
Tail-Latency Aware and Resource-Efficient Bin Pack Autoscaling for 
Distributed Event Queues 

Mazen Ezzeddine1,2, Françoise Baude1 and Fabrice Huet1 
1Université Côte d’Azur, CNRS, I3S Nice, France 

2HighTech Payment Systems, HPS, Aix en Provence, France 

Keywords: Distributed Queue, Bin Pack, Tail Latency, Dynamic Resource Provisioning, Autoscaler, Rebalancing, Kafka, 
Event Consumer Group, Message Broker. 

Abstract: Distributed event queues are currently the backbone for many large-scale real-time cloud applications 
including smart grids, intelligent transportation, and health care monitoring. Applications (event consumers) 
that process events from distributed event queue are latency-sensitive. They require that a high percentile of 
events be served in less than a desired latency. Meeting such desired latency must be accomplished at low 
cost in terms of resources used.  In this research, we first express the problem of targeting resource-efficient 
and latency-aware event consuming from distributed event queues as a bin pack problem. This bin pack 
depends on the arrival rate of events, the number of events in the queue backlog, and the maximum 
consumption rate of event consumers. We show that the proposed bin pack solution outperforms a linear 
autoscaling solution by 3.5% up to 10% in terms of latency SLA. Furthermore, we discuss how dynamic event 
consumers provisioning in distributed event queues necessitates a blocking synchronization protocol. We 
show that this blocking synchronization protocol is at conflict with meeting a desired latency for high 
percentile of events. Hence, we propose an extension to the bin pack autoscaler logic in order to reduce the 
tail latency caused by the events accumulated during the blocking synchronisation protocol. 

1 INTRODUCTION 

Distributed event queues have emerged as a central 
component in building large scale and real time cloud 
applications. They are currently being used in many 
latency-sensitive cloud applications such as recording 
and analyzing web accesses for recommendations and 
ad placement (Goodhope et al., 2014), health care 
monitoring (Al-Aubidy et al., 2017), fraud detection 
(Mohammadi et al., 2018), smart grids (Albano et al., 
2015) and intelligent transportation (Fernández-
Rodríguez et al., 2017). Furthermore, distributed 
event queues are the backbone for the event driven 
microservices software architectural style where an 
application is composed of several small services 
communicating by exchanging events across a 
distributed event queue (Laigner et al., 2020; 
Pallewatta et al., 2022;  Xiang et al., 2021). As such, 
many cloud providers already offer event queue as a 
service (Amazon Kinesis, 2023; Azure Event Hub, 
2023; Google Cloud Pub/Sub, 2023). 

A distributed event queue is composed of several 
partitions or sub-queues deployed over a cluster of 

servers. Applications (event consumers) that pull and 
process events from distributed queues are latency-
sensitive. They require that a high percentile of events 
is processed in less than a desired latency. Otherwise, 
providing end-users with experience beyond such 
desired latency might result in million dollars 
reduction in revenues as indicated by several tech 
giants (Eaton, 2012). Overprovisioning of resources 
to meet the desired latency is not the optimal solution 
since it incurs large monetary cost for the service 
provider. Therefore, architecting solutions for 
resource-efficient and latency-aware event 
consumers from distributed event queues is of 
paramount importance. As we describe throughout 
this paper, latency-aware and cost-efficient (cost-
efficient and resource-efficient will be used 
interchangeably) event consumers denotes two 
simultaneous objectives to be met by the designed 
architecture : (1) ensuring that the latency for a high 
percentile of events served by event consumers is less 
than a desired latency, that is, reduce tail latency 
(Dean and Barroso, 2013) and (2) the designed 
architecture is able to dynamically provision and 
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deprovision resources (event consumers replicas) so 
that  the usage of resources is minimized while 
guaranteeing (1).  

Solutions offered by cloud providers and by on-
premises cluster orchestrators such as Kubernetes 
(KEDA, 2023) to scale event consumer replicas when 
a certain metric reaches a certain threshold are not 
satisfactory. In essence, these autoscalers assume a 
linear relationship between the current value of a 
monitored metric and the desired value of that metric 
to compute the needed number of replicas. Hence, a 
linear autoscaler for event queues emulating cloud 
autoscalers will use the ratio of the arrival rate of 
events to the maximum consumption rate per replica 
to get the needed number of replicas. However, the 
number of needed replicas meets a bin pack solution 
rather than a linear one as we describe throughout this 
paper. Furthermore, Kubernetes and cloud 
autoscalers are not middleware/platform aware. As 
such, they do not recommend or participate in the 
assignment of the provisioned event consumer 
replicas to partitions. Rather, they rely on the 
distributed event queue middleware logic for 
assigning partitions to event consumers. This might 
result in scenarios where event consumer replicas 
might not be assigned to partitions in a latency-aware 
manner, even if enough replicas are provisioned by 
such autoscalers. A latency-aware and resource-
efficient autoscaler for distributed event queue must 
provision just enough replicas to achieve the desired 
latency, and it must recommend to the distributed 
event queue middleware the assignment of partitions 
to the provisioned event consumer replicas in order to 
guarantee the desired latency. 

As we discuss throughout this paper, in distributed 
event queues aiming at high percentile latency SLA 
is not straightforward even in the presence of a 
dynamic resource provisioning mechanism. This is 
because reducing the percentage of events that exhibit 
a latency beyond the desired latency (that is, the tail 
latency) while at the same time dynamically 
provisioning and deprovisioning of resources (event 
consumer replicas) are two objectives which are at 
conflict in distributed event queues. This stems from 
the fact that scaling up or down event consumers 
necessitates a blocking synchronization protocol to 
distribute the load of the events waiting in queues 
among the provisioned event consumer replicas.  
During this synchronization protocol, which is also 
called rebalancing or assignment (Blee-Goldman, 
2020; Narkhede et al., 2017) all the event consumer 
replicas will stop processing events, thus eventually 
contribute to a larger tail latency and less percentile 
of latency SLA guarantee. The increase in the tail 

latency results from the fact that all the events 
arriving during the synchronization protocol 
execution will exhibit a relatively higher latency as 
compared to the latency of events processed during 
normal operation of the system. Clearly, the relation 
between the desired latency SLA and the time of the 
blocking rebalancing protocol dictates if there is some 
space for regularly and dynamically modifying or not 
the number of event consumers. If the rebalancing 
time is very high compared to the desired latency 
SLA, obviously the only deployment that can ensure 
the desired latency SLA for a high percentile of 
events is one where all replicas would be provisioned 
from start-up time (an overprovisioned solution). 
Even if this is at a cost considered to be non-optimal 
as some of the ready replicas may not operate all the 
time. But if the ratio of the desired latency SLA to the 
rebalancing time is greater than 1, a good tradeoff can 
be sought: a just-needed number of replicas deployed 
while ensuring a small tail-latency. Our research 
contributes a solution towards finding such a tradeoff, 
still prioritizing the latency SLA guarantee over cost 
reduction. 

To achieve this, we first formulate the problem of 
autoscaling event consumers from distributed event 
queues to meet a desired latency as a bin pack 
problem: it depends on the arrival rate of events into 
queues which can even be skewed, the number of 
events in the queues backlog, and the maximum 
consumption rate of the event consumers. We 
propose an appropriate heuristic (Least Loaded) to 
solve the bin pack problem in polynomial time and to 
maintain a balanced load in terms of events served by 
each event consumer replica. As the synchronization 
protocol upon consumer replica (un-)provisioning is 
blocking, we extend our initial bin pack solution by 
taking into account new events that will accumulate 
during the autoscaling. We also propose several 
recommendations on the configurations of the 
rebalancing protocol that contribute to a lower tail 
latency. We first experimentally show that on some 
selected workloads, our bin pack solution 
outperforms a linear autoscaling solution by 3.5% up 
to 10% in terms of latency guarantee in a first system 
setting where rebalancing time overhead is way 
smaller than the desired latency SLA. Then, under 
other and less favourable system settings regarding 
rebalancing overhead, we show that the proposed bin 
pack extension applied to the same workloads results 
in a lower tail latency, and thus better latency SLA, 
but at higher resource utilization cost.  

