
Embracing Unification: A Comprehensive Approach to Modern Test
Case Prioritization

Andreea Vescan a, Radu Găceanu b and Arnold Szederjesi-Dragomir c

Computer Science Department, Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, Cluj-Napoca, Romania

Keywords: Regression Testing, Test Case Prioritization, Unification, Requirements, Test Cases, Faults.

Abstract: Regression testing is essential for software systems that undergo changes to ensure functionality and identify
potential problems. It is crucial to verify that modifications, such as bug fixes or improvements, do not affect
existing functional components of the system. Test Case Prioritization (TCP) is a strategy used in regres-
sion testing that involves the reordering of test cases to detect faults early on with minimal execution cost.
Current TCP methods have investigated various approaches, including source code-based coverage criteria,
risk-based, and requirement-based conditions. However, to our knowledge, there is currently no comprehen-
sive TCP representation that effectively integrates all these influencing aspects. Our approach aims to fill this
gap by proposing a comprehensive perspective of the TCP problem that integrates numerous aspects into a
unified framework: traceability information, context, and feature information. To validate our approach, we
use a synthetic dataset that illustrates six scenarios, each with varying combinations of test cases, faults, re-
quirements, execution cycles, and source code information. Three methods, Random, Greedy, and Clustering,
are employed to compare the results obtained under various time-executing budgets. Experiment results show
that the Clustering method consistently outperforms Random and Greedy across various scenarios and bud-
gets.

1 INTRODUCTION

Regression testing is a crucial aspect of software qual-
ity assurance, designed to verify that the software
continues to function correctly after modifications. It
involves reexecuting test cases from a test suite to
ensure that previously developed and tested software
still performs as expected after changes such as en-
hancements, patches, or configuration changes. How-
ever, given that software projects often operate un-
der time and resource constraints, executing the en-
tire test suite is often impractical. This has led to
the development of regression test selection strate-
gies, with the aim of identifying a subset of the test
suite that is likely to detect potential faults, while min-
imizing the cost of testing (Engström et al., 2010).
Despite its practical importance, regression testing re-
mains a challenging task due to its inherent trade-off
between effectiveness and efficiency, as well as dif-
ficulties in accurately capturing the dependencies in

a https://orcid.org/0000-0002-9049-5726
b https://orcid.org/0000-0002-0977-4104
c https://orcid.org/0000-0002-1106-526X

complex software systems. There is an increase in the
number of publications (Singh et al., 2023) related to
it, the main publication fora being conferences, fol-
lowed by journals. Thus, the regression testing prob-
lem is worth exploring, being an omnipresent one dur-
ing the software development life cycle. It is essential
to find efficient and effective test case executions with
the aim of obtaining higher qualitative systems.

Regression test selection techniques are classified
by researchers (Yoo and Harman, 2010) into three
types: Test Suite Minimization (TSM), Test Case Se-
lection (TCS), and Test Case Prioritization (TCP).
Testing was mainly centered on structural coverage
as in the study (Rothermel et al., 1999), few investi-
gations (Salehie et al., 2011), (Srikanth et al., 2016)
considered the relations between functional require-
ments and faults, and fewer examined dependencies
between requirements. Test Case Prioritization is an
essential strategy in regression testing with the aim of
ordering test cases so that the most important ones
are executed first, detecting potential defects early
in the testing process. Testing was mainly centered
on structural coverage as in the study (Rothermel

396
Vescan, A., Gǎceanu, R. and Szederjesi-Dragomir, A.
Embracing Unification: A Comprehensive Approach to Modern Test Case Prioritization.
DOI: 10.5220/0012631000003687
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 396-405
ISBN: 978-989-758-696-5; ISSN: 2184-4895
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

et al., 1999), few investigations (Salehie et al., 2011)
considered the relations between functional require-
ments and faults, and fewer examined dependencies
between requirements.

In this paper, we propose a modern testing per-
spective of the Test Case Prioritization problem by
outlining influencing factors on the design of the
TCP, with particular applied contexts and adequate
applied methods. First, we proposed the use of re-
quirements and the connection to the source code and
implemented test cases. These traceabilities, namely,
requirements-to-code and code-to-test cases, will al-
low the two different actions to be operationalized
when a change occurs: if a requirement is changed
(or improved), this should trigger the test cases as-
sociated with it through the source code; and if the
change occurs in the source code, this should trigger
again the associated test cases. Second, the context
when applying TCP may influence the decision on
the approach used, that is, the test suite being part of a
unit test set, an integration test set, or a system test set.
Third, the available information on the system under
test (SUT) and the associated artifacts, namely, faults,
test cases, time constraints, influence the decision on
what method to be used to maximize the detection of
potential faults while minimizing the execution cost.
Moreover, we have proposed a synthetic dataset with
various information available and discussed the solu-
tions for 6 different scenarios using 3 methods to con-
struct the TCP solution.

The paper is organized as follows:
Section 2 outlines the context of the investiga-

tion, along with the motivation, TCP background, and
state-of-the-art approaches. Our unified approach to
modern TCP is outlined in Section 3, while the case
study with the synthetic dataset and the 6 scenarios
for building TCP solutions are provided in Section
4. The potential impact on researchers and practition-
ers is provided in Section 5. Section 6 discusses the
threats to validity with respect to the investigation of
the research. The last section concludes our investi-
gation and also provides a future research agenda.

