
Investigating the Impact of Code Generation Tools (ChatGPT & Github
CoPilot) on Programming Education

Faisal Nizamudeen, Lorenzo Gatti, Nacir Bouali and Faizan Ahmed
Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, The Netherlands

Keywords: ChatGPT, Artificial Intelligence, Code Generation, Computer Science Education.

Abstract: In our rapidly evolving technological landscape, AI tools have gained substantial power and integration across
various domains. Through interviews and surveys conducted at a University in the Netherlands, we inves-
tigated students’ perceptions of AI tools. Our results show that students generally have a positive attitude
towards the adoption of AI technologies and feel that it enhances their learning experience. Furthermore, this
research project examines the capabilities of AI-powered tools, namely GitHub Copilot and ChatGPT, in solv-
ing a variety of university-level assignments. By empirically evaluating the capabilities of these AI tools and
offering insights to educators, this research project aims to assist them in designing programming exercises
that encompass essential learning processes while accounting for students’ utilization of AI tools. The findings
indicate that a majority of the exercises currently utilized by the examined university could be solved partially
or entirely with the aid of these tools. This project highlights the importance of educators understanding the
capabilities of AI tools, as well as students’ attitudes towards them, to effectively adapt their teaching methods
and promote essential learning goals.

1 INTRODUCTION

The past year has seen a significant surge in AI in-
novation, with AI tools becoming increasingly inte-
grated into people’s daily lives worldwide. This trend
is especially noticeable in the field of programming.

Code generation tools are models that can auto-
matically generate source code or actual pieces of
code based on input specifications, templates, or mod-
els (Herrington, 2003). They are accessible via plu-
gins in integrated development environments (IDEs)
and free-access websites that provide interaction with
such generators. With their dramatic improvement
over the past year, it is believed that they have the po-
tential to revolutionize the coding process and make
programming more productive and accessible (Li
et al., 2022).

AI Chatbots and AI Pair Programmers are the
most commonly used tools for code generation.
Among these tools, ChatGPT (an AI Chatbot) and
GitHub Copilot (an AI Pair Programmer) stand out
as widely used applications. These technologies have
notably diminished the reliance on platforms like
Stack Overflow as these tools can offer personalized
responses and better contextual understanding. As
AI tools continue to advance, the importance of such

sites will likely continue to diminish.
ChatGPT, created by OpenAI, is an AI chat-

bot that uses OpenAI’s GPT model to simulate
human-like responses when interacting with users.
The model was trained using Reinforcement Learn-
ing from Human Feedback (RLHF), and a reward
model was established based on conversations be-
tween trainers and the chatbot. While the potential
applications of ChatGPT are virtually limitless, its
implications for programmers are particularly signifi-
cant. Within the programming context, programmers
can rely on ChatGPT to generate code snippets, boil-
erplate code, stub implementations, and much more.
It can also assist with debugging by providing relevant
prompts and code snippets.

GitHub Copilot, developed by GitHub and Ope-
nAI, is an AI-powered code completion tool that sug-
gests code snippets and auto-completes code while
developers write. It utilizes OpenAI’s GPT (Gener-
ative Pre-trained Transformer) model to analyze the
code being written, along with contextual information
such as function names, comments, and documenta-
tion, to provide helpful suggestions. The tool aims
to enhance coding speed and efficiency by reducing
the need for manual typing. It has been trained on a
vast amount of code from public GitHub repositories.

Nizamudeen, F., Gatti, L., Bouali, N. and Ahmed, F.
Investigating the Impact of Code Generation Tools (ChatGPT & Github CoPilot) on Programming Education.
DOI: 10.5220/0012628000003693
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Computer Supported Education (CSEDU 2024) - Volume 2, pages 221-229
ISBN: 978-989-758-697-2; ISSN: 2184-5026
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

221



Students who apply for a GitHub Education Pack can
access GitHub Copilot for free.

ChatGPT and Github Copilot are the primary
technologies that we will focus on throughout this pa-
per. We will delve into the impacts that these code-
generation tools can have on education as a whole
from the perspective of a student and educators. We
analyze this impact by answering two main questions
a) What do novice programmers say about the influ-
ence of code generation tools on their engagement
and motivation in the programming learning process?
b) To what extent can AI Tools assist students when
completing programming assignments and how can
teachers design exercises that still maintain relevant
learning objectives?

The paper is organized as follows: Section 2 will
provide the necessary background for this research.
Section 3 describes the methodology adopted to con-
duct this research. In Section 4 we summarise our
surveys and interviews. Section 5 is dedicated to ex-
ploring the capabilities of these tools. In Section 6 we
provide the results of our study. We conclude this pa-
per in Sections 7 & 8 touching upon the limitations
of this study and providing concluding thoughts.

