure 4 shows the confusion matrix for the best
performing model. We can observe that, out of the
104 cases predicted as ”OK”, 92 were predicted cor-
rectly. This was from a total of 108 true ”OK” cases.
We can also observe that many of the map-matching
occurrences categories were wrongly predicted. As
example, the majority of ”missing-segment” cases
were predicted as ”one-way”. Another example is
that 12 out of 47 ”one-way” cases were predicted with
other labels.

Figure 4: Confusion matrix for the RF model with no fea-
ture engineering.

In a real-world application, this multi-class clas-
sification models could complement the identification
made by the binary. Spite bad performance, their out-
puts can act as suggestions about the probable cause
of failure. These suggestions are valuable to people
responsible for manually inspecting the results, find-
ing where the road network model is incomplete and
making the right adjustments.

4.4 Error Indicator Method Assessment

The final part of our work consisted of assessing the
quality of Error Indicator (EI) to detect map-matching
anomalies and comparing its performance with the bi-
nary classification models. The EI method is one of
the few methods that does not use ground-truth data to
detect map-matching anomalies. It was proposed by
Berjisian and Bigazzi (Berjisian and Bigazzi, 2023),
and consisted of equation 1, as follows:

ERi = 0.39LI′i +0.94ADE ′
i +0.67A′

i

+0.96DTW ′
i +0.74FD′

i
(1)

This expression uses normalized values for each
component, corresponding to the similarity measures
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defined in section 3.5. The LI component was ob-
tained by computing the absolute value of the Length
Index - 1, as map-matched routes shorter than the
GPS trace (LI <1) would contribute negatively to the
EI result. It is important to state that the normalization
process was made based on the range of values for
each dataset separately. In their work, entries with EI
values greater than 0.5 were flagged for visual inspec-
tion as potentially unreliable results. Table 6 shows
the results of applying this method to our datasets.

Table 6: Error Indicator Performance.
Braga Amsterdam Paris Seville Total

Accuracy 0,77 0,63 0,77 0,55 0,64
Precision 0,81 0,79 0,72 0,84 0,79

Recall 0,76 0,52 0,96 0,19 0,48
F1 Score 0,78 0,63 0,82 0,31 0,6

In total, out of the 518 anomalies, the EI correctly
flagged 251 and missed 267. This is an overall re-
call value of 0.48. Additionally, 68 cases without
anomaly were wrongly flagged for visual inspection.
This makes an overall precision value of 0.79, mean-
ing that, on average, 1 in every 5 cases was flagged
incorrectly for visual assessment.

Comparing the results for each dataset, we ob-
serve that they varied substantially. For smaller
datasets, EI had a good sensibility to detect anoma-
lies, but created more false positives. On the contrary,
with larger datasets, precision increased, but the sen-
sitivity to detect anomalies experienced a significant
decline.

This was due to the occurrence of outliers with
bigger discrepancies between the GPS trace and the
map-matching result, as their similarity measures
tend to have a strong negative influence during the
normalization phase. This impact reduces the sensi-
bility of EI to detect smaller anomalies.

Additionally, the performance of this method var-
ied across categories. Table 7 shows the recall values
for the five most common categories. These can be
interpreted as the number of occurrences of a given
category that were flagged for visual inspection since
EI only performs detection and does not classify the
occurrences.

We can observe that EI hardly detected the ”Com-
peting Road” occurrences. For this type of anoma-
lies, EI had a recall value equal or below 0.13 on 3
datasets, with exception for the ”Paris” dataset.

This was caused by the existence of outliers in
bigger datasets. In ”competing road” anomalies,
the differences between the GPS trace and the map-
matching is very subtle, and their similarity measures
tend to be approximate to the similarity measures
from cases where map-matching was correct. As the

values were normalized, the occurrence of outliers
hide those differences, and pass undetected by the EI
method. Even for anomalies that are characterised
by strong differences between the GPS trace and the
map-matching result, such as one-way or missing seg-
ments, EI obtained a recall value of 0.17 and 0.38 for
the Seville dataset.