2 THEORETICAL BACKGROUND
ABOUT TEST CASE
PRIORITIZATION

This section presents relevant theoretical and tech-
nical background elements, starting with the context
and the motivation behind this research and continu-
ing with the theoretical elements of Test Case Priori-
tization and related work.

2.1 Context and Motivation

The Software Development Life Cycle (SDLC)
(Burnstein, 2010) is a process used by the software
industry to design, develop and test high-quality soft-
ware. It consists of a detailed plan describing how to
develop, maintain, replace, and alter or enhance spe-
cific software. The process is divided into different
phases, each phase having its specific goals and de-
liverables.

The traditional SDLC, often referred to as the Wa-
terfall model, has the following stages: Requirements
Gathering and Analysis, System Design, Implementa-
tion, Integration and Testing, Deployment, and Main-
tenance. The Waterfall model follows a strict top-
down approach, with each phase being entirely com-
pleted before the next one begins and not having the
possiblity to return to a previous phase, thus changes
are difficult to implement once the project is under-
way. Agile development was introduced as a response
to the drawbacks of the Waterfall model and other tra-
ditional software development methodologies. It ap-
proaches software development in incremental cycles,
allowing more flexibility, collaboration, and adapt-
ability. The Agile SDLC model follows the same
steps as traditional SDLC, but the execution of these
stages is fundamentally different. Instead of a sequen-
tial design process, the Agile methodology follows an
incremental approach. Developers start with a sim-
plistic project design and then begin working on small
modules.

The traditional SDLC, often referred to as the Wa-
terfall model, strictly follows a sequence of stages
from Requirements Gathering to Maintenance, with
no room for revisiting completed phases. This rigidity
can make changes challenging once the project starts.
Agile methodologies, developed in response to these
issues, adopts an incremental cycle approach to soft-
ware development, promoting flexibility and collabo-
ration. Although the Agile SDLC model has the same
stages as Waterfall, its execution differs, focusing on
starting with a simple design and progressively work-
ing on small modules.

In February 2001, an Agile Manifesto (Apke,
2015) was drafted and signed. It is short, less than
500 words in length, and simply contains a set of
four values and 12 Agile principles. The core val-
ues are: individuals and interactions over processes
and tools, working software over comprehensive doc-
umentation, customer collaboration over contract ne-
gotiation, and responding to change over following a
project plan. The principles are related to these val-
ues and defines some guidelines on how to collaborate
with customers and respond to changes efficiently.

Embracing Unification: A Comprehensive Approach to Modern Test Case Prioritization

397

Agile methodologies offer several improvements
on handling requirements compared to traditional wa-
terfall methodologies: Flexibility and Adaptability -
allow for changes in requirements at any point in the
project, Frequent Inspection and Adaptation - em-
phasize frequent inspection and adaptation, which al-
lows the team to adjust requirements as needed, and
to immediately address any issues or changes, Cus-
tomer Involvement - promote close customer col-
laboration, meaning that requirements can be clari-
fied, validated, and adjusted continuously based on
customer feedback, Prioritization - requirements are
typically prioritized based on value, risk, and neces-
sity, allowing the most important features to be de-
veloped first, Incremental Delivery - deliver soft-
ware in small, functional increments. This allows the
team to gather feedback and adapt requirements as the
project progresses, rather than attempting to define all
requirements upfront.

Agile methodologies enhance requirement han-
dling via: Flexibility and Adaptability, enabling
changes throughout the project; Frequent Inspection
and Adaptation, allowing constant requirement mod-
ifications; Customer Involvement, promoting continu-
ous feedback-based requirement adjustments; Priori-
tization, based on value, risk, and necessity to develop
essential features first; and Incremental Delivery, sup-
porting feedback and adaptation through regular in-
crements of functional software.

Some of the Agile methodologies used are: Scrum
(Schwaber and Sutherland, 2017), Kanban (An-
derson, 2010), Extreme Programming (XP) (Beck,
2000), and Lean (Poppendieck and Poppendieck,
2003) software development.

A new way of handling customer functionality
specifications has also emerged: user stories, tradi-
tionally refer to a detailed specification of what a sys-
tem should do. They are usually more formal and
technical in nature. In traditional waterfall method-
ologies, these are often written up front and then
handed off to the development team. They may in-
clude functional requirements (what the system must
do), non-functional requirements (qualities the sys-
tem must have, like performance or security), and
constraints (limits on the design of the system). , on
the other hand, are a tool used in Agile methodolo-
gies to represent a small, independent piece of busi-
ness value that a team can deliver. A user story is
usually written from the perspective of an end user
and describes a piece of functionality that is valu-
able to that user. User stories are intentionally written
in a less formal and more conversational language.
The classic format of a user story is “As a [type of
user], I want [an action] so that [a benefit or value]”.

They are often accompanied by acceptance criteria
that define the boundaries and expectations of the
story. Although both user stories and requirements
aim to guide the development process, the key differ-
ences between them are in their format, their level of
detail, and how they are used in the development pro-
cess.