2 EXISTING WORK

In this section, we will briefly describe some of the
existing work on the domain.

2.1 Impact on Educators/Students

Several studies have emphasized the potential of AI-
generated code technologies to support teachers in au-
tomating exercise generation and providing explana-
tions of the code.

(Sarsa et al., 2022) and (Marwan et al., 2019) have
specifically highlighted the benefits of these tools
in assisting educators in creating a wide range of
programming exercises and offering detailed expla-
nations, thereby enhancing student learning experi-
ences. Similarly (Becker et al., 2022) strengthens the
idea of using these tools as an aid for effective teach-
ing. They also raise concerns about the readiness of
teachers to handle the significant influence on educa-
tional practices. The researchers therefore emphasize
the need for an urgent review and modification of in-
structional approaches and traditional practices in re-
sponse to the advancements in code generation tech-
nology.

From the perspective of students or novice pro-
grammers, code-generating tools can aid in solving
programming tasks (Wermelinger, 2023), resolving

bugs (Surameery and Shakor, 2023), assisting with
software engineering projects (Khmelevsky et al.,
2012), generating exercises with explanations and il-
lustrative examples of programming constructs and
algorithmic patterns, or mapping problems to solu-
tions (Becker et al., 2022).

Some studies identify the benefits of using code-
generating technologies for students as improved per-
formance and learning. The works of (Marwan et al.,
2019) and (Ouyang et al., 2022) report increased pro-
ductivity, consistency in code quality, and reduced er-
rors when using those tools. A recent review of empir-
ical studies reports an improvement in academic per-
formance, online engagement, and participation when
introducing AI applications in the educational pro-
cess (Ouyang et al., 2022). Additionally, these tools
can assist students in generating exemplar solutions
for programming exercises and code reviews of solu-
tions. Researchers point out the variety of solutions
these tools can propose, allowing educators to intro-
duce students to the diversity of ways that a problem
can be solved.

(Dwivedi et al., 2023) in their paper delved into
how some choose to label these AI systems as ’high-
tech plagiarism’ tools while also acknowledging the
difficulty in detecting their use. Despite this, they be-
lieve that we should embrace the use of these systems
as they have the potential to significantly benefit and
enhance the learning experiences of the students.

On the other hand, identified drawbacks of code
generation tools usage include the possibility of stu-
dents having a lack of understanding of fundamental
programming concepts. Several studies discuss the is-
sue of bias, bad habits, and over-reliance. (Chen et al.,
2021) and (Becker et al., 2022) raise concerns about
its suitability for novices, given that public code is of-
ten contributed by professionals and may not reflect
the expected quality for beginners and the desires of
educators.

2.2 Capabilities of AI Tools

(Nguyen and Nadi, 2022) have evaluated the influ-
ence of programming languages on the accuracy of
GitHub Copilot’s code suggestions. For instance, in
their study using GitHub Copilot on LeetCode prob-
lems, they found that the tool correctly solved 57% of
the problems in Java, while only managing to solve
27% of the problems in JavaScript.

(Yetistiren et al., 2022) carried out an interest-
ing study that revealed the significant impact of input
parameters on the validity of the code generated by
GitHub Copilot. Their findings indicated that the va-
lidity of the generated code dropped from 79% to 27%

CSEDU 2024 - 16th International Conference on Computer Supported Education

222



when using dummy or sub-optimal functions and pa-
rameter names. (Dakhel et al., 2022) shared a similar
viewpoint, concluding that the quality of the gener-
ated code depends greatly on the clarity and depth of
the provided prompt. They also argued that GitHub
Copilot can be a valuable tool for expert programmers
but may present challenges for junior programmers
who are still learning coding conventions and a pro-
gramming language.

(Al Madi, 2022) also conducted research that fo-
cused on metrics related to the code generated by
GitHub Copilot. The results indicated that the com-
plexity and readability of code generated by GitHub
Copilot were comparable to code written entirely by
a human programmer.

(Wermelinger, 2023) argues that using GitHub
Copilot to solve programming exercises can be a frus-
trating trial-and-error process. They suggested that
while GitHub Copilot can provide an initial helpful at-
tempt to solve a problem, students still require a solid
understanding of a language’s semantics to modify
GitHub Copilot’s sometimes incorrect suggestions.

On the other hand, ChatGPT offers a distinct ap-
proach to assisting students. ChatGPT can assist with
a variety of tasks related to programming such as
debugging, code optimization, code completion, er-
ror fixing, prediction, document generation, chatbot
development, text-to-code generation, and technical
query answering, as mentioned by (Biswas, 2023).

