
Enhancing SPIFFE/SPIRE Environment with a Nested Security Token
Model

Henrique Z. Cochak1 a, Milton P. Pagliuso Neto1 b, Charles C. Miers1 c,
Marco A. Marques2 d and Marcos A. Simplicio Jr.2 e

1Graduate Program in Applied Computing (PPGCAP), Santa Catarina State University (UDESC), Brazil
2Laboratory of Computer Networks and Architecture (LARC), Universidade de São Paulo (USP), Brazil

Keywords: SPIFFE, SPIRE, Nested Token, Token Chaining.

Abstract: Within the domains of authentication, authorization, and accounting, vulnerabilities often arise, posing signifi-
cant challenges due to the inter-connectivity and communication among various system components. Address-
ing these threats, SPIFFE framework emerges as a robust solution tailored for workloads identity management.
This work explores solutions for use cases not originally foreseen in the SPIFFE scope, focusing on enhanc-
ing security measures, particularly investigating a novel token model that introduces a nesting concept. This
extended token model operates within a SPIRE environment, enabling token nesting with new features such
as token tracing with both ephemeral and non-ephemeral keys and the possibility of delegated assertions.

1 INTRODUCTION

Cloud computing applications are usually composed
of multiple workloads, requiring mutual authentica-
tion in authorization decisions based on the original
caller, their context, and the actions of other work-
loads over the same transaction. This scenario has
the insurance of the security through robust authen-
tication and authorization processes. While authen-
tication employs different methods (e.g., security to-
kens, certificated-based authentication) to verify the
identity of users or systems accessing resources, au-
thorization determines the permissions and actions al-
lowed for authenticated entities, specifying who can
access what and what operations they can perform.

One established authentication solution is Se-
cure Production Identity Framework for Everyone
(SPIFFE), which focuses on workload identity man-
agement (SPIFFE, 2023), ensuring (among other
benefits) verifiable mutual Transport Layer Secu-
rity (mTLS) connections between services (Feldman
et al., 2020). However, the current scope of SPIFFE
centers on workload identities without inherent sup-

a https://orcid.org/0009-0007-3571-1709
b https://orcid.org/0009-0000-5206-3773
c https://orcid.org/0000-0002-1976-0478
d https://orcid.org/0000-0001-5800-8927
e https://orcid.org/0000-0001-5227-7165

port for end-user authentication, unlike protocols such
as OAuth 2.0, SAML, or OpenID Connect. Also, its
main security document, the SPIFFE Verifiable Iden-
tity Document (SVID), is signed by a SPIFFE trust
domain authority without support for extension capa-
bilities that could allow a new range of functionalities
(e.g., delegation, attenuation, traceability). Delega-
tion is a typical use case where a principal (i.e., an
end-user or a workload) allows an authenticated third
party to perform tasks on any required service on its
behalf. Attenuation, is the ability to restrict the token
permissions. This way, the token extension emerges
as a practical mechanism to address these functionali-
ties. Finally, traceability allows to track the path taken
by the token throughout the request.

We propose a new token model with support for
extension and alternative digital signature schemes,
facilitating the implementation of new functionalities.
This article is organized as follows. Section 2 intro-
duces the basic concepts utilized around our security
document. Section 3 delimits the problem to be ad-
dressed, as well as the functional and non-functional
requirements assumed for the scenario. Section 4
presents the related work found in the literature and
the corporate environment. Section 5 details the pro-
posed solution, showing how it can address the prob-
lem of traceability in containerized environments.
Section 6 describes a proof-of-concept implementa-

184
Cochak, H., Neto, M., Miers, C., Marques, M. and Simplicio Jr., M.
Enhancing SPIFFE/SPIRE Environment with a Nested Security Token Model.
DOI: 10.5220/0012634400003711
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 14th International Conference on Cloud Computing and Services Science (CLOSER 2024), pages 184-191
ISBN: 978-989-758-701-6; ISSN: 2184-5042
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



tion of the solution. Section 7 presents the test per-
formed and the results obtained.