As we can observe, the introduction of Agile
methodologies radically changed SDLC, and while
TCP has already seen some small adaptations, we be-
lieve that further refinements are needed. We need a
way to address the different ways of describing func-
tionalities, frequent changes to them, prioritization
and reprioritization of given features, and incremental
delivery which, although does not have a direct im-
pact on test cases, but because of resource constraints
(especially time, but maybe computing resources too)
it can influence how we prioritize our tests.

To conclude, the shift to Agile methodologies has
significantly impacted SDLC, and while TCP has al-
ready seen some small adaptations, we believe that
further refinements are needed. We need to address
the different ways of describing functionalities, the
frequent changes to them (change of requirements),
prioritization and reprioritization of given features
(requirement prioritization), and incremental de-
livery, which can influence the way we prioritize our
tests.

2.2 Test Case Prioritization Background

There are many ways to define Test Case Prioritiza-
tion (TCP), but no one definition covers all the re-
quirements, contexts, and information that play a part
in or can affect this process. According to (Graves
et al., 1998), the Test Case Prioritization problem can
be formally defined as follows:

Definition 1. Test Case Prioritization (Graves et al.,
1998): a test suite, T, the set of permutations of T, PT;
a function from PT to real numbers, f. The goal is to
find T ∈ PT such that:

(∀T ′′)(T ′′ ∈ PT)(T ′′ ̸= T ′)[f (T ′)≥ f (T ′′)] (1)

In Definition 1, the function f assigns a real value
to a permutation of T according to the test adequacy
of the particular permutation.

Since this definition lacks time constraints for ex-
ecuting test suites, Time-limited Test Case Prioriti-
zation (TTCP) is used in papers like (Spieker et al.,
2017) and (Vescan et al., 2023b) in order to enhance
the TCP problem by adding this constraint. TCP was
associated with improvement testing in (Juristo and
Moreno, 2004), with the aim of increasing the fault
detection rate or decreasing the cost and time of the

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

398

prioritization process. The authors emphasize that
even if TCP is mainly applied for regression testing,
it can also be applied at the initial phase of testing or
even for software maintenance. A definition of TCP
that considers requirements and dependencies in the
prioritization process was proposed in (Vescan et al.,
2021). In (Paterson et al., 2019), the authors employ
the use of defect prediction for TCP. Consequently,
given the diverse range of existing TCP approaches,
each addressing different facets of the various con-
textual components involved in the TCP process, it
becomes important to establish a unified framework
for TCP. This comprehensive approach would ensure
consistency and clarity among the ways researchers
tackle this complex process.

In order to evaluate the effectiveness of a TCP
approach, several metrics are proposed. For exam-
ple, APFD (Average Percentage of Faults Detected)
(Pradeepa and VimalDevi, 2013) measures the effec-
tiveness of a test suite in detecting faults as early as
possible during the testing process and is defined as
follows:

APFD = 1− ∑
m
i=1 T Fi

n×m
+

1
2n

(2)

where: T Fi is the position of the first test case that
detects the i-th fault, m is the total number of faults
detected by the test suite and n is the total number of
test cases.

An extension of APFD to incorporate the fact that
not all test cases are executed and failures can be
undetected is the Normalized APFD (NAPFD) (Qu
et al., 2007):

NAPFD = p− ∑
m
i=1 T Fi

n×m
+

p
2×n

(3)

where p is the number of faults detected by the pri-
oritized test suite divided by the number of faults de-
tected in the entire test suite. Variations of the afore-
mentioned metrics include, for example, incorporat-
ing weights associated with the faults based on their
severity.

2.3 State of the Art on Test Case
Prioritization

Test case selection and prioritization is an inten-
sively investigated topic in the literature, and it has
been approached in several ways by addressing dif-
ferent optimization goals and by using a plethora of
techniques in doing so (Pan et al., 2022; Bertolino
et al., 2020; Khalid and Qamar, 2019; Kandil et al.,
2017; Almaghairbe and Roper, 2017; Medhat et al.,
2020). According to the machine learning tech-
nique involved, test case selection and prioritization

studies could be classified into the following cate-
gories: supervised learning, unsupervised learning,
reinforcement learning, and natural language process-
ing (Pan R., 2022).

Recent studies apply reinforcement learning (RL)
techniques to Test Case Prioritization (TCP) in Con-
tinuous Integration (CI) due to the ability of RL to
adapt to the dynamic nature of CI without need for
full retraining. Once trained, the RL agent can eval-
uate a test case, assign it a score, and use that score
to order or prioritize the test cases. Although most
of the RL studies consider only the execution history
to train their agent, we have found one study, namely
(Bertolino et al., 2020), where, in addition to the ex-
ecution history, code complexity metrics have also
been used. In their very comprehensive research pa-
per, the authors (Bertolino et al., 2020) evaluate and
compare 10 machine learning algorithms, focusing on
the comparison between supervised learning and re-
inforcement learning for the Test Case Prioritisation
(TCP) problem. Experiments are performed on six
publicly available datasets, and based on the results,
the authors propose several guidelines for applying
machine learning to regression testing in Continuous
Integration (CI).