3 METHODOLOGY

The first research question is to be answered via
the use of surveys and interviews with first-year
Computer Science students. Interviews and surveys
were selected as the investigation methods, aiming to
gather firsthand experiences of novice programmers
using code generation tools during their studies.

We received 39 survey responses and randomly
chose 5 other first-year students as the interviewees.
The students were randomly chosen and no prior
checks were done before selecting candidates, for ex-
ample, verifying their familiarity with these tools.
The questions asked will query the students on their
opinions and usage of these tools over the entire aca-
demic year. The interviews were conducted individu-
ally and in a closed setting.

Quantitative data from the survey was summa-
rized using descriptive statistical analysis. Qualitative
data from the interviews was analyzed using thematic
analysis to identify common themes and patterns. Fi-
nally, we compared the gathered information to ad-
dress the main research question, including a compar-

ison of research findings from the literature overview
and the outcomes of the conducted study.

The second research question was answered by
carrying out experiments over a set of assignments
currently used by a technical university in the Nether-
lands. Experiments were conducted using the latest
version of GitHub Copilot and the regular (free) ver-
sion of ChatGPT, which utilizes the GPT 3.5 model.

A diverse set of programming assignments
was identified to ensure representative results.
These assignments were selected from various first
and second-year modules and encompass various
paradigms of coding such as imperative, functional,
and declarative styles.

Depending on the availability and ease of provid-
ing context, either ChatGPT or Copilot was utilized
to generate code. On occasion, we would use both
software to solve different parts of a large exercise.
If the generated code contained errors or the program
did not function as expected, ChatGPT was queried to
detect and resolve the issues.

4 STUDENT PERSPECTIVE ON
TOOL USAGE

In this section, we discuss how first-year Computer
Science students are using code-generation tools and
their subjective experience of using them. This was
investigated with both a survey and an interview1,
with the goal of having a good understanding of the
viewpoint of students. We focus in particular on the
positive effects of these tools, and on the students’
awareness of their risks in an educational setting.

4.1 Survey

4.1.1 General Familiarity

All 39 respondents demonstrated familiarity with
ChatGPT, reflecting its recent popularity. ChatGPT
was reported as the most used tool, with 77% men-
tioning practical usage.

In the realm of code generation tools, GitHub
Copilot (69.2%), OpenAI Codex (30.8%), and Tab-
nine (15.4%) were widely known. DeepMind Al-
phaCode (7.7%), Microsoft CodeBERT, and Google
PaLM (5.1% each) were less recognized and not used
by survey participants. Notably, 15.4% had prior ex-
perience with code generation tools before starting

1Due to space constraints, the list of survey and inter-
view questions is not included in this paper, but is available
at https://drive.google.com/file/d/1nu6vdSpnKnwdRhVaI-
3Z1YySXIoeefH7/view?usp=sharing.

Investigating the Impact of Code Generation Tools (ChatGPT & Github CoPilot) on Programming Education

223



their university Computer Science course, and half of
them found ChatGPT most useful.

Only 6 out of 39 people (15.4%) tried code gen-
eration tools before starting their university computer
science course. Among these individuals, two were
quite familiar with code generation tools, and only
one always used them in coding practices. Half of the
students with prior experience in such tools marked
ChatGPT as the most useful one.

4.1.2 First Year Computer Science Course

Out of all 39 responses, 21 (53.8%) have used code
generation tools during their first year of the Com-
puter Science course. Among these respondents,
ChatGPT (GPT-4) was the most popular, with all re-
spondents using it during their first academic year.
GitHub Copilot is second on the list, used by 7 people
(33.3%), followed by Tabnine (23.8%).

Concerning code generation tools specifically
used within students’ coursework, ChatGPT still
leads with 66.6% of students utilizing it for study-
related tasks. The second most popular response is us-
ing none of the tools (28.6%). Copilot takes the third
place with (23.8%), while Codex and Tabnine each re-
ceived only 1 vote (4.8%). Among respondents, 9.5%
of people have used code generation tools frequently,
and 61.9% used them at least a few times.

The next survey question revealed the specific pro-
gramming tasks students used these tools for. The ma-
jority of votes went to project work and exam prepara-
tion (57.1% each), followed by assignments (47.6%),
labs (33.3%), and group work (23.8%). Three people
(14.2% of all respondents) reported not using any tool
for any type of coursework.

A majority of students (76.2%) who completed
the survey said that the use of code generation tools
in their practices makes learning programming fun-
damentals and concepts less difficult. A significant
number of people (47.6%) feel that such tools also
increase their ability and skills in problem-solving for
programming tasks introduced by their Computer Sci-
ence program. A similar percentage of people feel
that code-generation tools make learning more enjoy-
able.