2 BACKGROUND

Security mechanisms that define and coordinate iden-
tity and access management are critical to ensure that
only authenticated principals (e.g., users, workloads)
are authorized to access the target resource in the in-
tended manner and with the least privilege. SPIFFE is
a set of open-source specifications for bootstrapping
and issuing short-lived, cryptographically verifiable
identity documents to workloads operating across het-
erogeneous environments and organizational bound-
aries (SPIFFE, 2023). A workload is a running in-
stance of software executing for a specific purpose.
It can own an SVID that uniquely identifies it using
a Uniform Resource Identifier (URI) containing two
parts: a trust domain name and a unique workload
identifier within that domain. Each trust domain con-
tains a root of trust in a construction similar to a PKI,
provisioning workloads with a verifiable identity doc-
ument.

An SVID can be encoded as an X.509 certifi-
cate (Boeyen et al., 2008) or as a JSON Web To-
ken (JWT) (Jones et al., 2015) and is digitally signed
by an authority within the corresponding trust do-
main. Whichever the case, the SVID issuance pro-
cedure typically involves an attestation process, so
only authorized workloads can obtain valid SVIDs
via the specified API calls. Workloads can then
use these identity documents when authenticating to
each other, e.g., by establishing a authenticated mTLS
connection with X.509 SVID or exchanging signed
JWT-SVID within secure communication channels
(SPIFFE, 2023). Even though X.509 SVID is pre-
ferred when mTLS connections can be established,
JWT-SVID are important when identities need to go
through multiple hops (SPIFFE, 2023).

The term identity management explores the no-
tion of identity, and refers to a set of policies, tools,
and mechanisms used to manage the life cycle of dig-
ital identities associated with participants in a sys-
tem, which includes individuals, software or hardware
components. Tokens, on the other hand, are signed
documents carrying assertions used for various se-
curity purposes, including authentication, authoriza-
tion, and access control (Aboba and Wood, 2003).
As defined in (Campbell et al., 2015), an assertion
is a statement or declaration made by an entity (the
claimant), encoded and represented in a specific for-
mat. It could encompass various types of information,
such as facts, or statements made by the issuer, and is

typically related to an identified subject or entity.

3 PROBLEM DEFINITION

The crescent interest in distributed and signed asser-
tions and new token improvements led to the creation
of the “SPIFFE - Assertions and Tokens Workgroup”,
a workgroup in the SPIFFE community (Slack, 2023)
where the primary goal is to establish a comprehen-
sive framework allowing identified entities to make
authenticated statements in various scenarios. One of
the points recognized as relevant in workgroup dis-
cussions deals with the limitation of SVID to work-
load identification only, without the ability to iden-
tify or integrate with an end-user identity. JWT-SVID
is a promising alternative in cloud computing, but
it still lacks the flexibility of extension with addi-
tional information, a relevant feature in distributed
scenarios. The required solution must support vari-
ous approaches to identity, since scenarios where the
claimant’s identity doesn’t require validation from a
trusted authority to instances involving anonymity or
less structured identification methods, approaches in-
cluded: X.509, JWT, JSON-based methods, and even
situations in which the claimant’s identity remains
unidentified.

Another crucial aspect revolves around methods
for token extensions. There is a strong interest in em-
powering token bearers with the flexibility to extend
tokens as needed. This capability enhances security in
access management, enabling delegation, attenuation,
or token sealing, ensuring a more adaptable and fine-
granular access control system. The main challenges
include handling multiple arbitrary claims within to-
kens and highlighting the importance of size sensitiv-
ity to streamline signing and verification processes.

These definitions led to the Functional Require-
ments (FRs) guiding the development of the proposed
solution, setting it apart within the domain of similar
research. There are four FRs: delegation of bearer to-
ken permissions through a SPIRE environment (FR1),
possibility to create new valid tokens from previous
one while restricting access rights with attenuation
(FR2), existence of mechanisms to validate the token
chain of custody (FR3), and possibility to add arbi-
trary information to a token, allowing for a more gran-
ular authentication/authorization mechanism (FR4).

4 RELATED WORK

Table 1 offers a succinct overview of connections
among similar works, categorized according to the

Enhancing SPIFFE/SPIRE Environment with a Nested Security Token Model

185



Table 1: Related work.