To our knowledge, latency-aware and dynamic 
resource provisioning for distributed event queues in 
the presence of a blocking resource synchronization/ 
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rebalancing protocol has not yet been addressed in the 
literature. 

2 CONTEXT - BACKGROUND 

We target a general event driven architecture where 
applications (that is, event consumers) pull and 
process events from distributed event queues. As 
shown in Figure 1, a distributed event queue is 
composed of several partitions (sub-queues) 
deployed over a cluster of servers. A producer 
application generates events and writes them into a 
certain partition of the distributed queue according to 
a partitioning strategy. An event consumer group is a 
set of event consumers that jointly and cooperatively 
consume events from the partitions of the distributed 
queue. Generally, for a distributed event queue, we 
have n partitions and m consumers that read and 
process events. The (re-) assignment of the m 
consumers to the n partitions (or inversely) is 
performed through a blocking synchronization 
protocol. This synchronization protocol is called 
rebalancing (or assignment). The terms 
synchronization, rebalancing and assignment will be 
used interchangeably thereafter. As stated earlier, the 
rebalancing protocol represents a short time of 
unavailability during which all event consumers will 
stop processing events. Rebalancing might happen 
several times during the lifetime of an event 
consumer group such as when the group is initiated, 
or when a consumer leaves or joins the group. Hence, 
every scale action to add or remove event consumers 
to/from the consumer group will trigger a rebalancing 
process. The rebalancing duration is among the 
metrics exposed by the distributed event queue 
middleware, and hence, it can be measured 
dynamically. As shown in Figure 1, each partition of 
the distributed event queue must be assigned to 
exactly one event consumer. Consumers, on the other 
hand, can be assigned several partitions.  

Event consumers operate in group. The 
management of the event consumer group is 
performed by a special process called consumer 
group coordinator. The coordinator process is a part 
of the distributed event queue middleware. It 
appropriately handles requests sent by event 
consumers to join or leave the group.  Once registered 
with the group, event consumers keep membership in 
the group by sending periodic heartbeats to the 
coordinator. 

Moreover, the consumer group coordinator is 
responsible of the execution of the 
assignment/rebalancing protocol. As part of the 

protocol execution, the coordinator offloads the 
assignment logic to one of the event consumers 
namely the leader. Next, the coordinator takes the 
assignment proposed by the leader and inform each 
member (event consumer replica) of the group about 
its assigned partitions.  Figure 1 shows the added 
Controller process which runs periodically the 
proposed bin pack dynamic scale logic to add or 
remove event consumer replicas. Also, as part of our 
proposed autoscaling logic, notice in Figure 1 how the 
leader consumer calls the Controller for its 
recommended latency-aware consumers-partitions 
assignment as per the result of the bin pack. 

Finally, it is noteworthy that we use Kafka 
(Narkhede et al., 2017) as a distributed event queue. 
Kafka is by far one of the most used distributed event 
queues in the industry. Nevertheless, we believe that 
the discussion and techniques used in this work are to 
a broad extent generalizable to other distributed event 
queues and not limited to Kafka. In this context, the 
experimental use case employed in this research is a 
simplified version of a Kafka-based payment 
authorization system used in production. 

 
Figure 1: A distributed event queue with an event producer 
and event consumer group. Notice the assignment of 
partitions to consumers. Shown also in red the Controller 
process which runs the bin pack based autoscale logic and 
recommends the resulting bin pack partitions-consumers 
assignment to the consumer group leader. 
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3 RELATED WORK 

Performance SLAs are hard to guarantee. Cloud 
providers rarely offer end-to-end performance 
guarantee or focus on overprovisioning of resources 
and isolation of services to meet a desired 
performance SLA (Baset et al., 2012; Qu et al., 2018). 
To our knowledge none of the cloud providers 
offering distributed queue as a service provides 
performance SLA (e.g., latency) guarantee for events 
consuming and processing. Furthermore, none of the 
existing, widely used event queues, such as MQTT1, 
ActiveMQ2, RabbitMQ3 and Kafka (Narkhede et al., 
2017), provides an SLA latency guarantee for event 
processing.   

Nevertheless, cloud providers offering distributed 
event queues as a service provide autoscalers to add 
or remove event consumer replicas depending on the 
value of a monitored metric. In essence, these 
autoscalers assume a linear relationship between the 
current value of the monitored metric and the desired 
value of that metric to compute the needed number of 
replicas. Hence, as previously mentioned, a linear 
autoscaler for event queues emulating cloud 
autoscalers will compute the ratio of the event arrival 
rate to the maximum consumption rate per replica to 
get the needed number of event consumer replicas. 
Unfortunately, this neither guarantees that the arrival 
rate into each event consumer replica is less than its 
maximum consumption rate, nor it associates a 
maximum load of events to each consumer replica to 
maintain a desired latency. Furthermore, cloud 
autoscalers are not platform/middleware aware. As 
such, when the arrival rate of events into partitions of 
the distributed queue is not uniform, cloud 
autoscalers and similar on-premises solutions 
(KEDA, 2023) do not perform a load-aware 
assignment of partitions to event consumer replicas. 
Thus, leading to a situation where a subset of event 
consumers replicas is assigned much higher load as 
compared to the remaining replicas. In fact, recent 
research (Wang et al, 2022) has shown that cloud 
autoscalers for distributed event queues are not cost 
efficient, and hence, clients are over-charged for 
under-utilized resources. Also, these autoscalers may 
rely on misleading metrics. For example, Amazon 
Kinesis is not always capable of accurately 
identifying bottlenecks as relying on CPU policy can 
be misleading (Wang et al, 2022). As opposed to 
relying on the CPU utilization metric, the research 

 
1 http://mqtt.org/ 
2 http://activemq.apache.org/. 
3https://www.rabbitmq.com/ 

work of (Chindanonda et al, 2020) uses the ratio of 
the total arrival rate to event consumption rate per 
replica to estimate the required number of consumer 
replicas. Nevertheless, similarly to cloud autoscalers, 
(Chindanonda et al, 2020) do not consider the 
assignment of partitions to consumer replicas in a 
load-aware manner, neither it associates a desired 
latency to a minimal number of replicas. Rather, it 
aims at keeping the total consumption rate greater 
than the total arrival rate into the distributed event 
queue. 

On the other hand, the impact of the blocking 
synchronization protocol on the overall latency SLA 
during dynamic provisioning is rarely addressed in 
the literature. In this context, Kafka recently 
introduced the cooperative incremental rebalancing 
protocol (Blee-Goldman, 2020) that promotes 
sticking partitions to their assigned consumers. The 
benefit is that if a partition is not reassigned to a 
different event consumer, consumption from it will 
not be blocked. But this solution promotes stickiness 
and data locality rather than load-awareness. For 
example, given 3 partitions with different loads 
assigned to 2 consumers, triggering the cooperative 
incremental rebalancing protocol will privilege the 
current assignment even if an event consumer is 
assigned the 2 higher load partitions, and the other 
consumer is assigned the lower loaded one.  This 
makes the incremental rebalancing protocol not 
suitable for latency-awareness which requires that 
partitions be freely (re-)assigned to maintain the 
desired latency, rather than sticking them to their 
assigned consumers at the cost of violating the 
desired latency. To our knowledge, tail-latency 
awareness of distributed event queues in face of a 
blocking synchronization protocol is not yet 
addressed in the literature. 