4.1.3 Motivation, Engagement, Confidence

Regarding the increase in motivation with the use of
code-generation tools, the answers are a bit ambigu-
ous: one-third of respondents agree that the usage
of code-generation tools increases motivation towards
learning, another third remain neutral, and the last
third either completely (9.5%) or partially disagrees
(23.8%). Results from the question about the increase

in student engagement were slightly different: the
majority of respondents (38.1%) indicated agreement
with the statement, 4.8% strongly agreed, 33.3% re-
mained neutral, and the remaining 28.6% either com-
pletely disagreed or partially disagreed.

The survey questions about the ability to write
code, in general, showed that respondents feel less
confident when using code-generation tools. It is im-
portant to mention that for students who are initially
confident in their programming abilities, involving
code generation tools does not make a significant dif-
ference. However, for individuals who generally lack
confidence in programming, it worsens when involv-
ing code generation. Thus, we observe 4.8% of peo-
ple disagreeing in the first case, increasing to 19%
in the second case when involving code generation.
In the end, only 26.8% of respondents feel that code
generation tools positively affect their confidence in
programming abilities.

4.2 Interviews

Interviews were conducted with five randomly se-
lected first-year Computer Science students as men-
tioned earlier. The responses revealed that all stu-
dents are aware of code-generation tools and use them
frequently for various learning purposes. Our explo-
ration of their initial expectations and impressions of
the use of such technologies showed that, in most
cases, expectations were not high, but the results were
quite impressive. Students did not anticipate code
generation tools to be as intelligent and did not be-
lieve they would be as helpful.

Regarding their experience with code generation
tools in the first year of the Computer Science course,
all respondents stated that these tools have been ex-
cellent learning assistants and have been extensively
used for coding assignments, projects, exam prepara-
tion, understanding the theoretical part of the course,
and personal coding practices. Students reported that
these tools are of great help when needing to create
easy methods, quick functionality or logic, build com-
ponents, or find minor bugs.

The students were also queried about any benefits
or pitfalls related to their learning process when using
code-generation tools. Among the advantages men-
tioned are reduced time spent on problems or bugs,
as code generation tools can detect issues in the code,
and improved overall learning as they effectively ex-
plain how certain things in the code work. Another
positive aspect is that these tools make it easier to
understand certain topics, parts of code, methods, or
classes. Students mentioned that such tools provide a
fresh perspective towards approaching problems. In

CSEDU 2024 - 16th International Conference on Computer Supported Education

224



general, students consider code-generation tools to be
a great supplement to learning.

Regarding disadvantages, the main one mentioned
by students is the possibility of over-reliance on
the tool. Some concerns expressed by students in-
clude that it “could be bad for lazy people” or “can
make people lazy.” However, all interviewees who ex-
pressed concerns acknowledged that this also depends
on the individual and their intentions for using such
tools.

In terms of impact on the student’s ability to de-
velop programming proficiency, all respondents assert
that code-generation tools are particularly helpful, es-
pecially for basic tasks. According to students, they
increase efficiency, reduce debugging and problem-
solving time, and aid in understanding concepts.
Some respondents mention that while code generation
tools “save” the brain from thinking, overuse can lead
to a slowed development of problem-solving skills
and understanding of topics.

Regarding the further integration of code gener-
ation tools into the educational realm, students’ re-
sponses suggest that such technologies should be in-
troduced. Additionally, not only should the function-
ality of these tools be understood, but also how to use
them most effectively should be studied. “It would
not be smart to ban [code generation tools]; for many,
it is a helping tool, not an answer tool,” as one re-
spondent states. Overall, they can bring numerous
advantages, including the improvement of students’
engagement in the learning process. This can occur
“if all students will understand the real goal of [code
generation tools] and use them in a smart way.”

5 CAPABILITIES OF AI TOOLS

This section provides a brief analysis of how Chat-
GPT and CoPilot perform against the coding assign-
ments of our first and second-year courses. We’ll ex-
plore their capabilities, strengths, and limitations in
handling various coding and querying tasks, ranging
from basic syntax and logic to more complex algorith-
mic problems. This assessment aims to shed light on
the practical utility of these tools in an educational
setting, offering insights into their potential role in
shaping the learning curve for students.

5.1 Assembly/ Low Level Coding

These were practical exercises closely related to
Computer hardware. Specifically, the students
worked with an Arduino and wrote assembly code for
it. For certain exercises, They also were required to

convert these instructions into the hexadecimal format
and supply them accordingly.