4.4.1 Comparison Between EI and ML
Approach

If we compare the performance of both approaches,
we observe that binary classification models outper-
form EI method by a large margin. The top binary
classification model obtained an accuracy of 0.893
and F1 score of 0,906, while the EI method obtained,
on average, an accuracy of 0,64 and a F1 Score of 0,6.
Additionally, the EI method does not give hints about
the root cause of the anomaly. Despite the low perfor-
mance of the multi-class models, these hints can be
very useful for people responsible of correcting OSM
data.

Another advantage of our approach is the ability
to detect anomalies in real-time. It does not require
the normalization of the value prior to the verification,
while EI requires the normalization of its measures
before obtaining the final value. This makes the ML
approach better suited for real-world scenarios, where
there are many routes being recorded every second.

5 CONCLUSIONS

Detecting the gaps between real cycling routes and
how they are matched to the existing road network
data model is an essential first step to improve these
models and consequently, offer better insights to
decision-makers and more reliable services to cy-
clists. In this work, we assessed the feasibility of us-
ing machine learning classifiers to automatically de-
tect and classify the cases where map-matching fails
to properly map cycling routes.

Results show that binary classification models
were able to identify map-matching anomalies with
good performance. The best classifier, XGBoost, ob-
tained an accuracy of 0.893 and an F1 value of 0,906.

The top performing binary models even outper-
formed other approaches, namely EI (Berjisian and
Bigazzi, 2023). We observed that EI performance de-
pends largely on the dataset. The sensibility of this
method decreases as the size increases due to a higher
probability of existing extreme outliers.

We also trained several multi-class classification
models. However, their performance was not very
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Table 7: Error Indicator recall for the five most common categories

Braga Amsterdam Paris Seville Total
Category Cnt TP R Cnt TP R Cnt TP R Cnt TP R Cnt TP R
One-way 45 36 0,8 69 41 0,59 19 19 1 42 7 0,17 175 103 0,59

Competing-road 8 1 0,13 20 2 0,1 16 14 0,88 57 0 0 101 17 0,17
Missing-segment 30 28 0,93 2 0 0 1 1 1 45 17 0,38 78 46 0,59

Map-matching 23 16 0,7 1 0 0 2 2 1 41 10 0,24 67 28 0,42
GPS Error 2 0 0 18 14 0,78 7 7 1 11 5 0,45 38 26 0,68

good. The best classifier, Random Forest without fea-
ture selection, achieved 71% accuracy. Despite being
able to distinguish between cases with and without
anomalies, in most cases, it failed to classify those
anomalies according to their root causes. Neverthe-
less, these predictions can help people to find and
correct the errors in the road network data model,
and also create an overview of the anomalous seg-
ments per city. Developers and researchers can in-
clude the proposed approach when developing an in-
formation system that creates statistics based on GPS
traces made by cyclists. On one hand, this method
can detect when the information is being assigned to
the wrong segment, thus improving insights and sug-
gestions given to decisions makers and to cyclists. On
the other, detecting when the GPS trace could not be
map-matched to a road can lead to the discovery of
incomplete portions of the road network data model,
thus contributing to a progressive improvement. This
methodology may also help municipalities to identify
gaps in the connectivity of their cycling networks or
in the OSM representation of those networks.

5.1 Limitations

A limitation of this study is that we only used one
map-matching algorithm, and one that was not specif-
ically designed for cycling purposes. Also, we didn’t
perform any preprocessing to the GPS traces to ensure
its quality. It would be interesting to explore how the
performance of this method improved with high sam-
pling frequencies and bad GPS signals removed.

5.2 Future Work

In the future, we aim to assess the feasibility of new
similarity measures or other features to improve the
classification of the map-matching anomalies. An-
other research direction is the development of a infor-
mation system to help people systematically improve
the OSM road network based on real cycling activ-
ities. In a perfect scenario, these changes could be
made automatically on the OSM database.