4 MATHEMATICAL MODEL 
FOR LATENCY-AWARE 
BINPACK AUTOSCALING OF 
AN EVENT CONSUMER 
GROUP 

The aim of this research is to provide an autonomic 
event consumer replica provisioner so that a high 
percentile of events is served in less than a desired 
latency,     while     simultaneously     minimizing     the 
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Table 1: Notations used in the mathematical description of 
the tail latency-aware autoscaling model. 

Notation Description 
m An event consumer group m 𝑝௜ A partition of the distributed event queue 𝑤௦௟௔ Maximum event processing latency for m. 

(latency for a high percentile of events 
served by m shall be ≤  𝑤௦௟௔ )  𝑙𝑎𝑔௣೔௧  Number of events waiting in the partition 𝑝௜ at time t.  𝜆௣೔௧  Partition 𝑝௜ event arrival rate at time t.  𝑙𝑎𝑔௧  Set of existing lag at time t for all 
partitions. 𝑙𝑎𝑔௧ =  {𝑙𝑎𝑔௣భ௧ , 𝑙𝑎𝑔௣మ௧  , … ,  𝑙𝑎𝑔௣೙௧ }  𝜆௧ Set of arrival rates at time t for all 
partitions.  λ୲ = {𝜆௣భ௧ , 𝜆௣మ௧  , … . , 𝜆௣೙௧  } 𝑚௝ jth replica of the event consumer group. 𝜇௠ೕ  Maximum consumption rate per single 
replica of m.  𝑙𝑎𝑔௠ೕ௧  Lag of the jth replica of the consumer 
group 𝑚 at time t. 𝜆௠ೕ௧  Arrival rate into the jth replica of the 
consumer group 𝑚 at time t. 𝐺௠௧  Set of replicas for the consumer group m 
needed at time t to guarantee 𝑤௦௟௔. 𝐺௠ Available set of replicas in m.  

decision 
interval 

Interval of time between two successive 
scale decisions. 𝑡௥ Time to complete a rebalance. 𝑙𝑎𝑔௣೔௥  Number of events accumulated in the 
partition 𝑝௜ due to a rebalance. 𝑡𝑜𝑡𝑎𝑙𝐿𝑎𝑔௣௜ Total lag of a partition (existing lag plus 
rebalancing lag) 𝑙𝑎g௧௢௧௔௟௧  Set of total lag at time t for all partitions. 𝑙𝑎g௧௢௧௔௟௧  =  {𝑡𝑜𝑡𝑎𝑙𝐿𝑎𝑔௣ଵ, 𝑡𝑜𝑡𝑎𝑙𝐿𝑎𝑔௣ଶ , … }𝑓௨௣ Scale up threshold 𝑓ௗ௢௪௡ Scale down threshold 

 
desired latency, while simultaneously minimizing the 
number of replicas used. The autonomic replica 
provisioning logic is executed at each decision 
interval by the Controller process as shown in Figure 
1. A decision interval is a configurable interval of 
time between 2 successive scale decisions as 
indicated in Table 1 where all notations used 
throughout this section are summarized.  

This section is designed to develop the 
mathematical model we use for the logic of the 
autonomic event consumer provisioner/autoscaler. It 
is modelled as a two-dimensional bin pack problem 
where event consumer replicas are the bins and 

partitions are the items. In this work, we use 
homogenous event consumers, that is, all event 
consumer replicas have the same event processing 
rate, an extension to heterogeneous consumers is in 
progress.  

Given a distributed event queue with n partitions, 𝑙𝑎𝑔௣௧ ௜ is the number of events waiting in the partition 𝑝௜  at time t. Similarly, 𝜆௣೔௧  denotes the event arrival 
rate into the partition 𝑝௜ at time t. The set of arrival 
rates into each partition at time t is denoted as λ୲ ={𝜆௣భ௧ , 𝜆௣మ௧  , … . , 𝜆௣೙௧  }. The set of existing lag for each 
partition at time t is denoted as 𝑙𝑎𝑔௧ =  {𝑙𝑎𝑔௣భ௧ , 𝑙𝑎𝑔௣మ௧  , … ,  𝑙𝑎𝑔௣೙௧  }.  

 𝑚௝  denotes a jth replica of the event consumer 
group m. Recall from section 2 that a partition 𝑝௜ can 
be assigned to exactly one event consumer 𝑚௝, while 
an event consumer can be assigned many partitions. 
The maximum consumption rate per any replica of m 𝜇௠௝ is calculated as the number of events polled by the 
replica divided by their processing time as shown in 
equation 1. 𝜇௠ೕ = # 𝑒𝑣𝑒𝑛𝑡𝑠 𝑝𝑜𝑙𝑙𝑒𝑑 𝑝𝑒𝑟 𝑎 𝑟𝑒𝑝𝑙𝑖𝑐𝑎 𝑗 𝑜𝑓  𝑚𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒  𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠  (1)𝑙𝑎𝑔௠ೕ௧  is the lag of the jth replica of the consumer 
group 𝑚 at time t. It is defined as the sum of lags of 
each partition assigned to 𝑚௝ as shown in equation 2. 𝑙𝑎𝑔௠ೕ௧ = ෍ 𝑙𝑎𝑔௣೔௧௣೔ ∈ ௠ೕ  (2)

𝜆௠ೕ௧ = ෍ 𝜆௣೔௧௣೔ ∈ ௠ೕ  (3)

Similarly, 𝜆௠ೕ௧  is the arrival rate into 𝑚௝ at time t. It 
is defined as the sum of arrival rates of each partition 
assigned to 𝑚௝ as shown in equation 3. 

Notice that in case a certain partition features an 
arrival rate greater than the maximum consumption 
rate, the controller logic, better described below, will 
suggest the only possible solution: have this partition 
be the only one associated to a given consumer. 
However, this case should not happen if one assumes 
that the topic is partitioned in a way that guarantees 
that  𝜆௣೔௧ <  𝜇௠ೕ ∀ 𝑡. Otherwise, solving the problem 
of latency SLA guarantee would require dynamic 
topic repartitioning, which is out of scope of this 
work.  

If later on, the arrival rate decreases below the 
maximum consumption rate, the system will have an 
opportunity to scale down and assign that partition to 
another consumer holding some other partitions. This 
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dynamicity due to arrival rate of workload being 
dynamic is the key advantage of our proposition 
compared to a system overprovisioned from the initial 
stage.    𝑤௦௟௔ is the desired maximum total event processing 
latency for the event consumer group m. That is, a 
high percentile of events served by any replica of m 
shall exhibit a latency ≤  𝑤௦௟௔.  Now consider a time 
t where a decision on the minimal set of replicas for 
the consumer group m (we call it 𝐺௠௧ )  must be made. 
In this context, to increase the percentile of latency 
SLA among the arriving events, we must ensure the 
following: ∀ 𝑚௝  ∈ 𝐺௠௧      𝑙𝑎𝑔௠ೕ௧ <  𝜇௠ೕ ×  𝑤௦௟௔  𝐴𝑁𝐷  𝜆௠ೕ௧ <  𝜇௠ೕ         (4) 

Equation 4 states the following:  at time t, ensure 
that: (1) each event consumer replica 𝑚௝ can absorb 
its existing lag ( 𝑙𝑎𝑔௠ೕ௧ ) in less than 𝑤௦௟௔.  This will 
contribute towards maintaining the waiting time of 
the newly arrived events less than 𝑤௦௟௔ , and thus 
increasing their chance of respecting the latency SLA. 
(2) each event consumer replica has the measured 
arrival rate into its assigned partitions less than its 
maximum consumption rate.  Nevertheless, it is 
noteworthy that as a partition can be assigned to 
exactly one consumer (and not to many consumers), 
equation 4 can sometimes be violated, so does not 
guarantee that there won’t be any latency violation. 
For instance, it is possible that a partition has its lag 
greater than 𝜇௠ೕ  × 𝑤௦௟௔  because during the 
preceding interval some partitions assigned to the 
same consumer exhibited an increase in their arrival 
rate.  In such case the best possible solution consists 
now of assigning a dedicated consumer to that 
partition. However, this single dedicated consumer 
will not be able to process the existing lag in less than 𝑤௦௟௔  and consequently some events will violate the 
latency SLA.  