Given that the problem solutions were generally
small in size, ChatGPT proved to be highly useful. It
competently solved the majority of the exercises pre-
sented. With knowledge of the AVR instruction set,
ChatGPT was not only capable of writing the com-
mands in assembly language but also correctly con-
verting them to hexadecimal format, adhering to the
format specified in the AVR instruction set. Addi-
tionally, it could extend specific code snippets already
provided to the students by adding the requested func-
tionality. ChatGPT could infer the appropriate regis-
ters to be used based on the sample code provided.
It possessed knowledge of all essential assembly in-
structions required for this practical, such as ”rjmp,”
”brne,” ”nop,” ”ldi,” and so on. Throughout these ex-
ercises, ChatGPT developed code that could:

• Turn the LED ’on’ and ’off’ on the Arduino.

• Send the contents of a register to the computer via
the Putty interface.

• Write a program capable of flashing a Morse code
pattern for ”SOS” (this was the Weekly Assign-
ment).

However, it has certain limitations when it comes
to specific hardware components. For instance, while
it can write code that utilizes the LED integrated into
the Arduino board, it produces incorrect output when
working with an externally connected buzzer.

5.2 Algorithms

These exercises were dedicated to exploring tradi-
tional imperative programming. Specifically, the stu-
dents delved into the Python programming language
and implemented widely used algorithms such as Lin-
ear Search, Bubble Sort, and Merge Sort. Throughout
this process, they gained familiarity with fundamen-
tal concepts like variables, functions, and file reading,
as well as slightly more advanced concepts such as
recursion.

Given the simplicity of these exercises, ChatGPT
and Copilot proved to be valuable resources capable
of solving a majority of the exercises. The provided
manual often included pseudocode to guide the stu-
dents in understanding the expected algorithm struc-
ture and supplying this pseudocode to ChatGPT re-
sulted in algorithms that adhered closely to the de-
sired structure. While one could generate these al-
gorithms using Copilot within their integrated devel-
opment environment (IDE), the implementation may
exhibit slight variations.

Investigating the Impact of Code Generation Tools (ChatGPT & Github CoPilot) on Programming Education

225



5.3 Databases and SQL

These exercises focused on teaching students about
Database Management Systems. The students ex-
plored key theoretical concepts related to databases,
including foreign keys, information querying, and
creating and populating databases with data.

One type of exercise involves retrieving data from
the database using simple SQL queries. For this task,
ChatGPT proves to be the most helpful tool. Copi-
lot does not perform as well since it lacks the context
of the database structure, and providing it with this
information is not straightforward. Before querying
ChatGPT with SQL queries, it is necessary to provide
the database structure. In tables where field IDs are
the same across multiple tables, the ChatGPT can de-
tect foreign key relationships directly, eliminating the
need for explicit specification in such cases. ChatGPT
was able to generate queries for all exercises. These
exercises often involved joining multiple tables, ex-
tracting specific fields, and occasionally utilizing ag-
gregate functions and the GROUP BY clause.

5.4 Functional Programming

The focus of these exercises was on the paradigm of
functional programming, with an emphasis on work-
ing with Haskell and the GHCI compiler. The lab ex-
ercises consisted of small implementations for various
exercises.

ChatGPT proved to be a useful tool for solving
these problems, successfully tackling the majority of
exercises with minimal issues. It possesses knowl-
edge of advanced Haskell functions, such as higher-
order functions, Guards, and recursion. Furthermore,
it can utilize previously defined functions from earlier
exercises, taking the context into account. ChatGPT
enforces appropriate typing for each function and is
familiar with QuickCheck. Some examples of exer-
cises it was able to solve include:

• Functions to calculate the extreme values of poly-
nomials.

• Function to determine whether a character is low-
ercase or uppercase.

• Defining QuickCheck properties to ensure the im-
plemented functions work as expected.

• Function to sum the values in a list.

• Function to compute the sum of an arithmetic se-
quence.

• Function to count occurrences of a phrase in a sen-
tence.

• Function to find all dividers of certain numbers
and a function to check if a given number is prime.

Our results are consistent with the findings of
(Geng et al., 2023), who conducted extensive re-
search on how ChatGPT performs with exercises in
the programming language OCaml. They organized
various groups of functional programming exercises,
each covering a different aspect of the language. For
more than half of these groups, ChatGPT was able
to solve 100% of the exercises, while for the remain-
ing groups, it maintained a high accuracy rate of over
90%.

The final assignment for this topic involved
an interesting and unique case study that required
an understanding of additional mathematical theory
that was to be implemented via Haskell functions.
The necessary theory and questions were provided
through an external PDF file, and students were re-
quired to fill in their answers in a ’.hs’ (Haskell) file.
This approach effectively countered the reliance on
automated tools. Solving these exercises required a
deep comprehension of the theory presented in the
documents, which included tables, graphs, and im-
ages. It was challenging to provide this information to
the AI models, making it difficult to obtain appropri-
ate assistance from ChatGPT. While ChatGPT could
provide help with defining simpler functions, the ma-
jority of the work and the thinking process had to be
done by the learner.