(Biscuits, 2023) (Richer, 2023) (SPIFFE, 2024) (Peterson, 2021)
FR1 No No No No
FR2 Yes No No Yes
FR3 Yes Yes No Yes
FR4 Yes Yes No Yes

predefined FRs outlined in Section 3. Detailed dis-
cussions on each paper will follow below, providing
a comprehensive examination of their respective con-
tributions and alignment with the identified require-
ments. The term Partial signifies that, based on the
documentation, the entity can fulfill some aspects of
the FR, but falls short of meeting all the specified re-
quirements.

Biscuits (Biscuits, 2023) employs public key
cryptography to create extensible tokens. The foun-
dation of Biscuit’s token creation lies in the Ed25519
algorithm, where the private key is required for token
generation and extension while the public key is used
in token validation. The token structure is a sequence
of signed blocks, where the signature generation of
the first block B0 uses a root private key. Before creat-
ing a new block Bi, it requires the generation of a new
key pair (ski+1, pki+1) that must be used to sign the
next block Bi+1. In this scenario, the public key pki+1
should be part of the data, and the private key ski+1
must be forwarded to the intended recipient through a
secure channel.

Our nested token model takes inspiration from
some concepts provided in this work, like decentral-
ized verification and offline attenuation using Schnorr
signatures. Their main structure is a block, while
ours is a token with a payload and signature. To cre-
ate valid new blocks based on an existing one (FR2),
Biscuits copies all the blocks, gets the private key
from the proof received in the secure channel, and
generates a new random key pair. Then, it signs
the data containing the new public key using the pri-
vate key from the previous token. The nested to-
ken proposes two different alternatives to improve the
scheme efficiency: (i) it leverages an existing Iden-
tity Provider (IdP) to avoid the key generation step,
or (ii) it employs a signature aggregation mechanism
that not only does not require the key generation but
also reduces the token signature size.

(Richer, 2023) proposes a data structure tailored
for managing transactional state information in com-
plex API deployments involving interconnected ser-
vices. This proposed data structure comprises single-
element containers called a Bucket and a container
to hold multiple such elements cohesively called a
Crate. Single elements encapsulate tokens with spe-
cific properties. Although similar, it works with

bearer tokens but solves different security demands.
As this proposal works in a non-linear fashion and can
reorder the dictionary of multiple single-element con-
tainers, it is impossible to trace the path of the bearer
token more linearly.

(SPIFFE, 2024) JWT-SVID is one of the security
tokens in the SPIFFE specification. As a modified
form of standard JWT tokens, JWT-SVID implements
restrictions to enhance security. The scope of this to-
ken is to solve difficulties associated with asserting
identity across Layer 7 boundaries, making compat-
ibility with existing applications and libraries a core
requirement. Thus, it does not provide mechanics of
end-user delegation, token extension, or tracing, lack-
ing the functionalities desired by the community and
listed in the FRs, which allows a more flexible token
solution in the SPIFFE ecosystem.

(Peterson, 2021) explore the extension to the Per-
sonal Assertion Token (PASSporT) (Wendt and Peter-
son, 2018), a token format based on JWT for convey-
ing cryptographically signed information about the
people involved in personal communications. This
scheme introduces a concept similar to nested tokens
within the SIP (Session Initiation Protocol) commu-
nication framework. The PASSporT format, designed
for conveying authenticated information in real-time
communications, explicitly indicates call diversion,
which is vital in scenarios involving changes to the
original call destination, often seen in SIP re-targeting
situations. Our work and PASSporT have many
resemblances as both use notions of token nesting
within a JWT domain, although each solves a differ-
ent issue: while we focus on end-user and workload
identity, the latter work is related to the SIP frame-
work.

In this research about diverse token struc-
tures and methodologies, we’ve explored innova-
tive approaches like Biscuits’ attenuation mecha-
nism, Richer-Wimse’s transactional state manage-
ment, OAuth identity continuity across trust domains,
and the extension of PASSporT tokens for SIP com-
munications. Each approach brings unique facets to
tokenization, from creating new tokens through at-
tenuation to managing transactional state seamlessly
across distributed systems and maintaining identity
context across trust boundaries. These advancements
strengthen security measures and enhance the inter-

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

186



operability of interactions within complex networked
environments, showcasing the evolving landscape of
token-based mechanisms in current data handling and
authentication realms.