Let 𝐺௠௧ =  {𝑚ଵ, 𝑚ଶ, … , 𝑚௝}  denotes the set of 
event consumer replicas needed at time t to preserve 
the latency requirements of the event consumer group 
m as per equation 4. The aim now is to decide on the 
minimum number of event consumer replicas for m, 
that is, the cardinality of 𝐺௠௧  to satisfy equation 4.  
This can be mathematically expressed as per equation 
5 below: 𝑚𝑖𝑛  |𝐺௠௧ |  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡    ∀ 𝑚௝  ∈ 𝐺௠௧       (5) 𝑙𝑎𝑔௠ೕ௧ <  𝜇௠ೕ  × 𝑤௦௟௔  𝐴𝑁𝐷 𝜆௠ೕ௧ <  𝜇௠ೕ 

The optimization problem in 5 can be formulated as 
an Integer Linear Programming (ILP) model. In the 
formulation below 𝑔௝ and  𝑝௜௝  are binary variables 
indicating respectively whether a jth event consumer 
replica is used at time t, and whether partition i is 
assigned to replica j at time t.  𝑚𝑖𝑛  |𝐺𝑚𝑡 | =  ෍ 𝑔𝑗𝑗  such that  ∑ 𝑝௜௝௝  = 1 ∀ 𝑖 ;   (𝑎) ∑ 𝑝௜௝𝑙𝑎𝑔௣೔௧௜ ≤   𝑔௝ ×  𝜇௚ೕ × 𝑤௦௟௔ ∀ 𝑗  (b) ∑ 𝑝௜௝𝜆௣೔௧௜ ≤   𝑔௝ × 𝜇௚ೕ ∀ 𝑗  (c) ∑ 𝑔௝௝ ≤   𝑛𝑏 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 (d) 𝑔௝,  𝑝௜௝  𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, 𝑡 > 0 
 
(a) ensures that each partition is assigned to only one 
event consumer replica, (b) ensures that the sum of 
lags of the partitions assigned to each event consumer 
replica is less than the lag that can be served in 𝑤௦௟௔ 
which is equivalent to 𝜇௚ೕ × 𝑤௦௟௔ . Similarly, (c) 
ensures that the sum of arrival rates of the partitions 
assigned to each event consumer replica is less than 
the maximum consumer consumption rate 𝜇௚ೕ . 
Finally, (d) ensures that the number of event 
consumers used is less or equal to the number of 
partitions. 

The ILP formulation shows that the problem of 
assigning partitions to event consumers while 
guaranteeing the 𝑤௦௟௔  latency requirement is NP-
complete. This assignment problem is equivalent to a 
two-dimensional bin packing where, at time t, the 
items are the partitions described by their arrival rates 𝜆௧ and by their lags 𝑙𝑎𝑔௧. The bins, on the other hand, 
are the event consumer replicas described by their 
maximum consumption rate 𝜇௠௝  and by their 
maximum consumption rate multiplied by 𝑤௦௟௔  i.e.,  𝜇௠ೕ  × 𝑤௦௟௔. 

As this assignment problem must be solved 
online, we resorted to an approximation algorithm 
that can solve the problem in polynomial time. 
Furthermore, to ensure a balanced load to each event 
consumer replica we used the Least-Loaded bin pack 
heuristic. It was proposed by (Ajiro and Tanaka, 
2007) for packing VMs in a datacenter into a minimal 
number of physical servers, while guaranteeing a fair 
(load-balanced) assignment of VMs across the 
physical servers. 
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scaleEventConsumer (𝝀𝒕, 𝒍𝒂𝒈𝒕, 𝝁𝒎𝒋 , 𝒘𝒔𝒍𝒂 , 𝒇𝒖𝒑 , 𝒇𝒅𝒐𝒘𝒏) 
1  Set 𝐺௠  to the current set of replicas of m 
2  Set 𝐺௠௧  = Least-Loaded  (𝜆௧, 𝑙𝑎g୲ , 𝑤௦௟௔ , 𝜇௠ೕ × 𝑓௨௣) 
3  IF  |𝐺௠௧ | > |𝐺௠| 
//Current nb of consumers violates the latency SLA, 
scale up 
4 Scale up by 𝐺௠௧  \ 𝐺௠ 
5  ELSE 
6  𝐺௥௘௔௦௦௜௚௡ =  𝐺௠௧  
7 𝐺௠௧   = Least-Loaded (𝜆௧, 𝑙𝑎𝑔௧, 𝑤௦௟௔ , 𝜇௠ೕ × 𝑓ௗ௢௪௡) 
8 IF |𝐺௠௧ | <  |𝐺௠| 
//We can scale down without violating the latency SLA 
9   Scale down  by 𝐺௠ / 𝐺௠௧  
10 ELSE  
//Current partitions-consumers assignment violates the 
latency?  
11  IF assignmentViolatesTheSLA(𝑓௨௣) 
//A reassignment is needed,  we reassign as per 𝑮𝒓𝒆𝒂𝒔𝒔𝒊𝒈𝒏 
12   Trigger a rebalance (𝐺௥௘௔௦௦௜௚௡) 
13  END IF 
14 END IF  
15 END  IF 

Algorithm 1: The latency-aware bin pack autoscaler. 

We have introduced two additional parameters to 
the original Least-Loaded bin pack heuristic namely 𝑓௨௣  and 𝑓ௗ௢௪௡  with 0 <  𝑓ௗ௢௪௡ <  𝑓௨௣ < 1 . For 
scaling-up, the Least-Loaded heuristic performs the 
packing into µ௠ೕ  × 𝑓௨௣ (instead of µ௠ೕ). In essence, 
using a value for 𝑓௨௣ smaller than 1 ensures that the 
bin (event consumer) will not be used at its full 
capacity, and hence, the controller will have margin 
to scale up slightly before 𝑤௦௟௔ is reached.  Example 
of values for 𝑓௨௣ include 0.9, 0.8 and 0.7. An 𝑓௨௣  of 
0.7 will provide earlier scale up as compared to an 𝑓௨௣ 
of 0.8 or 0.9. This will generally provide a better 
latency SLA but at a higher cost in terms of replica-
minutes (that is, the number of minutes during which 
a single event consumer replica is used and the client 
is billed for its usage) as compared to an  𝑓௨௣ of 0.8 or 
0.9. On the other hand, for scaling-down, the bin pack 
heuristic performs the packing into µ௠ೕ  × 𝑓ௗ௢௪௡ 
(instead of µ௠ೕ ). 𝑓ௗ௢௪௡  controls the frequency of 
scale down. Example of values for 𝑓ௗ௢௪௡ include 0.5, 
0.4 and 0.3.  For a constant value of  𝑓௨௣, an 𝑓ௗ௢௪௡of 
0.3 will result in a smaller number of scale down 
actions as compared to an 𝑓ௗ௢௪௡ of 0.4 or 0.5 but at a 
higher cost in terms of replica-minutes.  