In (Bertolino et al., 2020), the authors also
propose some new metrics (Rank Percentile Aver-
age (RPA) and Normalized-Rank-Percentile-Average
(NRPA)) to evaluate how close a prediction ranking
is to the optimal one. Unfortunately, in (Pan R.,
2022) it is explained in detail that the NRPA met-
ric is not always suitable. Nevertheless, the paper
from (Bertolino et al., 2020) remains a very thorough
and elaborate research study, and the authors from
(Pan R., 2022) include it in a short list of research
papers that are actually reproducible.

The main idea of clustering in the TCP context is
the assumption that test cases with similar character-
istics, such as coverage and other attributes, are likely
to have comparable fault detection abilities. Many
articles, such as, for example, (Khalid and Qamar,
2019) utilized the K-means algorithm or variations of
the K-means algorithm. The Euclidean distance is the
most commonly used similarity measure in cluster-
ing, but there are some attempts to use other similar-
ity measures, like the Hamming distance. The paper
of (Kandil et al., 2017) is an example in this sense. In
this study, the authors represent coverage information
for a test case as binary strings, where each bit indi-
cates whether or not a source code element has been
covered by a test. An interesting approach is proposed
in (Almaghairbe and Roper, 2017) where the authors
use clustering for anomaly detection of passing and
failing executions. The key idea is that failures tend

Embracing Unification: A Comprehensive Approach to Modern Test Case Prioritization

399

to be grouped into small clusters, while passing tests
will group into larger ones, and their experiments sug-
gest that their hypothesis is valid.

Supervised learning is probably one of the most
commonly used ML techniques to address TCP as a
ranking problem. Specifically, these techniques typ-
ically use one of three distinct ranking models for
information retrieval: pointwise, pairwise, and list-
wise ranking. In (Bertolino et al., 2020), the au-
thors used a state-of-the-art ranking library (Dang and
Zarozinski, 2020) and evaluated the effectiveness of
Random Forest (RF), Multiple Additive Regression
Tree (MART), L-MART, RankBoost, RankNet, Coor-
dinate ASCENT (CA) for TP. Their results show that
(MART) is the most accurate model. Although su-
pervised learning can achieve high accuracy, a major
issue is that a full dataset should be available before
training. In order to support incremental learning, the
model often needs to be rebuilt from scratch, which is
time-intensive and hence not quite ideal for CI.

The use of NLP seems quite limited. The core mo-
tivation to apply NLP techniques is to exploit infor-
mation in textual software development artifacts (e.g.,
bug description) or source code that is treated as tex-
tual data. In general, the idea is to transform test cases
into vectors and then to compute the distance between
pairs of test cases. The test cases are then prioritized
using different strategies. An interesting approach is
proposed in (Medhat et al., 2020), where NLP is used
to preprocess the specifications that describe the com-
ponents of the system under test. Then they used re-
current neural networks to classify the specifications
into the following components: user device, proto-
cols, gateways, sensors, actuators, and data process-
ing. On the basis of this classification, test cases be-
longing to these standard components were selected.
Then, they used search-based approaches (genetic al-
gorithms and simulated annealing) to prioritize the se-
lected test cases.

3 THE UNIFIED APPROACH TO
MODERN TCP

Our disrupted proposal for the Test Case Prioritization
problem is outlined next. We discuss the factors that
influence it, namely, considering traceability informa-
tion, emphasizing the used contexts, the applied meth-
ods, and the available information. Figure 1 shows the
main elements of the TCP problem that we consider.

3.1 Traceability Perspective

The first aspect related to the TCP unification ap-
proach refers to traceability. In this regard, two of
the aspects presented above related to the Agile per-
spective are included, namely, change of requirements
and requirement prioritization.

The aspect related to the change of requirements
is explained. To consider it, we propose using re-
quirements and the link to the source code and to
the test cases. These connections allow two dif-
ferent actions to be performed when a change oc-
curs: a change in requirements triggers the associated
test cases through the connection with source code,
and a change in source code triggers the linked test
cases. In this second action, further analysis could
be performed to identify requirements that are dif-
ficult to implement. Several previously investigated
approaches use the change of requirements aspect as
in (Tiutin and Vescan, 2022). Three other considera-
tions are next discussed:

• We propose to include a probability of change for
a requirement, thus having more test cases for a
requirement that is likely to change often (and also
consider the proper design of the test cases such
that no test smells exist). Therefore, the impact on
the designed and implemented test cases should
be considered.

• Dependencies between requirements play an im-
portant role in the regression testing process and
the method used.

• Another important aspect regarding requirement
- test case traceability refers to the way the con-
nection is considered: from 0,1 to whether the re-
quirement is implemented in the test case or not,
to a degree of membership. Thus, a test case may
partially cover a requirement.

The second view regarding traceability refers to
the requirement prioritization, meaning that some re-
quirements are prioritized in the development pro-
cess, which requires consistent testing. In this re-
spect, using the dependencies between requirements,
when a change is performed in one of the prioritized
requirements, not only directly associated test cases
should be executed, but also the requirements that
are dependent on. This aspect remains to be further
analyzed, depending on the tested context (unit test-
ing, incremental testing, or system testing), determin-
ing whether to store the specific element or compute
based on the available information.

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

400

Figure 1: Overview of the approach.