5 PROPOSED SOLUTION

This work proposes the Nested Token model: a to-
ken construction that implements decentralized and
local token creation and extension with support to
authenticated statements. It focuses on lightweight,
size-sensitive operations while ensuring robustness in
authentication and validation processes. The fun-
damental innovation lies in using incremental sign-
ing to implement the extension mechanism, allowing
the grouping of multiple signed sets of claims within
a single token instance. This work also presents
a proof-of-concept implementation, detailed in Sec-
tion 6, that uses the nested token model to meet the
functional requirements defined by the SPIFFE com-
munity and listed in Section 3.

The solution supports different signature schemes.
Although not restricted to them, the proof-of-concept
presents two alternatives: the ID-Mode and the
Anonymous Mode. The ID-Mode leverages an ex-
isting IdP, using trusted identity documents and cor-
responding keys to implement authentication and au-
thorization mechanisms, and the Anonymous Mode
uses a Schnorr signature aggregation mechanism to
offer an alternative to scenarios where an IdP is not
available or where the token size is critical. Our
design lies in supporting lightweight identity docu-
ments and pseudonyms while ensuring efficient han-
dling of information. Throughout this document and
our proof-of-concept implementation, the JavaScript
Object Notation (JSON) format (Jones et al., 2015) is
assumed as default, with the token adopting a JWT-
based structure, being the payload and signature en-
coded using Base64 and a URL and filename safe al-
phabet (Josefsson, 2006). A high-level visual repre-
sentation of the nested token architecture is in Figure
1.

Payload P2

Token T1Payload P1Token T0

Token T1

Signature S1

Payload P0

Signature S0 Signature S1

Token T2

Signature S2

Claims

Claims

Claims

Token T0
Signature S0

Token T0

Signature S0

Figure 1: Nested token architecture.

In Figure 1, a workload W0 creates a new token
T0, containing a payload P0 and a corresponding sig-
nature S0. It forwards the token to W1, which extends
it by creating a new token T1, with a payload P1 that
must encompass T0 and a new set of claims and the
corresponding signature S1. This recursive construc-
tion allows any workload to create or extend an ex-
isting token to include new signed claims. It enables
several use cases where information integrity and ras-
treability are desirable (e.g., authentication, autho-
rization, monitoring, auditing), detecting any poten-
tial tampering in its route, all related to the chained
link between a group of specific claims, as performed
by ID-Mode and depicted in Section 5.1 or directly
through a signature concatenation scheme, as done in
Anonymous mode and described in Section 5.2. Both
use cases demonstrate a practical application and the
effectiveness of the proposed solution in addressing
the need for comprehensive token tracking and in-
tegrity validation in complex environments.

When considering the FRs, both scenarios al-
low token creation and extension with specific per-
missions based on authenticated statements within a
SPIRE structure. Regarding FR2, the token scheme
facilitates controlled privilege reduction or the ad-
dition of constraints through attenuation during to-
ken propagation across various workloads. The so-
lution also meets the FR3 by integrating mechanisms
for validating the token chain of custody. The pro-
posed solution enables comprehensive validation and
tracking of the token’s path using sequential signa-
tures, ensuring integrity as it traverses different envi-
ronments. Lastly, in meeting FR4’s, the nested token
scheme’s flexibility enables the inclusion of context-
specific data. This feature refines authentication and
authorization decisions by accommodating diverse in-
formation within the token structure.

5.1 ID-Mode

The use case for this schema requires a trusted IdP
that enables workloads to obtain a valid identity doc-
ument associated with their signature keys (e.g., a reg-
ular X.509 certificate or X.509 SVID). Furthermore,
each workload Wn along the path knows the identity of
the next workload Wn+1, to which requests and tokens
should be forwarded. In this scenario, the workload
uses its private key to create the token signature, thus
allowing its creation or extension in a non-repudiable
manner, as illustrated in Fig. 2.

A straightforward approach would consist in Wn
placing its whole verifiable identity document or its
public key as the “issuer” claim in the payload before
conveying it to Wn+1, that must be identified in the

Enhancing SPIFFE/SPIRE Environment with a Nested Security Token Model

187



aud: ID3
iss: ID2

Signature ID2

aud: ID4
iss: ID3

Signature ID3

aud: ID2
iss: ID1

Signature ID1

Workload
W0

Workload
W1

Workload
W2

Figure 2: Claims chained link.