5.5 Advanced Imperative Programming

Advanced Imperative programming was taught to the
students over the span of 10 weeks in a software de-
velopment focused module. Java was utilized in this
module, and students will explore various topics, in-
cluding but not limited to:

• Core imperative concepts: variables, data types,
arrays, methods, and exceptions.

• Object-oriented programming: classes, inheri-
tance, and composition.

• Socket programming concepts: Server Sockets,
Sockets, Readers, and Writers.

• Implementation of applications using the Model-
View-Controller (MVC) pattern.

• Multithreading concepts: synchronization, race
conditions, and locks.

• Software documentation using Javadoc.

• Planning and implementation of unit and integra-
tion tests.

CSEDU 2024 - 16th International Conference on Computer Supported Education

226



In this traditional coding environment, the impact
of Copilot becomes evident. With a codebase that
was expanding every week, Copilot leverages context
inference from other files in the workspace to gain
a comprehensive understanding of the code written
thus far, enabling it to provide appropriate sugges-
tions. Supplying all this data to ChatGPT would be
exceedingly challenging. Copilot offers several ways
to assist students during these modules:
Code Suggestions. GitHub Copilot offers intelligent
code suggestions based on the context of Java code.
It can infer information from different classes in the
workspace, providing relevant code snippets, method
calls variable declarations, and more. Often, it sug-
gests solutions before they are even considered by
the coder. It encompasses knowledge of the con-
cepts taught in this module and provides accurate and
useful suggestions. As reported in (Yetistiren et al.,
2022; Dakhel et al., 2022), our research also showed
that using optimal method signatures and comments
greatly increases the likelihood that the code gener-
ated is what the user needs.
JavaDoc Generation. Students often needed to pro-
vide detailed documentation, including JavaDoc com-
ments, for their code. Copilot utilizes its understand-
ing of the codebase to automatically generate reason-
ably accurate and meaningful JavaDoc comments. It
considers method signatures and function implemen-
tations to generate relevant JavaDoc in most cases.
External Libraries: In addition to JavaDoc genera-
tion, Copilot can aid in other documentation-related
tasks. It suggests relevant code examples or explana-
tions for specific Java concepts, APIs, or design pat-
terns as well as usage of popular external libraries.
Testing Automation. Copilot’s code analysis capa-
bilities allow it to generate integration and unit tests.
It proposes test cases, test methods, and testing frame-
works tailored to the Java codebase.
Error Handling and Exception Management.
Copilot also helps identify potential error scenarios
and suggests appropriate exception-handling mecha-
nisms for the coder.

However, there are still potential use cases for
ChatGPT. When tackling isolated problems, it can be
valuable for debugging specific code sections. Ad-
ditionally, when facing difficulties in approaching a
problem, seeking guidance from ChatGPT for a start-
ing point can provide initial coding assistance, with
Copilot taking over to further aid the process.

Previous research by (Ouh et al., 2023) has ex-
plored the utilization of ChatGPT (without Copilot)
for solving programming exercises in Java. Their
experiments primarily focused on smaller, indepen-
dent exercises similar to those found on platforms like

LeetCode. They did not extensively cover the more
complex topics included in this particular course.
Nevertheless, their findings indicated that a major-
ity of the exercises in their Java programming course
could be successfully solved using ChatGPT.

5.6 Data Science with Jupyter
Notebooks

As part of an AI course, students were expected
to implement several data science exercises through
Jupyter Notebook files. Some of the goals of these
assignments include:

• Building a Neural Network
• Constructing a Decision Tree
• Building a classifier considering certain features

Many of these exercises intertwine relevant math-
ematical and AI theory, making it slightly cumber-
some to directly convey all the theory to ChatGPT.
However, throughout these practical exercises, sev-
eral programming tasks still can be completed using
AI tools. Some of the simple mathematical theories
that require a declaration of simple functions such as
Entropy, Precision, and Information Gain can be gen-
erated using ChatGPT. Additionally, Most of the tasks
related to data manipulation and utilizing external li-
braries such as Numpy, Pandas, and SkLearn can also
be automated using Copilot. Some tasks that Copilot
helped with during these assignments include split-
ting data into training and test sets, defining a func-
tion to measure the accuracy of models, initializing a
Decision Tree Classifier with appropriate parameters,
and reading data from a CSV file.

6 RESULTS AND DISCUSSIONS

6.1 Viewpoint of Students

Common uses of these tools for students include as-
sistance when stuck on a problem, verifying answers,
debugging, explaining, or improving code, and expla-
nation of fundamentals. All respondents agreed that
these tools save time while programming.