3.2 Contexts Perspective

The second aspect related to the TCP unification ap-
proach refers to the contexts of testing, more specifi-
cally to the level of testing, namely, the type of test
cases in the test suite: unit tests, integration tests,
system-level tests. We argue that the type of test cases
may influence the method used to prioritize them.
When a change is made on a specific source code,
it may be the case to just run the unit tests associ-
ated with that functionality; however, when changing
a source code part, depending on the associated re-
quirements, it may be the case that an end-to-end test
case suite should be executed. This is included as part
of the incremental delivery from the Agile perspec-
tive.

3.3 Information Perspective

The third aspect related to the TCP unification ap-
proach, which is still related to the Agile perspective
on the incremental delivery, refers to the available in-
formation, such as faults, cost of execution, time con-
straints, cycles runs, and so on.

The available information on the system under
test (SUT) and the associated artifacts, namely, faults,
test cases, time constraints, influence the decision on
what method to use to maximize the detection of po-
tential faults while minimizing the execution cost.
There is a need for the unification for the TCP prob-
lem, defining the theoretical framework (input and
output as available information, the context of testing)
that plays a role in the decision of the method used
to prioritize (artificial intelligence methods as, for ex-
ample, genetic algorithms, nature-inspired algorithms

such as ant colony systems, or machine learning algo-
rithms as random forest). Thus, the theoretical frame-
work is common, but the applied method varies de-
pending on the available information and context.

3.4 Scenario Example

Considering each perspective as outlined in Figure 1,
a scenario may consider the requirement changes in
the context of unit testing with information regarding
test cases, faults, and time constraint (execution bud-
get) to execute regression testing. Another scenario
might be when the requirements are not available but
the results of test case execution in various cycles in
the continuous integration environments are available.

Therefore, we advocate that the investigation of
TCP should consider the traceability requirement-
code-test-fault, the context, and the available infor-
mation on the SUT.

Furthermore, a particular general dataset is needed
for scientific research on the best TCP approaches. As
stated above, there exist various datasets (Software-
artifact Infrastructure Repository (SIR) (SIR, nd), De-
fect4J (Just et al., 2014), JTeC (JTeC, nd), GitHub-
based mining repositories (GitHub, nd)) constructed
with specific information about the system under test.
Standardization of the dataset format is needed to fa-
cilitate the research of various proposals in the same
context. Various standardizations may exist depend-
ing on the context of testing, namely, testing level and
available information on the SUT.

Embracing Unification: A Comprehensive Approach to Modern Test Case Prioritization

401

4 CASE STUDY

A synthetic dataset was constructed as provided in Ta-
ble 1 containing the information between test cases,
requirements and faults, the relationship between test
cases and source code, and the links between test
cases and cycles, and test case duration.

The synthetic dataset was constructed to be used
for the initial evaluation of our proposal considering
all the perspectives outlined above about TCP: trace-
ability, context, and available information. In building
the dataset we have used various information from the
existing datasets such as Software-artifact Infrastruc-
ture Repository (SIR) (SIR, nd), Defect4J (Just et al.,
2014), JTeC (JTeC, nd), GitHub-based mining repos-
itories (GitHub, nd).

For requirements and source code we considered
value 1 if the test case is connected to the specific
requirement or source code. For faults, we considered
1 if the test case failed, and thus found the specific
fault. The meanings in the cycles column are: 0 if the
test case was not run in those specific cycles, 0.5 if it
was run but with pass, and 1 when the test case was
run with a fail result.

In what follows, we will present the results ob-
tained in various scenarios, having different informa-
tion available as described in Table 2.

The scenarios are:

• Scenario 1 (S1): test cases and faults,

• Scenario 2 (S2): test cases, faults, and require-
ments, along with the specific requirements that
were changed,

• Scenario 3 (S3): test cases, faults, and the verdict
of the last cycle,

• Scenario 4 (S4): test cases, faults, and cycles,
namely, the rounded average verdict cycle,

• Scenario 5 (S5): test cases, faults, requirements,
and cycles,

• Scenario 6 (S6): test cases, faults, source code,
and cycles, namely, the rounded average verdict
cycle.

The methods used for the experiments are:

• Random: a random generation of the test case is
performed.

• Greedy: test cases are selected first based on the
faults and then based on the other specific condi-
tions as in each scenario.

• Clustering (Găceanu et al., 2022): test cases are
added in different clusters based on the fault ca-
pabilities and based on each scenario-based con-
ditions.

The metric used for the evaluation is the NAPFD
(Qu et al., 2007), however, for each scenario, different
information is incorporated into the formula. For ex-
ample, in the requirements-based scenario, the faults
that are considered are those linked to the require-
ments that are changed.

The TCP solutions obtained for each employed
method are provided in Table 3. The experiments
were performed with various time budget configura-
tions, from 10 to 100. The majority of the best results
obtained are for the Clustering method for almost all
budgets. The best results are in bold in Table 3.

The obtained solutions for Greedy and Clustering
are provided at this link along with the dataset (Ves-
can et al., 2023a). We present here, due to space lim-
itation, only the solutions for the scenario S5 for bud-
get 50, for Greedy and Clustering.