ACKNOWLEDGEMENTS

This research was supported by the doctoral Grant
PRT/BD/152831/2021 financed by the Portuguese
Foundation for Science and Technology (FCT), and
with funds from República Portuguesa/FCT, under
MIT Portugal Program and supported by FCT –
Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020.

REFERENCES

Basiri, A., Amirian, P., and Mooney, P. (2016). Using
crowdsourced trajectories for automated osm data en-
try approach. Sensors, 16(9):1510.

Behr, T., van Dijk, T. C., Forsch, A., Haunert, J.-H., and
Storandt, S. (2021). Map matching for semi-restricted
trajectories. In Janowicz, K. and Verstegen, J. A., edi-
tors, 11th International Conference on Geographic In-
formation Science (GIScience 2021) - Part II, volume
208, page 12:1–12:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

Bergman, C. and Oksanen, J. (2016). Conflation of
openstreetmap and mobile sports tracking data for
automatic bicycle routing. Transactions in GIS,
20(6):848–868.

Berjisian, E. and Bigazzi, A. (2023). Evaluation of
map-matching algorithms for smartphone-based ac-
tive travel data. IET Intelligent Transport Systems,
17(1):227–242.

de Matos, F. L., Fernandes, J. M., Sampaio, C., Macedo,
J., Coelho, M. C., and Bandeira, J. (2021). Develop-
ment of an information system for cycling navigation.
Transportation Research Procedia, 52:107–114.

Dey, S., Tomko, M., and Winter, S. (2022). Map-matching
error identification in the absence of ground truth.
ISPRS International Journal of Geo-Information,
11(11).

ECF (2016). Cycling & new technologies. https://ecf.com/
what-we-do/cycling-new-technologies/towards-sma
rter-cycling. Last accessed 04 Apr 2022.

Eguiluz, A., Hernandez-Jayo, U., Casado-Mansilla, D.,
Lopez-de Ipina, D., and Moran, A. E. (2022). De-
sign and implementation of an open-source urban mo-
bility web service based on environmental quality
and bicycle mobility data. In 2022 7th International

Automatic Identification and Classification of Map-Matching Anomalies in Cycling Routes

27



Conference on Smart and Sustainable Technologies
(SpliTech), pages 1–5.

Eiter, T. and Mannila, H. (1994). Computing discrete
fréchet distance. Technical Report CD-TR 94/64, In-
formation Systems Department, Technical University
of Vienna.

Fernandez, A., Garcia, S., Herrera, F., and Chawla, N. V.
(2018). Smote for learning from imbalanced data:
Progress and challenges, marking the 15-year an-
niversary. Journal of Artificial Intelligence Research,
61:863–905.

Ferster, C., Fischer, J., Manaugh, K., Nelson, T., and
Winters, M. (2020). Using openstreetmap to inven-
tory bicycle infrastructure: A comparison with open
data from cities. International Journal of Sustainable
Transportation, 14(1):64–73.

Graser, A., Straub, M., and Dragaschnig, M. (2015). Is
OSM Good Enough for Vehicle Routing? A Study
Comparing Street Networks in Vienna, pages 3–17.
Springer International Publishing, Cham.

Gyawali, S. and Qian, Y. (2019). Misbehavior detection us-
ing machine learning in vehicular communication net-
works. In ICC 2019 - 2019 IEEE International Con-
ference on Communications (ICC), pages 1–6.

Haklay, M. and Weber, P. (2008). Openstreetmap: User-
generated street maps. IEEE Pervasive Computing,
7(4):12–18.

Hochmair, H. H., Zielstra, D., and Neis, P. (2015). Assess-
ing the completeness of bicycle trail and lane features
in openstreetmap for the united states. Transactions in
GIS, 19(1):63–81.