“audience” claim, therefore creating a chained link
between workload hops. This approach would ensure
a specific sequence of token signatures and identities
that the receiver can easily verify.

5.2 Anonymous-Mode

This scheme adopts a signature aggregation scheme
that focuses on granting the validation of a specific se-
quence of signatures rather than identifying the sign-
ers. Thus, it uses ephemeral keys and does not require
an IdP. Also, it improves the efficiency by reducing
the token size, and, different from Biscuits, it does not
require a key pair generation when extending the to-
ken. This approach adopts the (Galindo and Garcia,
2009) Identity Based Signature (IBS) scheme to build
a signature aggregation scheme using Edwards-curve
Digital Signature Algorithm (EdDSA), adapting the
Biscuits security model (Biscuits, 2023) to implement
a token scheme with aggregated signatures, where the
total signature size can be reduced up to 50%, facing
the ID-mode. A high-level visual representation of
this concept is shown in Fig. 3.

iss: PK2

iss: PK3

Signature Sig3

Workload
W0

Workload
W1

Workload
W2

iss: PK1

Partial Sig1

Partial Sig2 "S" key

Figure 3: Anon-Mode signature chain link.

The process starts with the creation of a new token
T0 by an issuer (workload W0), using the root private
key sk0. The payload of T0 must, at least, contain the
issuer claim (iss) filled with the root public key pk0.
It is signed using the Schnorr scheme and produces a
signature σ0 = (R0,s0). The resulting token consists

of a payload concatenated with a signature. Follow-
ing the Galindo-Garcia scheme (Galindo and Garcia,
2009), when the workload W1 wants to extend T0 it
needs to extract the aggregation key (s0) to use it as
the private key to sign the new token T1, that will con-
tain in its payload the token T0, where the signature
σ0 = (R0) and σ1 = (R1,s1). This approach is repeat-
able as many times as needed, with multiple concate-
nations where only the last signature is complete (i.e.,
preserves both the “R” and “s” parts), while all previ-
ous are partial signatures containing just the “R” part.

6 IMPLEMENTATION AND
TESTBED

As discussed in Section 3, the usage context of the
token and its ability to support different digital sig-
nature schemes led to the development of two dif-
ferent models for the nesting and validation flow to
test the token flexibility in different scenarios. For a
SPIRE scenario under the ID-Mode use case, a previ-
ously SPIRE authenticated workload uses its private
key to produce an Elliptic Curve Digital Signature
Algorithm (ECDSA) digital signature with the corre-
sponding public key available in its identity document
(i.e., SVID), ensuring that the assertion token is veri-
fiable during your workflow, as depicted on Fig. 4.

OAuth

Token t0

Token t0

SVID

Token t0
+ 

Assertions

Target

Token t1
+ 

Assertions

SVID

Local IdP

Middle-Tier

Token t2
1

3

4 6

7

OAuth

SVID
Front-End

5

Notation:
mTLS

Token t1

SPIRE
mTLS, Keys, Trust Bundles

User

2

Figure 4: ID-Mode proof of concept.

The validation scheme for a token Ti using ID-
mode has three steps executed recursively for every
signer. The validation begins by checking if the iden-
tity document belongs to the token signer identified
in the issuer (“iss”) claim. Then, it checks if the to-
ken Ti issuer (“iss”) value is the same as the audience
(“aud”) value in Ti−1, granting the link between sign-
ers. Finally, using the public key in the identity docu-
ment, the corresponding signature is verified over the

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

188



token payload.
The Anonymous-Mode use case is similar to Fig.

4. The main distinction lies in the signature concate-
nation scheme that reduces the token size while per-
forming the key and signature generation in a single
operation, not relying on any IdP. Consequently, the
secret key required to extend the token does not have
to be created and forwarded in a secure channel, as the
token already contains it. The key is removed when
used, avoiding the reuse by any subsequent signer and
eliminating the dependency on external authentica-
tion entities. In the case of Fig. 4, there is no SVID
to forward. In the proof-of-concept, we opted for ex-
ecuting the token validation process at the resource
server, ensuring that the verification occurs after all
necessary token transmissions. This final validation
step offers an optimized approach, minimizing com-
putational overhead and simplifying the authentica-
tion procedure across the application.