The logic of the bin pack autoscaler is shown in 
the Algorithm scaleEventConsumer above. In the 
algorithm,  𝐺௠  refers to the already existing set of 
replicas of m.  At time t, the algorithm calculates 𝐺௠௧  
by packing the partitions into 𝜇௠ೕ  × 𝑓௨௣ (line 2). If |𝐺௠௧ | > |𝐺௠|, then a scale up is needed (line 3-4). The 

set 𝐺௠௧ \𝐺௠ denotes the set of the replicas to be added. 
If a scale up action is not necessary, 𝐺௠௧   is computed 
again using  𝜇௠ೕ  × 𝑓ௗ௢௪௡  (lines 6-8). If |𝐺௠௧ | < |𝐺௠| , then a scale down is needed and the set  𝐺௠\𝐺௠௧    denotes the set of the replicas to be removed. 
If neither a scale up nor a scale down is performed, 
the logic checks if the current assignment of partitions 
to existing event consumer replicas violates the 
latency SLA. If so (line 11), we trigger a 
rebalance/reassignment so that the replicas-partitions 
assignment as per 𝐺௥௘௔௦௦௜௚௡   takes place.  The 
assignment is performed as per 𝐺௥௘௔௦௦௜௚௡  because 
checking whether the current replicas-partitions 
assignment violates the latency SLA is parametrized 
by 𝑓௨௣ as shown in line 11. The parametrization by 𝑓௨௣  is selected because the assignment resulting from 
packing the partitions into 𝜇௠ೕ  × 𝑓௨௣  (larger bins) 
will result in a more balanced load across the event 
consumer replicas as compared to packing the 
partitions into 𝜇௠ೕ  × 𝑓ௗ௢௪௡ (smaller bins). Finally, if 
there is no violation of the latency SLA, the algorithm 
terminates without action.   The logic for the 
procedure assignmentViolatesTheSLA(𝑓௨௣) is shown 
below. On the other hand, the Least-Loaded bin pack 
heuristic is discussed in detail in (Ajiro and Tanaka, 
2007). We do not show its pseudocode in this paper 
due to space limitation. 

 
assignmentViolatesTheSLA (𝒇𝒖𝒑) 

1 Set 𝐺௠to the existing set of event consumers 
2 FOR each 𝑚௝in  𝐺௠  
//Equation 4 of the model is violated 
3 IF 𝑙𝑎𝑔௠ೕ௧ > 𝜇௠ೕ × 𝑤௦௟௔ × 𝑓௨௣ OR  𝜆௠ೕ௧ >   𝜇௠ೕ  × 𝑓௨௣  

4 RETURN TRUE 
5 END IF 
6 END FOR 
7 RETURN FALSE 

4.1 Event Consumer Replica 
Provisioning with Planning for the 
Events Accumulated during 
Rebalancing (Tail Latency Aware 
Autoscaling) 

As stated before, upon a scale action, event 
consumers will be blocked, and hence events arriving 
during the rebalancing will be accumulated and 
lagged in the partitions of the distributed queue until 
the end of the rebalancing process. The accumulated 
lag per partition 𝑙𝑎g୮౟୰  is equal to the arrival rate into 
that partition multiplied by the rebalancing time (𝑡௥) 
as shown in equation 8 below. Note that the 
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rebalancing time (𝑡௥) is among the metrics exposed 
by the distributed event queue middleware. 𝑙𝑎g୮౟୰ =  𝜆௣೔௧ × 𝑡௥ (6)

The case of event consumer replica provisioning 
while planning for the number of events that will be 
lagged during rebalancing consists as well of packing 
the partitions into event consumers. However, in this 
case the lag of each partition consists of the existing 
lag in the partition plus the prospective lag that will 
be accumulated upon a scale action. This is denoted 
as 𝑡𝑜𝑡𝑎𝑙𝐿𝑎𝑔௣௜  as described in Table 1. 𝑡𝑜𝑡𝑎𝑙𝐿𝑎𝑔௣௜ 
can be calculated as per equation 9 below where 𝑙𝑎g୮౟୰  
is the lag resulting from a rebalance/assignment and 𝑙𝑎𝑔௣೔௧  is the existing lag in the partition. 𝑡𝑜𝑡𝑎𝑙𝐿𝑎𝑔௣௜ =  𝑙𝑎g୮౟୰ +  𝑙𝑎𝑔௣೔௧  (7)
 

scaleEventConsumer2 (𝝀𝒕, 𝒍𝒂𝒈𝒕, 𝒍𝒂𝐠𝒕𝒐𝒕𝒂𝒍𝒕  , 𝝁𝒎𝒋 , 𝒘𝒔𝒍𝒂 , 𝒇𝒖𝒑 , 𝒇𝒅𝒐𝒘𝒏 ) 
1 action  = null 
2 action = scaleNeeded(𝜆௧, 𝑙𝑎𝑔௧, 𝜇௠ೕ, 𝑤𝑠𝑙𝑎 , 𝑓௨௣ , 𝑓ௗ௢௪௡) 

3 IF  action != null 
          doScale(𝜆௧, 𝑙𝑎g௧௢௧௔௟௧ ,  𝜇𝑚𝑗 ,  𝑤𝑠𝑙𝑎 ,  𝑓௨௣ , 𝑓ௗ௢௪௡) 

4 END  IF 

Algorithm 2: The tail latency-aware bin pack autoscaler 
logic executed by the Controller at each decision interval 
(planning for the lag accumulated during rebalancing). 

In this context, the set of total lag (existing and 
rebalancing) for all the partitions is denoted as 𝑙𝑎g௧௢௧௔௟௧  =  {𝑡𝑜𝑡𝑎𝑙𝐿𝑎𝑔௣ଵ, 𝑡𝑜𝑡𝑎𝑙𝐿𝑎𝑔௣ଶ , …  } as 
indicated in Table 1. 

As shown in Algorithm 2 
(scaleEventConsumer2), event consumer replica 
provisioning while planning for the rebalancing lag 
requires a slight modification into Algorithm 1 
(scaleEventConsumer). This modification is 
performed in two phases. In the first phase, Algorithm 
2 calls the procedure scaleNeeded shown below. 
scaleNeeded performs the exact logic of Algorithm 1 
using the set of partitions existing lag 𝑙𝑎𝑔௧ and 
without performing any scale action. Instead, 
scaleNeeded returns an “UP”, “DOWN” or “REASS” 
flag depending on the scale action recommended. In 
the second phase, the procedure doScale shown 
below is called. doScale performs the scale action 
recommended in the first phase while considering the 
lag that will accumulate during the prospective 
rebalancing. To this end, the set of total partitions lag 
(existing and rebalancing) 𝑙𝑎g௧௢௧௔௟௧ and the 
recommended scale action are passed as argument to 
doScale. Depending on the action passed, doScale 

performs the appropriate Least Loaded bin pack using 𝑙𝑎g௧௢௧௔௟௧ . It then performs the appropriate scale action 
and provide the required replicas accordingly.  

 
scaleNeeded (𝝀𝒕, 𝒍𝒂𝒈𝒕, 𝝁𝒎𝒋 , 𝒘𝒔𝒍𝒂 , 𝒇𝒖𝒑 , 𝒇𝒅𝒐𝒘𝒏) 
1  Set 𝐺௠  to the current set of replicas of m 
2  Set 𝐺௠௧  = Least-Loaded  (𝜆௧, 𝑙𝑎g୲ , 𝑤௦௟௔ , 𝜇௠ೕ  × 𝑓௨௣) 
3  IF  |𝐺௠௧ |  >  |𝐺௠| 
4 RETURN “UP” 
5  ELSE 
6  𝐺௥௘௔௦௦௜௚௡ = 𝐺௠௧
7 𝐺௠௧   = Least-Loaded(𝜆௧, 𝑙𝑎𝑔௧ , 𝑤௦௟௔ , 𝜇௠ೕ × 𝑓ௗ௢௪௡) 
8 IF |𝐺௠௧ | < |𝐺௠| 
9   RETURN “DOWN” 
10 ELSE  
11  IF assignmentViolatesTheSLA(𝑓௨௣) 
12   RETURN “REASS” 
13  END IF 
14 END IF  
15 END  IF 