The Greedy solution is: [10, 11, 5, 1, 9, 12, 13, 6,
3, 2, 15, 16, 7, 17, 4, 8, 14]. For the Clustering so-
lution, the clusters are also emphasized: [1, 5], [11],
[10, 12], [13, 9], [15], [14, 4, 8, 17, 7], [6, 16, 2, 3].
The analysis reveals that while the Greedy solution
identifies the correct test cases sooner than the Clus-
tering solution, it overlooks the duration of these tests.
In contrast, the Clustering solution incorporates all
relevant information, including test duration, thereby
offering a more comprehensive and balanced solution.

5 POTENTIAL IMPACT ON
RESEARCHERS AND
PRACTITIONERS

The article has the potential to disrupt current practice
on regression testing, more specifically on test case
prioritization. This section details the implications of
our contributions for both researchers and practition-
ers.

For the academic community, our study offers a
new perspective on the problem of prioritizing test
cases. We introduce a framework that unifies the com-
ponents that are involved in TCP like artifact trace-
ability, context (e.g. unit testing, integration testing,
etc.), and information (e.g. faults, execution costs,
etc.). In our experiments, we investigate several sce-
narios that demonstrate the benefits of a comprehen-
sive approach to TCP.

For professionals in the field, our method could be
integrated into their regression testing workflows. Im-
plementing our approach as a plugin in the Integrated
Development Environment (IDE), for example, could
save significant time otherwise spent on manual test
case selection after code changes take place. Addi-

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

402

Table 1: Synthetic dataset.
tc requirements faults source code cycles d

1 2 3 4 5 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10
1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0.5 0.5 1 1 1 1 1 0.5 0.5 0.2
2 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.5 0.5 1 0.5 0.5 0 0 0 0 0 0.5
3 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.8
4 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3
5 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.2
6 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0.5 0.5 1 1 0.5 0.5 1 0.6
7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.5 0.5 0.5 0.5 0 0 0 0.5
8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.5 0.5 0.5 0 0 0 0 0.5 0.5 0.5 0.4
9 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0.5 0.5 1 0.3

10 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0.5 1 0.5 1 0.5 0.7
11 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0.5 1 0.8
12 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0.5 1 0.5 1 0.5 1 0.9
13 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0.5 0.5 1 0.1
14 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0.5 0.5 0.5 0.5 0 0.5 0.3
15 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0.5 0.5 0.5 1 0.5 0.5 0.2
16 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0.5 0.5 1 0.5 0.5 1 0.8
17 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0.5

Table 2: NAPFD values for the Random, Greedy and Clus-
tering approaches for various budget values.

S TC faults reqs c-lastV c-avgV code
S1 ✓ ✓
S2 ✓ ✓ ✓
S3 ✓ ✓ ✓
S4 ✓ ✓ ✓
S5 ✓ ✓ ✓ ✓
S6 ✓ ✓ ✓ ✓ ✓

tionally, we encourage practitioners to consider new
aspects of regression testing beyond traditional meth-
ods. By presenting novel ideas and future directions,
our aim is to inspire them to consider other crucial as-
pects of regression testing that need to be addressed.

6 THREATS TO VALIDITY

Experiments may be susceptible to specific threats to
validity, with research outcomes being affected by di-
verse factors. The following enumerates potential in-
fluences on the results obtained, along with the corre-
sponding actions to mitigate them.
Internal. The primary internal validity threat is the
use of the NAPFD metric. It is not designed for multi-
criteria based evaluations, its main scope is to find
faults as early as possible, without taking into con-
sideration other elements like requirements or source
code relations. In order to mitigate this, we have im-
plemented an NAPFD metric that has as goal finding
all testcases that expose faults and have the correct re-
quirements and source code links. In the future, a new
metric might be needed that can also evaluate par-
tial results, which means, for example, that test cases
that expose a fault and have the correct requirement
should be higher in the priority than test cases that do
not have the correct requirement.

Table 3: NAPFD values for the Random, Greedy and Clus-
tering approaches for various budget values.

Scenario Budget Random Greedy Clustering

S1

10 13.54 21.43 42.86
25 25.25 35.71 57.14
50 39.29 64.29 72.22
75 51.8 77.27 77.27
80 53.93 79.17 80.77

100 64.46 85.29 85.29

S2

10 8.64 21.43 21.43
25 13.47 28.57 28.57
50 21.2 47.62 45.71
75 28.16 50.79 51.95
80 29.59 51.43 52.75

100 36.04 53.78 53.78

S3

10 9.95 28.57 28.57
25 17.78 42.86 42.86
50 27.15 56.12 58.04
75 35.51 60.71 62.5
80 36.96 61.69 63.19

100 43.53 65.13 65.13

S4

10 8.29 21.43 37.5
25 15.77 42.86 42.86
50 24.62 50 50
75 32.48 51.95 52.04
80 33.73 52.38 52.04

100 39.1 53.78 52.94

S5

10 5.7 21.43 28.57
25 9.91 42.86 42.86
50 17.74 50 51.43
75 24.25 51.95 53.06
80 25.66 52.38 53.06

100 32.01 53.78 53.78

S6

10 3.48 21.43 21.43
25 6.54 37.5 38.57
50 11.94 40.18 40.71
75 17.1 40.91 41.21
80 18.05 41.07 41.33

100 23.14 41.6 41.6

Construct. In the absence of a dataset that can cap-
ture all the information we need, the creation of a
synthetic dataset was necessary. We have consid-
ered only the case where a test case exposes only one
single fault, but in practice this might not always be

Embracing Unification: A Comprehensive Approach to Modern Test Case Prioritization

403

true. For subsequent research, transforming existing
datasets might be the correct way to go.
External. Our approach is validated only on a sin-
gle dataset. Clearly, more datasets are needed to re-
liably demonstrate the potential impact of this ap-
proach. Provided that an effective method for trans-
forming and repurposing existing datasets is identi-
fied, this should logically be the next course of action.