The experiment was conducted through on a
server machine with the following specifications:
GNU/Linux Ubuntu Server operating system (version
20.04.6), 192GB of RAM, 4TB of HDD storage, and
CPU model Intel(R) Xeon(R) CPU E5-2620 2.5Ghz
with 24 cores. Each containerized workload is lim-
ited to a CPU core and 128MB of RAM. Data scrap-
ping from Prometheus occurs at intervals of 50 mil-
liseconds. This interval maintains a balance, ensuring
Prometheus collects updates frequently enough for a
near-real-time system view without overloading the
monitored systems with unnecessary data.

MV

Ubuntu Server 20.04

SPIRE Server

SPIRE Agent

SPIRE Server

SPIRE Agent
Prometheus

1 
Middle-Tier

2 
Middle-Tier

3 
Middle-Tier

4 
Middle-Tier

5 
Middle-Tier

Local IdP

Front End

Target

Figure 5: Testbed environment.

A set of metrics was chosen to evaluate the so-
lution performance by measuring the effects of the
nested token’s extension, namely: (i) the token’s size
growth (through the nesting on different hops of a re-
quest flow inside the PoC environment), (ii) execution
time of the creation, extension, and validation pro-
cesses on all the components and (iii) the consump-
tion of usage of computational resources (CPU and
RAM).

7 RESULT ANALYSIS

The experiment individually collected the perfor-
mance metrics for each proof-of-concept component.
The resulting data was grouped by schematic (ID-
Mode and Anon-Mode) and the metrics set (compu-
tational resources, token size growth, and execution
time). Primarily, Fig. 6 explores the token growth
when the concatenation happens on the nesting for
each workload hop.

●

●

●

●

●

●

●

●

●

●

538

731

924

1117

1310

799

1030

1261

1492

1723

500

750

1000

1250

1500

1750

m
tie

r

m
tie

r2

m
tie

r3

m
tie

r4

m
tie

r5

To
ke

n 
S

iz
e 

(B
yt

es
)

Mode

Anon_mode

ID_mode

Token Size

Figure 6: Token size growth.

For this benchmark, only the mandatory set of
claims is included in the payload, illustrating the min-
imum token growth for each mode. This way, ev-
ery extension results in a linear growth in the token,
composed of the payload and signature sizes. The
comparison between Anon-Mode and ID-Mode re-
veals a notably reduced token growth within the for-
mer. ID-Mode grows 231 bytes for each extension,
while Anon-Mode only 193 bytes and it is related to
the concatenation scheme in which the secret key is
extracted from the last token signature, reducing its
size, as explained in Section 5.2. Consequently, the
final token size is bound to be smaller because it con-
tains a smaller signature size. Am important note is
Table 6 does not illustrate the certificate growth re-
lated to the SVID token on the ID-Mode. This means
the actual communication cost for the ID-Mode is the
token size plus the SVID document size, emphasizing
a better choice overall for the Anon-Mode.

When observing the execution time on Table 2, the
results exemplify similar behavior for all workloads.
A higher standard deviation is observed on the Front-
End workload, most likely due to the variable user
load, depending on the caller.

Still on Table 2, the validation results show an in-
crease in the execution time as the token is nested
more times. In essence, more extensions result in

Enhancing SPIFFE/SPIRE Environment with a Nested Security Token Model

189



Table 2: Execution time cost for ID-Mode.

ID-Mode
Components Token Minting cost (µs)

Front-end 217,85 ± 347,56
Middle-Tier1 187,26 ± 34,39
Middle-Tier2 189,86 ± 41,57
Middle-Tier3 189,69 ± 36,34
Middle-Tier4 188,54 ± 36,60
Middle-Tier5 196,26 ± 38,60
Components Validation cost (µs)

Front-end 351,23 ± 84,56
Middle-Tier1 708,39 ± 166,30
Middle-Tier2 1067,33 ± 195,27
Middle-Tier3 1482,79 ± 352,94
Middle-Tier4 1800,60 ± 376,99
Middle-Tier5 2209,10 ± 466,36

Target 2554,14 ± 472,53

a more complex validation process with more signa-
tures and, consequently, a higher execution time and
resource consumption.