Procedure 1: A function that performs Least-Loaded bin 
pack and returns the action needed without performing any 
scale action. 

doScale (𝝀𝒕, 𝒍𝒂𝒈𝒕𝒐𝒕𝒂𝒍𝒕  , 𝝁𝒎𝒋 , 𝒘𝒔𝒍𝒂 , 𝒇𝒖𝒑 , 𝒇𝒅𝒐𝒘𝒏 , action) 

1  Set 𝐺௠  to the current set of replicas of m 
2 IF action == “UP” OR “REASS” 
3      𝐺௠௧  = Least-Loaded  (𝜆௧, 𝑙𝑎g୲୭୲ୟ୪୲  , 𝑤௦௟௔ , 𝜇௠ೕ  × 𝑓𝑢𝑝) 

4     IF  |𝐺௠௧ |   >  |𝐺௠| 
5         Scale up by 𝐺௠௧ \𝐺௠ 
6     ELSE 
7          Trigger a rebalance(𝐺௠௧  ) 
8     END IF 
9 ELSE //action = down  
10      𝐺௠௧  = Least-Loaded  (𝜆௧, 𝑙𝑎g୲୭୲ୟ୪୲  , 𝑤௦௟௔ , 𝜇௠ೕ ×𝑓𝑑𝑜𝑤𝑛) 
11     IF |𝐺௠௧ |  <  |𝐺௠|  
12           Scale down  by G୫\ G୫୲  
13     END IF  
14 END IF  

Procedure 2: A procedure that performs the required scale 
action while taking the rebalancing lag into account.   

5 EXPERIMENTAL WORK 

In this section we report some of the experiments we 
performed using Algorithm 2 
(scaleEventConsumer2) described in the previous 
section. As discussed previously, this algorithm 
performs bin pack replica provisioning with planning 
for the events that will be lagged during rebalancing.  

For the experiments we used two workloads. The 
first is adapted from (Chindanonda et al, 2020). It is a 
10-minutes workload with a total of around 109k 
events. The arrival rate per second of the 109K events 
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is distributed over the 10 minutes interval as shown 
in Figure 2. The second workload, see Figure 3, 
corresponds to a two-hours trace from the New York 
City Taxi Trip dataset (Donovan and Work, 2016). 
This dataset contains records for four years (2010 - 
2014) of taxi trips in New York City. We used a 2h 
long trace from January 2013 trips. To construct the 
trace, we employed a speed factor of 40. This means 
that 40 seconds of real-world events are replayed in 1 
second in the experiments. The trace contains around 
1.35M events with arrival rate distributed over the 2h 
interval as shown in Figure 3. Each batch of events 
sent to the distributed queue is uniformly distributed 
across the partitions unless otherwise stated. 

As a business use case, we used a simplified 
payment authorization application (adapted from real 
payment authorization system used in production). In 
our experimental setup, a producer application 
generates payment events with a rate per second 
corresponding to the employed workload. The 
payment events are written into the distributed event 
queue. An event consumer group pulls the payment 
events out of the distributed queue and either declines 
or accepts the payment. We set 𝑤ௌ௅஺ to 500 ms as per 
the business requirement. The processing time per 
payment event was set to 5 ms. This processing time 
was used since it corresponds to the 100-percentile 
(worst case) processing latency for a payment event. 
Hence, the maximum consumption rate µ used 
throughout the experiments is equal to 200 
events/seconds. 

 
Figure 2: First workload used in the experiments. 

All the experiments were performed on Google 
Cloud Platform GCP using a Kubernetes cluster 
(version 1.20.6-gke.1400) composed of 5 virtual 
machines each with 4 vcpu and 16GB of RAM. 
Throughout the experiments we used a distributed 
event queue with 5 partitions unless otherwise stated. 
The distributed event queue is based on Kafka version  

 
Figure 3: Second workload used in the experiments: 2h 
trace from the NYC taxi driver dataset. 

 
Figure 4: Event latencies for Algorithm 2 with the first 
workload. 

2.7. The decision interval is set to 1 second. The 
couple (fup, fdown) was set to (0.9, 0.4). Finally, we 
note that 99-percentile rebalancing time in our 
deployment setup was equivalent to 50 ms. This value 
was used as the rebalancing time (tr) to compute the 
lag accumulated on a rebalancing process as per 
equation 8. 

5.1 Performance of the Proposed 
Least-Loaded Binpack (Algorithm 
2) 

Now we report the performance of Algorithm 2 that 
uses the Least-Loaded bin pack to provision and 
deprovision event consumer replicas. As discussed in 
section 3, this algorithm aims at maintaining the event 
total latency at less than the desired latency (500 ms) 
while simultaneously aiming at minimizing the 
number of replicas used. Figure 4 shows the event 
latencies for Algorithm 2 under the first workload.  
Also, Figure 5 shows the event latency per each of the 
provisioned event consumer replica over the lifetime 
of the experiment. Notice in Figure 5 the provisioning 
and  deprovisioning  time  for  the  7  event  consumer  
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Figure 5: Event latency for each of the 7 event consumers 
used by Algorithm 2 with the first workload. Ci on the y-
axis denotes the ith consumer. 

Table 2: Latency SLA and replica-minutes of Algorithm 2 
(with the first workload) compared to an overprovisioning 
solution and an optimal autoscaler. Also shown the results 
for the Linear autoscaling solution. 

wsla = 500 ms, decision interval = 1 second, µ= 200 
events/sec 
First  
Workload 

 % 
latency 
SLA 

Cost 
replica-
minutes 

Nb of 
Scale 
 UP 

Nb of 
Scale 
Down 

Alg. 2 97.4 30.21 6 6 
Linear 94.7 25.5 6 6 
Optimal 100 32.7 6 6 
Overpro-
visioning 

100 50 0 0 

 
replicas provisioned over the lifetime of the 
experiment. Figure 6 shows the event latencies for 
Algorithm 2 under the NYC Taxi workload. We do 
not show the event latency per each provisioned 
replica over the time interval of the NYC workload 
due to space limitation. The results for the first and 
second workload are shown in Table 2 and 3 
respectively. For instance, as shown in Table 2, with 
the first workload, the latency-aware bin pack 
autoscaler (Algorithm 2) scored 97.4% latency SLA 
at 30.21 replica-minutes. On the other hand, an 
optimal autoscaler scored 32.7 replica-minutes at 
100% latency guarantee. Note that the results for the 
optimal autoscaler were obtained using a python 
simulator where event consumer replicas are 
provisioned when the rate of event arrivals reaches 
the latency-violating number of events (that is, 𝜇௠ೕ × 𝑤௦௟௔), and deprovisioned otherwise. Also, with 

the optimal autoscaler, replicas are provisioned 
instantaneously, and the rebalancing/synchronization 
time is set to zero. The overprovisioning solution 
scored 100% latency SLA at the cost of 50 replica-
minutes. Implementing overprovisioning 
experiments means: the number of event consumers 
is resulting from Algorithm 2 (Least-Loaded bin 
pack) but when the partitions are considered to be 
filled at their maximum arrival rate as per the input 
workload. That is, it considers the partitions arrival 
rate is equal to the peak arrival rate of the input 
workload divided by the number of partitions. For 
each case, notice the number of scale up and down 
actions. Later in this section we compare our bin pack 
autoscaler with a Linear autoscaler solution under 
non-skewed and skewed workloads. 