7 CONCLUSIONS AND FUTURE
RESEARCH AGENDA

The Test Case Prioritization problem is defined and
investigated under various conditions and with dif-
ferent available information on SUT. We have identi-
fied several challenges in the unification process that
are outlined below, along with the research agenda,
namely the identification and implementation of the
research steps.
Traceability. The connection between requirements
and source code and test cases is a challenge in the
unification process. Up until now, to the best of
our knowledge, the majority of TCP was considered
under the second scenario that we outlined above,
namely, a change in the source code to trigger the test
cases. Few approaches considered requirements, in
this regard the relation requirements to test cases be-
ing done through source code. Our research agenda
on this aspect will investigate this traceability by link-
ing first requirements to test cases using Behavior-
Driven Development (BDD).
Context. An important aspect when performing re-
gression testing is considering the test suite as part
of a different level of testing: unit testing, integration
testing, and system-level testing. In this challenge,
our objective is to investigate the impact of different
types of test suites on the method used to prioritize.
The complexity of the test cases in the test suite and
the number of test cases in the test suite may have an
impact on the decision on the method used for priori-
tization.
Information. The available information of the SUT is
another challenge in the TCP problem. Having avail-
able faults, the cost of executing the test cases, and the
time constraints are just a few of the many factors that
influence the TCP solution. Our aim was to investi-
gate the effect of having partial factors and all factors
available. Regarding testing time, an analysis of the
trade-off between the improved prioritization and the
potential increase in testing time will be investigated.
Dataset. While a multitude of datasets for regression
testing/TCP exist (as provided above, SIR, Defect4J,
JTeC, GitHub), each is specifically tailored to study

a unique aspect, which results in a lack of standard-
ization between known and desired outcomes. Fur-
thermore, these datasets should have stronger indus-
try support, in the sense that academic research should
align more closely with real-world industry scenarios.

In conclusion, regression testing is an important
step during the software development life cycle, and
TCP is one of the strategies that leads to finding faults
sooner with a minimum execution cost. However, cur-
rently, there is no formal definition of TCP that ade-
quately covers the various influencing factors. Since
there is currently no TCP formalization that general-
izes the various influencing factors, our vision is to
fill this gap with a unified TCP framework that ad-
equately integrates numerous perspectives: require-
ments, context, and information.

ACKNOWLEDGMENT

This work was funded by the Ministry of Research,
Innovation, and Digitization, CNCS/CCCDI - UE-
FISCDI, project number PN-III-P1-1.1-TE2021-0892
within PNCDI III.

REFERENCES

Almaghairbe, R. and Roper, M. (2017). Separating pass-
ing and failing test executions by clustering anoma-
lies. Software Quality Journal, 25(3):803–840.

Anderson, D. J. (2010). Kanban: Successful Evolution-
ary Change for Your Technology Business. Blue Hole
Press.

Apke, L. (2015). Understanding the Agile Manifesto.
Lulu.com, United States.

Beck, K. (2000). Extreme Programming Explained: Em-
brace Change. Addison-Wesley Professional.

Bertolino, A., Guerriero, A., Miranda, B., Pietrantuono, R.,
and Russo, S. (2020). Learning-to-rank vs ranking-
to-learn: Strategies for regression testing in contin-
uous integration. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineer-
ing, ICSE ’20, page 1–12, New York, NY, USA. As-
sociation for Computing Machinery.

Burnstein, I. (2010). Practical Software Testing. Springr,
Sprineger Professional Computing.

Dang, V. and Zarozinski, M. (2020). Ranklib.
Engström, E., Runeson, P., and Skoglund, M. (2010). A sys-

tematic review on regression test selection techniques.
Information and Software Technology, 52(1):14–30.

GitHub (n.d.). Github. https://github.com/. Accessed:
2023-05-23.

Graves, T. L., Harrold, M. J., Kim, J., Porters, A., and
Rothermel, G. (1998). An empirical study of regres-
sion test selection techniques. In Proceedings of the

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

404

20th International Conference on Software Engineer-
ing, pages 188–197.

Găceanu, R. D., Szederjesi-Dragomir, A., Pop, H. F., and
Sârbu, C. (2022). Abarc: An agent-based rough sets
clustering algorithm. Intelligent Systems with Appli-
cations, 16:200117.

JTeC (n.d.). Jtec: A large collection of java test classes for
test code analysis and processing. https://github.com/
MSR19-JTeC/JTeC. Accessed: 2023-05-23.

Juristo, N. and Moreno, A. (2004). Reviewing 25 years
of testing technique experiments. Empirical Software
Engineering, 9(7-44).