Iwendi, C., Bashir, A. K., Peshkar, A., Sujatha, R., Chatter-
jee, J. M., Pasupuleti, S., Mishra, R., Pillai, S., and Jo,
O. (2020). Covid-19 patient health prediction using
boosted random forest algorithm. Frontiers in Public
Health, 8.

Khalid, S., Khalil, T., and Nasreen, S. (2014). A survey of
feature selection and feature extraction techniques in
machine learning. In 2014 Science and Information
Conference, pages 372–378.

Mekuria, M. C., Furth, P. G., and Nixon, H. (2012). Low-
stress bicycling and network connectivity. Technical
Report CA-MTI-12-1005, Mineta Transportation In-
stitute.

Millard-Ball, A., Hampshire, R. C., and Weinberger, R. R.
(2019). Map-matching poor-quality gps data in urban
environments: the pgmapmatch package. Transporta-
tion Planning and Technology, 42(6):539–553.

Murphy, J., Pao, Y., and Yuen, A. (2019). Map matching
when the map is wrong: Efficient on/off road vehicle
tracking and map learning. In Proceedings of the 12th
ACM SIGSPATIAL International Workshop on Com-
putational Transportation Science, IWCTS’19, New
York, NY, USA. Association for Computing Machin-
ery.

Nunes, P., Moura, A., Santos, J. P., and Completo, A.
(2021). A simulated annealing algorithm to solve the
multi-objective bike routing problem. In 2021 Inter-
national Symposium on Computer Science and Intel-
ligent Controls (ISCSIC), pages 39–45.

Qu, L., Zhou, Y., Li, J., Yu, Q., and Jiang, X. (2023). Hmm-
based map matching and spatiotemporal analysis for
matching errors with taxi trajectories. ISPRS Interna-
tional Journal of Geo-Information, 12(8):330.

Reggiani, G., van Oijen, T., Hamedmoghadam, H., Daa-
men, W., Vu, H. L., and Hoogendoorn, S. (2022). Un-
derstanding bikeability: a methodology to assess ur-
ban networks. Transportation, 49(3):897–925.

Sasaki, Y., Yu, J., and Ishikawa, Y. (2019). Road segment
interpolation for incomplete road data. In 2019 IEEE
International Conference on Big Data and Smart
Computing (BigComp), pages 1–8. IEEE.

Schweizer, J., Bernardi, S., and Rupi, F. (2016). Map-
matching algorithm applied to bicycle global position-
ing system traces in bologna. IET Intelligent Trans-
port Systems, 10(4):244–250.

Singh, A., Thakur, N., and Sharma, A. (2016). A review of
supervised machine learning algorithms. In 2016 3rd
International Conference on Computing for Sustain-
able Global Development (INDIACom), pages 1310–
1315.

Sultan, J., Ben-Haim, G., Haunert, J.-H., and Dalyot,
S. (2017). Extracting spatial patterns in bicycle
routes from crowdsourced data. Transactions in GIS,
21(6):1321–1340.

Takahashi, K., Yamamoto, K., Kuchiba, A., and Koyama,
T. (2022). Confidence interval for micro-averaged f1
and macro-averaged f1 scores. Applied Intelligence,
52(5):4961–4972.

Toohey, K. and Duckham, M. (2015). Trajectory similarity
measures. SIGSPATIAL Special, 7(1):43–50.

Trogh, J., Botteldooren, D., De Coensel, B., Martens, L.,
Joseph, W., and Plets, D. (2022). Map matching and
lane detection based on markovian behavior, gis, and
imu data. IEEE Transactions on Intelligent Trans-
portation Systems, 23(3):2056–2070.

Wasserman, D., Rixey, A., Zhou, X. E., Levitt, D., and Ben-
jamin, M. (2019). Evaluating openstreetmap’s per-
formance potential for level of traffic stress analysis.
Transportation Research Record, 2673(4):284–294.
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