Table 3 summarizes results obtained using the 
second workload. Therefore, the proposed bin pack 
autoscaler provided 31% reduction in cost as 
compared to an overprovisioning solution 
(overprovisioning is largely used by cloud providers 
for performance SLAs) at around 1% decrease in 
latency guarantee.  

 
Figure 6: Event latencies for Algorithm 2 under the second 
workload. 

Table 3: Latency SLA and replica-minutes of Algorithm 2 
(with the second workload) compared to an 
overprovisioning solution and optimal autoscaler. Also 
shown the results for the Linear autoscaling solution. 

wsla = 500 ms, Decision interval = 1 second, µ= 200 
events/sec 
Second  
(NYC 
Taxi) 
Workload 

 % 
latency  
SLA 

Cost 
replica-
minutes 

Nb of 
Scale 
UP  
 

Nb of 
Scale 
Down 

Alg. 2 98.9 402.9 20  16 
Linear 95.4 325.7 23  20 
Optimal 100 414.11 20 16 
Overpro-
visioning 

100 600 0 0 
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Comparison with a Linear Autoscaling Solution. 
We have also tested and compared Algorithm 2 with 
a linear autoscaler. As stated before, a linear 
autoscaler might miss the exact number of replicas 
needed to maintain the desired latency. This will lead 
to a non-latency-aware partitions-consumers 
assignment performed by Kafka as the load assigned 
to certain consumers might bypass the latency-
violating load. To experiment with linear autoscaler, 
we configured the newly designed Controller with the 
linear formula ( ఒ×௙ೠ೛ఓ×௙೏೚ೢ೙) using (fup, fdown) of (0.9, 
0.4) to compute the needed number of replicas. As 
shown in Table 2, with the first workload the bin pack 
based autoscaler scored 97.4% latency guarantee at 
30.21 replica-minutes while the linear autoscaler 
scored 93.9% at 25.5 replica-minutes. This represents 
a 3.7% improvement in the latency SLA. As shown 
in Table 3, similar results were obtained with the 
NYC Taxi dataset workload where the bin pack 
autoscaler reached 3.5% increase in latency SLA as 
compared to the linear autoscaling solution. This 
shows that the proposed bin pack autoscaler 
(Algorithm 2) achieved a better latency SLA on a 
regular non skewed workload as compared to a linear 
autoscaler.  

 
Figure 7: CDFs for the bin pack solution and Linear 
solution under the first workload with skewness introduced. 

Comparison with a Linear Autoscaling Solution 
when the Workload is Skewed. As stated before, 
linear autoscalers are not middleware-aware. That is, 
they only decide to request addition or removal of 
replicas to the underlying cluster manager (e.g. 
Kubernetes), but they do not consider the assignment 
of event consumer replicas to partitions upon adding 
or removing new replicas. Rather, these autoscalers 
rely on standard Kafka non-load-aware assignment 
strategy for assigning partitions to consumers. This 
might result in unbalanced load among the event 
consumers replicas when the partitions have non 
uniform arrival rate. In this context, recall that as per 

Algorithm 2, partitions-consumers assignment is 
load-aware. It is performed as per the result of the bin 
pack assignment accomplished by the Controller. 
Upon rebalancing, the consumer group leader 
contacts the Controller for its recommended latency-
aware assignment and performs the assignment 
accordingly. Hence, to show the advantage of 
Algorithm 2 when the partitions arrival rate is non-
uniform, we have introduced skewness into our two 
workloads by sending 0.5 of the event rate into the 
first two partitions and the remaining 0.5 into the 
other partitions. Note that in order to keep the arrival 
rate into a single partition less than latency-violating 
arrival rate (that is, the arrival rate at which 𝑤௦௟௔ is 
reached), we have used a distributed queue with 9 
partitions in this experiment.  With the first workload, 
the bin pack autoscaler scored 98.9% latency SLA at 
29.8 replica-minutes while the linear autoscaler 
scored 84.7 at 25.5 replica-minutes. Figure 7 shows 
the CDF (cumulative distribution function) of event 
latencies in both cases.  

Similar results were obtained with the second 
workload (NYC taxi dataset). Figure 8 shows the 
event latencies when running the second workload 
with skewness introduced using the bin pack 
autoscaler. With our proposed bin pack autoscaler the 
latency guarantee reached 99.08% at 392.15 replica-
minutes. On the other hand, the linear autoscaling 
solution scored 85.9% at 329.7 replica-minutes. 
These results represent more than 10% improvement 
in terms of latency SLA for the bin pack autoscaler 
(Algorithm 2) as compared to a linear autoscaler 
when the workload is skewed. 

 
Figure 8: Event latency of the bin pack solution under the 
NYC taxi workload with skewness introduced. 

5.2 Interpretation of the Resulting Tail 
Latency 

The results shown and discussed in the previous 
section intentionally delayed a major interpretation. 
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What is the cause of this variable peak latency 
appearing few times in Figures 4, 6 and 8. Also, this 
peak latency manifested as a tailed CDF in Figure 7. 
A major observation from Figure 5 (notice the 
provisioning and deprovisioning time of event 
consumers) is that this peak latency is not due to scale 
up action and its associated rebalancing overhead as 
it does not manifest upon upscaling. Therefore, the 
synchronization upon scale-up hypothesis was 
eliminated. Nevertheless, one can clearly see from 
Figure 5 that this peak latency appears timely with a 
scale down action. Hence, it is most likely caused by 
a complementary action of the synchronization 
protocol that is exclusive to a scale down action. 

 
Figure 9: CDF for Algorithm 2 with the first workload 
under 500 ms and 3 seconds heartbeat. 

As stated in section 2, the event consumer replicas 
operate in group managed by the consumer group CG 
coordinator. Upon a scale action, the replicas to be 
removed/added will inform CG coordinator about 
their intention to leave/join the group so that the CG 
starts a synchronization/assignment process.  This 
duration  is not blocking during a scale up as the 
newly added replicas do not have any assigned 
partitions. However, this time is partially blocking in 
case of scale down as the leaving consumers are 
already assigned partitions from which they will stop 
consuming as soon as they inform the coordinator 
about their intention to leave. Still, even with that in 
mind, a latency of up to few seconds on a scale down 
is not justifiable as it will take the CG coordinator an 
order of few milliseconds to inform the other event 
consumers to revoke their partitions for reassignment.   
Unfortunately, however, it turns out that the CG 
coordinator does not instantaneously send request to 
other event consumers in the group to revoke their 
partitions for reassignment.  In contrast, it will wait to 
receive a heartbeat from the existing consumers, and 
it will ask them to revoke their partitions as part of the 
heartbeat response. As the default Kafka heartbeat 

interval is equal to 3 seconds, the relatively high tail 
latency upon a scale down is now justifiable. To 
further confirm our hypothesis and eventually aiming 
at reduced tail latency, we reran the bin pack 
autoscaler logic (Algorithm 2) with a heartbeat 
interval of 500 ms.  For instance, Figure 9 shows a 
CDF comparison when running Algorithm 2 under 
the first workload with a heartbeat of 3 seconds and 
500 ms.  Notice how the 100-percentile tail latency 
dropped to less than one second with a heartbeat of 
500ms in the first workload. Furthermore, the 
percentile of latency SLA increased from 97.4% to 
98.1%. With a heartbeat of 500ms, similar results 
were observed for the NYC Taxi workload where the 
100-percentile tail latency dropped to less than 1 
second (alas was around 3 seconds, see Figure 6, with 
default value) and the percentile of latency guarantee 
increased from 98.9 to 99.07 percentile.  