The execution time for Anon-Mode shown in Ta-
ble 3 illustrates similar results for the minting func-
tion in all workloads. The minting process has an in-
creased time when compared to ID-Mode because of
the key extraction process required before signing the
new token.

Table 3: Execution time cost for Anon-Mode.

Anon-Mode
Components Token Minting cost (µs)

Front-end 1007,87 ± 249,24
Middle-Tier1 992,67 ± 234,95
Middle-Tier2 1015,01 ± 246,86
Middle-Tier3 995,63 ± 234,02
Middle-Tier4 1030,39 ± 325,15
Middle-Tier5 1039,25 ± 302,71
Components Validation cost (µs)

Target 4616,95 ± 1012,38

The validation process evaluation shows that us-
ing concatenated signatures is costly, especially com-
pared to the usual approach used by ID-Mode. As
the signature aggregation scheme adopted by Anony-
mous mode requires a recursive computation of the
public key used in the signature validation, its execu-
tion time was higher than in ID-mode. The computa-
tional consumption (Tables 4 and 5) exhibits low us-
age of resources all around. The CPU usage (Table 4)
was similar across all components, whether the oper-

ation was idling or under load (subjected to batches
of requests). A slight increase can be perceived in the
ID-Mode results when under load, and it is due to the
validation scheme adopted that verifies the whole set
of identity documents of all workloads that extended
the token.

Table 4: CPU consumption comparison.

Workload Idle Anon-Mode ID-Mode
(%) (%) (%)

Front-End 14,3 ± 4,0 26,3 ± 5,4 28,7 ± 1,7
Local IdP/TTP 14,4 ± 4,0 26,3 ± 5,4 28,8 ± 4,0
Middle-Tier1 14,3 ± 4,0 26,3 ± 5,3 28,8 ± 4,0
Middle-Tier2 14,3 ± 4,0 26,2 ± 5,4 28,8 ± 4,0
Middle-Tier3 14,3 ± 4,0 26,3 ± 5,3 28,8 ± 3,9
Middle-Tier4 14,3 ± 4,0 26,3 ± 5,3 28,7 ± 4,0
Middle-Tier5 14,3 ± 4,0 26,3 ± 5,4 28,8 ± 3,9

Target 14,7 ± 3,9 26,3 ± 5,3 28,8 ± 4,0

The results of memory consumption (Table 5)
show a common trend of increased usage as the ex-
tended token is nested. The resource access layer is
the component with the highest memory usage, as ex-
pected; its final validation purpose and value storage
are reasons for this outcome. The overall increase
in memory usage is anticipated, accompanying the
growth in token size during each nesting and issuance
process across the components.

Table 5: Memory consumption comparison.

Workload Idle Anon-Mode ID-Mode
(MB) (MB) (MB)

Front-end 13.4 ± 2.3 19.7 ± 3.7 31.0 ± 6.4
Local IdP/TTP 13.6 ± 2.3 18.3 ± 3.4 26.1 ± 5.0
Middle-Tier1 13.6 ± 2.4 22.2 ± 4.7 28.6 ± 5.6
Middle-Tier2 13.6 ± 2.4 22.3 ± 4.7 29.1 ± 5.8
Middle-Tier3 13.4 ± 2.4 22.3 ± 4.7 29.0 ± 5.6
Middle-Tier4 13.4 ± 2.4 22.3 ± 4.7 28.7 ± 5.8
Middle-Tier5 13.4 ± 2.4 22.5 ± 4.8 29.2 ± 5.9

Target 13.9 ± 2.5 25.0 ± 5.7 34.9 ± 7.1

The values in Table 5 illustrate a higher cost on the
ID-Mode when comparing Anon-Mode. This happen
because to the scheme of storing and redirecting sets
of SVID certificates and its validation being present
on every component. The nested token exhibited lin-
ear growth in its payload, i.e., the effects of exten-
sion in its nesting are constrained for each hop. The
execution time of processes using the nested token
in both models can be considered efficient, with low
variation for the issuance process. The use of iden-
tity documents as part of the validation scheme di-
rectly influences the consumption of computational
resources, albeit with less time spent on token vali-
dation than the Anon-Mode. The concatenated sig-
natures in the Anon-Mode offer lower resource con-
sumption but a considerably higher validation and ex-

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

190



ecution time when facing ID-mode.