Regarding disadvantages, many respondents cau-
tion against over-reliance on these tools. Moreover,
they mention that generated code is often hard to un-
derstand or lacks a clear goal, making its further us-
age challenging. Some students also report reduced
interest in becoming proficient in fundamentals. Stu-
dents suggest using code generation wisely, either for
time-saving on trivial tasks or for personal code and
knowledge improvement.

Investigating the Impact of Code Generation Tools (ChatGPT & Github CoPilot) on Programming Education

227



6.2 Capabilities of AI Tools

When it comes to the capabilities of these tools. The
results indicate that a majority of the exercises can be
partially or completely solved with the assistance of
ChatGPT and Copilot. These tools are particularly
helpful for exercises related to:

• Assembly programming

• Haskell programming

• Web programming (in Java)

• SQL queries and data manipulation

• Algorithms in various languages

• Data science using Jupyter Notebooks

When the tools cannot provide solutions, they can
still serve as valuable starting points, providing much
of the necessary boilerplate and starting code.

Through this research, it also becomes apparent
that these software tools struggle to provide solutions
when they lack the appropriate context to approach a
question. Adding context that is challenging to supply
to these programs can reduce their effectiveness.

Some strategies to achieve this include:

• Requiring the utilization of custom files with un-
conventional methods as part of the exercise solu-
tions

• Referencing specific (unique) content from lec-
tures within the exercises

• Integrating additional theory, such as mathematics
or unique case studies, into the exercises

Furthermore, making it difficult to provide con-
text can also act as a deterrent for students using these
tools. For example, in the SQL exercises that the stu-
dents worked on in our tests, they did not have to
explicitly specify any foreign key relations as Chat-
GPT could infer them automatically due to the iden-
tical field names in different tables. However, if for-
eign key attributes had different names, users would
need to specify each foreign key relation individually,
potentially discouraging tool usage, especially when
there are numerous such relations involved. This is a
good example of designing exercises with the use of
these tools in mind.

7 LIMITATIONS AND FUTURE
WORK

Due to the multifaceted nature of the learning expe-
rience, which could not be fully studied within the
scope of this research, for the students’ perception we

had to focus on factors such as student engagement
and motivation. Consequently, the work can offer rel-
evant insights only in relation to those factors.

Additionally, the potential for bias arises as we
rely on data from surveys and interviews, where par-
ticipants might provide socially desirable or poten-
tially biased answers. Moreover, the analyzed data is
of limited sample size, specific time frame, and geo-
graphical focus, which may constrain the generaliza-
tion of our findings. These limitations should be kept
in mind when interpreting the results of this study, and
future research should aim to address them.

This research project also primarily focused on
smaller, bite-sized exercises when determining the ca-
pabilities of these tools. However, many program-
ming assignments often consist of larger projects
spanning the course of a few weeks. Testing these
AI models on larger and more diverse projects could
yield different results and provide differing valuable
insights.

8 CONCLUSIONS

In conclusion, code generation technologies are de-
veloping rapidly and it is hard to ignore their preva-
lence among aids for learning within Computer Sci-
ence programs. They have the potential to bring ben-
efits in the educational realm if used smartly.

From our survey, we see that a majority of stu-
dents already make use of these tools and have a gen-
erally positive impression of their widespread adop-
tion. Most students feel that these tools make it easier
to grasp programming fundamentals as well as im-
prove the overall learning experience.

The analysis conducted in this report also ex-
plored how these AI tools can be utilized to assist stu-
dents in solving exercises. The findings demonstrate
that a significant portion of the simple exercises can
be partially or completely solved with the aid of AI
tools. Additionally, this paper provided insights on
designing exercises that can limit the reliance on AI
tools.

REFERENCES

Al Madi, N. (2022). How Readable is Model-generated
Code? Examining Readability and Visual Inspec-
tion of GitHub Copilot. In Proceedings of the 37th
IEEE/ACM International Conference on Automated
Software Engineering, New York, NY, USA. ACM.

Becker, B. A., Denny, P., Finnie-Ansley, J., Luxton-Reilly,
A., Prather, J., and Santos, E. A. (2022). Programming

CSEDU 2024 - 16th International Conference on Computer Supported Education

228



Is Hard – Or at Least It Used to Be: Educational Op-
portunities And Challenges of AI Code Generation.

Biswas, S. (2023). Role of ChatGPT in Computer Program-
ming. Mesopotamian Journal of Computer Science.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brock-
man, G., Ray, A., Puri, R., Krueger, G., Petrov, M.,
Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S.,
Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P.,
McGrew, B., Amodei, D., McCandlish, S., Sutskever,
I., and Zaremba, W. (2021). Evaluating Large Lan-
guage Models Trained on Code.