Just, R., Jalali, D., and Ernst, M. D. (2014). Defects4j: A
database of existing faults to enable controlled test-
ing studies for java programs. In Proceedings of the
2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, page 437–440, New York,
NY, USA. Association for Computing Machinery.

Kandil, P., Moussa, S., and Badr, N. (2017). Cluster-based
test cases prioritization and selection technique for ag-
ile regression testing. Journal of Software: Evolution
and Process, 29(6):e1794. e1794 JSME-15-0111.R1.

Khalid, Z. and Qamar, U. (2019). Weight and cluster based
test case prioritization technique. 2019 IEEE 10th An-
nual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), pages 1013–
1022.

Medhat, N., Moussa, S. M., Badr, N. L., and Tolba,
M. F. (2020). A framework for continuous regression
and integration testing in iot systems based on deep
learning and search-based techniques. IEEE Access,
8:215716–215726.

Pan, R., Ghaleb, T. A., and Briand, L. (2022). Atm:
Black-box test case minimization based on test code
similarity and evolutionary search. arXiv preprint
arXiv:2210.16269.

Pan R., Bagherzadeh M., G. T. e. a. (2022). Test case selec-
tion and prioritization using machine learning: a sys-
tematic literature review. Empir Software Eng, 29:1 –
43.

Paterson, D., Campos, J., Abreu, R., Kapfhammer, G. M.,
Fraser, G., and McMinn, P. (2019). An empirical
study on the use of defect prediction for test case
prioritization. In 2019 12th IEEE Conference on
Software Testing, Validation and Verification (ICST),
pages 346–357.

Poppendieck, M. and Poppendieck, T. (2003). Lean Soft-
ware Development: An Agile Toolkit. Addison-Wesley
Professional.

Pradeepa, R. and VimalDevi, K. (2013). Effectiveness
of test case prioritization using apfd metric: Survey.
In International Conference on Research Trends in
Computer Technologies (ICRTCT—2013). Proceed-
ings published in International Journal of Computer
Applications®(IJCA), pages 0975–8887.

Qu, X., Cohen, M., and Woolf, K. (2007). Combinatorial in-
teraction regression testing: A study of test case gen-
eration and prioritization. In 2007 IEEE International
Conference on Software Maintenance, Los Alamitos,
CA, USA. IEEE Computer Society.

Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J.
(1999). Test case prioritization: An empirical study. In
Proceedings IEEE International Conference on Soft-
ware Maintenance-1999 (ICSM’99).’Software Main-
tenance for Business Change’(Cat. No. 99CB36360),
pages 179–188. IEEE.

Salehie, M., Li, S., Tahvildari, L., Dara, R., Li, S., and
Moore, M. (2011). Prioritizing requirements-based
regression test cases: A goal-driven practice. In 2011
15th European Conference on Software Maintenance
and Reengineering, pages 329–332.

Schwaber, K. and Sutherland, J. (2017). The Scrum Guide.
Singh, A., Singhrova, A., Bhatia, R., and Rattan, D. (2023).

A Systematic Literature Review on Test Case Priori-
tization Techniques, chapter 7, pages 101–159. John
Wiley & Sons, Ltd.

SIR (n.d.). Software-artifact infrastructure repository. http:
//sir.unl.edu/. Accessed: 2023-05-23.

Spieker, H., Gotlieb, A., Marijan, D., and Mossige, M.
(2017). Reinforcement learning for automatic test
case prioritization and selection in continuous integra-
tion. In Proceedings of the 26th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analy-
sis, ISSTA 2017, page 12–22, New York, NY, USA.
Association for Computing Machinery.

Srikanth, H., Hettiarachchi, C., and Do, H. (2016). Require-
ments based test prioritization using risk factors: An
industrial study. Information and Software Technol-
ogy, 69:71 – 83.

Tiutin, C.-M. and Vescan, A. (2022). Test case prioritiza-
tion based on neural networks classification. In Pro-
ceedings of the 2nd ACM International Workshop on
AI and Software Testing/Analysis, AISTA 2022, page
9–16, New York, NY, USA. Association for Comput-
ing Machinery.

Vescan, A., Chisalita-Cretu, C., Serban, C., and Diosan,
L. (2021). On the use of evolutionary algorithms for
test case prioritization in regression testing consider-
ing requirements dependencies. In Proceedings of the
1st ACM International Workshop on AI and Software
Testing/Analysis, AISTA 2021, page 1–8, New York,
NY, USA. Association for Computing Machinery.

Vescan, A., Găceanu, R., and Szederjesi-Dragomir, A.
(2023b). Neural network-based test case prioritization
in continuous integration. In 2023 38th IEEE/ACM
International Conference on Automated Software En-
gineering Workshops (ASEW), pages 68–77. IEEE.

Vescan, A., Gaceanu, R., and Szederjesi-Dragomir, A. (ac-
cessed November 2023a). Embracing unification:a
comprehensive approach to modern tcp.

Yoo, S. and Harman, M. (2010). Using hybrid algorithm
for pareto efficient multi-objective test suite minimi-
sation. J. Syst. Softw., 83(4):689–701.

Embracing Unification: A Comprehensive Approach to Modern Test Case Prioritization

405