5.3 Impact of the Rebalancing Time on 
the Tail Latency 

In our deployment and experimental setup, the 99 
percentile of the synchronization/rebalancing time 
was less than 50 ms which is lower than the desired 
target latency 𝑤௦௟௔. Hence, the synchronization time 
did not have a large impact on the latency guarantee, 
neither it did result in a large tail latency. To this end, 
this section is designed to show the negative impact 
of a large synchronization duration for the event 
consumer group on the overall percentile of latency 
guarantee. In other words, this section shows the 
resulting high tail latency observed when a relatively 
high rebalancing time governs the event consumer 
group synchronization. In particular, the first 
subsection shows the observed tail latency when 
higher rebalancing time is set while no action is taken 
to reduce the effect of the tail latency, that is, using 
Algorithm 1. The next subsection shows how 
Algorithm 2 that accounts for the rebalancing lag 
upon autoscaling, can reduce the impact of the 
observed tail latency at higher cost in terms of replica-
minutes. Due to space limitations, and without loss of 
generality, we restrict the experiments of this section 
to the first workload. 
Higher Tail Latency Resulting from Higher 
Rebalancing/Synchronization Time. As stated 
above, the synchronization time of the event 
consumer group might take up to few seconds in some 
cases (e.g., when the event consumers are stateful and 
state migration to remote servers is needed). Hence, 
to show the impact of a larger synchronization time 
on the latency guarantee, we set this latter to 500 ms 
and 2 seconds. The aim is to quantify the resulting tail  

Tail-Latency Aware and Resource-Efficient Bin Pack Autoscaling for Distributed Event Queues

61



 
Figure 10: Resulting tail latency under different rebalancing 
time when not accounting for the rebalancing lag (that is, 
using Algorithm 1 instead of Algorithm2).  

latency with 500 ms and 2 seconds synchronization 
(rebalancing) time as to less than 50 ms. To this end, 
we ran Algorithm 1 driven by the first workload in 
these scenarios. Recall that, as compared to 
Algorithm 2, Algorithm 1 does not account for the 
rebalancing lag while planning for the number of 
replicas upon autoscaling, and hence it is less resilient 
to the resulting tail on rebalancing. The resulting 
CDFs are shown in Figure 10:  notice how the higher 
rebalancing time of 2 seconds resulted in the worst-
case tail latency. Also, this tail latency was higher 
with a rebalancing time of 500 ms as compared to the 
default rebalancing time. For instance, the latency 
SLA on a rebalancing time of 2 seconds scored 85.4% 
as compared to 90.1% for the case of 500 ms 
rebalancing time, and to 97.4% in the default setup 
case.  In the next subsection, we show how Algorithm 
2 contributes to a reduction in the tail latency at higher 
replica-minutes. 

Before completing this section, it is worth noting 
that when 𝑤௦௟௔ is higher than the rebalancing time 𝑡௥, 
that is, the fraction ௪ೞ೗ೌ௧ೝ is greater than 1,  the 
rebalancing/synchronization protocol won’t have a 
large negative impact on the final percentile of 
latency guarantee. On the other hand, when 𝑤௦௟௔ is 
smaller or equal to the rebalancing time, that is, the 
fraction ௪ೞ೗ೌ௧ೝ   is smaller or equal to 1, the final 
percentile of latency guarantee will be affected by the 
rebalancing process. The more the fraction ௪ೞ೗ೌ௧ೝ  is 
low, the more achieving high percentile of latency 
guarantee becomes costly in terms of replica-minutes. 
For instance, ௪ೞ೗ೌ௧ೝ = 0.1 means that the rebalancing 
time is 10x the 𝑤௦௟௔. Hence, the rebalancing process 
will result in more events violating the latency SLA. 
In such scenarios, Algorithm 2, will result in a higher 
cost in terms of replica-minutes to maintain a low tail 

latency. This is because Algorithm 2 will plan (take 
into account) the relatively high number of events that 
will be lagged during the rebalancing upon a scale up. 
It will further restrict scale down actions till lower 
arrival of events, where the lagged events upon 
rebalancing become smaller thus resulting in less 
latency SLA violations. 
Tail Latency Reduction Using Algorithm 2 
(Planning for the Events Lagged during 
Rebalancing). As discussed in section 3, Algorithm 
2 complements Algorithm 1 by planning for the 
rebalancing lag upon replica-provisioning. This has 
the benefit of better resilience in face of tail latency 
resulting from rebalancing. To this aim, we repeated 
the same experiments with higher rebalancing time (2 
seconds, 500 ms and default) driven by Algorithm 2 
instead of Algorithm 1.   In essence, under a 
rebalancing of 500ms, the percentile latency SLA 
increased to around 98.2% with Algorithm 2 at 34.61 
replica-minutes as compared to 90.1% at 33.85 
replica-minutes with Algorithm 1. These results show 
an increase of around 8% in the percentile latency 
guarantee at 2.2% increase in replica-minutes. 

 
Figure 11: Resulting tail latency under a rebalancing time 
of 500ms when not accounting for the rebalancing lag 
(Algorithm 1)  vs. when accounting for the rebalancing lag 
(Algorithm 2). 

For the case when the rebalancing time was set to 
2 seconds (that is, rebalancing = 4 × 𝑤௦௟௔  ), the 
percentile latency guarantee increased to 99.4% at 
44.7 replica-minutes with Algorithm 2 as compared 
to 85.6% at 34.16 replica-minutes using Algorithm 1. 
This represents around 14% increase in the latency 
SLA at 30.8% increase in the cost in terms of replica-
minutes. As compared to the case when the 
rebalancing time was 500 ms, notice the higher values 
of both replica-minutes and latency SLA.  This is 
because higher rebalancing time generates higher 
rebalancing lag, and thus more replicas are 
provisioned to accommodate for the resulting lag 
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upon a scale up. Furthermore, with higher rebalancing 
time, Algorithm 2 becomes more restrictive on scale 
down, as a scaling down at high arrival rates will 
generate latency-violating lag. Thus, deferring 
scaling down to lower arrival rates in such a way that 
scale down actions would result in non-latency-
violating lag. This behaviour is desired as lower 
arrival rates of events typically corresponds to 
nonpeak business times which is most likely the best 
time to handle the non-availability of the event 
consumer group caused by rebalancing. Scale down 
deferring is a default technique used in many cloud 
autoscalers such as Amazon Kinesis as indicated by 
in (Wang et al, 2023). 

 
Figure 12: Resulting tail latency under a rebalancing time 
of 2 seconds when not accounting for the rebalancing lag 
(Algorithm 1) vs. when accounting for the rebalancing lag 
(Algorithm 2). 

6 CONCLUSION 

We proposed a latency-aware and resource-efficient 
dynamic event consumer provisioning in distributed 
event queues. The dynamic event consumer replica 
provisioner was modelled as a two-dimensional bin 
pack problem with the Least-Loaded heuristic. 
Experimental work has shown that the bin pack 
solution outperforms a linear autoscaler by up to 10% 
in terms of latency SLA when the workload is 
skewed. Furthermore, we discussed the negative 
impact of the blocking event consumer group 
synchronization protocol on the tail latency. We then 
proposed an extension to the bin pack autoscaler to 
reduce the tail latency caused by the events 
accumulated during rebalancing.  

The case of dynamic event consumer 
provisioning when consumer replicas have different 
processing capacities, and the case of dynamic event 
consumer provisioning for an event driven 

microservices architecture is currently a work in 
progress. 
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