Dakhel, A. M., Majdinasab, V., Nikanjam, A., Khomh, F.,
Desmarais, M. C., Ming, Z., and Jiang (2022). GitHub
Copilot AI pair programmer: Asset or Liability?

Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Je-
yaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A.,
Raghavan, V., Ahuja, M., Albanna, H., Albashrawi,
M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette,
Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., Carter,
L., Chowdhury, S., Crick, T., Cunningham, S. W.,
Davies, G. H., Davison, R. M., Dé, R., Dennehy, D.,
Duan, Y., Dubey, R., Dwivedi, R., Edwards, J. S.,
Flavián, C., Gauld, R., Grover, V., Hu, M.-C., Janssen,
M., Jones, P., Junglas, I., Khorana, S., Kraus, S.,
Larsen, K. R., Latreille, P., Laumer, S., Malik, F. T.,
Mardani, A., Mariani, M., Mithas, S., Mogaji, E.,
Nord, J. H., O’Connor, S., Okumus, F., Pagani, M.,
Pandey, N., Papagiannidis, S., Pappas, I. O., Pathak,
N., Pries-Heje, J., Raman, R., Rana, N. P., Rehm,
S.-V., Ribeiro-Navarrete, S., Richter, A., Rowe, F.,
Sarker, S., Stahl, B. C., Tiwari, M. K., van der Aalst,
W., Venkatesh, V., Viglia, G., Wade, M., Walton,
P., Wirtz, J., and Wright, R. (2023). Opinion Pa-
per: “So what if ChatGPT wrote it?” Multidisciplinary
perspectives on opportunities, challenges and impli-
cations of generative conversational AI for research,
practice and policy. International Journal of Informa-
tion Management, 71.

Geng, C., Zhang, Y., Pientka, B., and Si, X. (2023). Can
ChatGPT Pass An Introductory Level Functional Lan-
guage Programming Course?

Herrington, J. (2003). Code Generation in Action.
Khmelevsky, Y., Hains, G., and Li, C. (2012). Automatic

code generation within student’s software engineering
projects. In Proceedings of the Seventeenth Western
Canadian Conference on Computing Education, New
York, NY, USA. ACM.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Eccles, T., Keeling, J., Gimeno,
F., Dal Lago, A., Hubert, T., Choy, P., de Mas-
son d’Autume, C., Babuschkin, I., Chen, X., Huang,
P.-S., Welbl, J., Gowal, S., Cherepanov, A., Molloy,
J., Mankowitz, D. J., Sutherland Robson, E., Kohli,

P., de Freitas, N., Kavukcuoglu, K., and Vinyals, O.
(2022). Competition-level code generation with Al-
phaCode. Science.

Marwan, S., Jay Williams, J., and Price, T. (2019). An
Evaluation of the Impact of Automated Programming
Hints on Performance and Learning. In Proceedings
of the 2019 ACM Conference on International Com-
puting Education Research, New York, NY, USA.
ACM.

Nguyen, N. and Nadi, S. (2022). An empirical evaluation of
GitHub copilot’s code suggestions. In Proceedings of
the 19th International Conference on Mining Software
Repositories, pages 1–5, New York, NY, USA. ACM.

Ouh, E. L., Gan, B. K. S., Jin Shim, K., and Wlodkowski,
S. (2023). ChatGPT, Can You Generate Solutions for
my Coding Exercises? An Evaluation on its Effective-
ness in an undergraduate Java Programming Course.
In Proceedings of the 2023 Conference on Innovation
and Technology in Computer Science Education V. 1,
New York, NY, USA. ACM.

Ouyang, F., Zheng, L., and Jiao, P. (2022). Artificial intelli-
gence in online higher education: A systematic review
of empirical research from 2011 to 2020. Education
and Information Technologies, 27(6):7893–7925.

Sarsa, S., Denny, P., Hellas, A., and Leinonen, J. (2022).
Automatic Generation of Programming Exercises and
Code Explanations using Large Language Models.

Surameery, N. M. S. and Shakor, M. Y. (2023). Use Chat
GPT to Solve Programming Bugs. International Jour-
nal of Information technology and Computer Engi-
neering, (31):17–22.

Wermelinger, M. (2023). Using GitHub Copilot to Solve
Simple Programming Problems. In Proceedings of the
54th ACM Technical Symposium on Computer Science
Education V. 1, New York, NY, USA. ACM.

Yetistiren, B., Ozsoy, I., and Tuzun, E. (2022). Assessing
the quality of GitHub copilot’s code generation. In
Proceedings of the 18th International Conference on
Predictive Models and Data Analytics in Software En-
gineering, New York, NY, USA. ACM.

Investigating the Impact of Code Generation Tools (ChatGPT & Github CoPilot) on Programming Education

229