8 CONSIDERATIONS

In this work, we’ve outlined a comprehensive frame-
work that enhances the SPIFFE ecosystem. The pri-
mary focus was to address the current limitations of
token usage between workloads. Our solution in-
troduces a token nesting model with two signature
schemes that serve as a robust mechanism for track-
ing the token path and a broader solution to dis-
tributed token signing and offline validation, ensur-
ing authenticity and integrity within multi-cloud en-
vironments. The ID-Mode relies on established iden-
tity documents and signatures issued by a IdP, pro-
moting a well-defined chain of trust between work-
loads. On the other hand, the Anon-Mode leverages
ephemeral keys and IBS implementing a signature
concatenation scheme that results in smaller tokens
and a signature chain, avoiding dependencies on ex-
ternal authentication entities. These proposed mod-
els align with the diverse identity scenarios within the
SPIFFE community, prioritizing lightweight and cost-
effective approaches. By enabling the creation of au-
thenticated statements and addressing the challenges
related to assertions, token extension capabilities, and
handling multiple arbitrary claims within tokens, our
framework aims to be a valuable tool in secure access
management.

For future work, we plan to implement a new
scheme (Hybrid Mode) that aggregates ID and
Anonymous private keys, resulting in a unique key
that binds a workload identity to a specific token. We
also foresee the possibility of employing the nested
token to create an extensible and lightweight iden-
tity document suitable to resource-constrained envi-
ronments.

ACKNOWLEDGMENTS

This work was supported by Hewlett Packard Enter-
prise (HPE), and in part by the Brazilian CNPq (grant
PQ 304643/2020-3 and 311245/2021-8), FAPESP
(grant 2020/09850-0), and CAPES (Finance Code
001). Special thanks for the discussions and contri-
butions to the work: Adriane Cardozo (HPE), An-
drew Harding (VMware), Caio Milfont (HPE), Eu-
gene Weiss (Sentima), Evan Gilman (SPIRL), João
Ambrosi (HPE), and Yogi Porla (Stealth Startup).
This work was funding by FAPESC, UDESC, USP
and developed at LabP2D/LARC.

REFERENCES

Aboba, D. B. D. and Wood, J. (2003). Authentication, Au-
thorization and Accounting (AAA) Transport Profile.
RFC 3539.

Biscuits (2023). Biscuits cryptography reference.
doc.biscuitsec.org/getting-started/introduction. Ac-
cess in: Nov 01. 2023.

Boeyen, S., Santesson, S., Polk, T., Housley, R., Farrell, S.,
and Cooper, D. (2008). Internet X.509 Public Key In-
frastructure Certificate and Certificate Revocation List
(CRL) Profile. RFC 5280.

Campbell, B., Mortimore, C., Jones, M. B., and Goland,
Y. Y. (2015). Assertion Framework for OAuth 2.0
Client Authentication and Authorization Grants. RFC
7521.

Feldman, D., Fox, E., Gilman, E., Haken, I., Kautz, F.,
Khan, U., Lambrecht, M., Lum, B., Fayó, A. M., Nes-
terov, E., Vega, A., and Wardrop, M. (2020). Solving
the bottom turtle — a SPIFFE way to establish trust in
your infrastructure via universal identity.

Galindo, D. and Garcia, F. D. (2009). A schnorr-
like lightweight identity-based signature scheme. In
Progress in Cryptology–AFRICACRYPT 2009, pages
135–148. Springer.

Jones, M. B., Bradley, J., and Sakimura, N. (2015). JSON
Web Token (JWT). RFC 7519.

Josefsson, S. (2006). The Base16, Base32, and Base64 Data
Encodings. RFC 4648.

Peterson, J. (2021). Personal Assertion Token (PASSporT)
Extension for Diverted Calls. RFC 8946.

Richer, J. (2023). Multi-token Container Data Structure.
Internet-Draft draft-richer-wimse-token-container-00,
IETF.

Slack (2023). Assertions and tokens workgroup. Online
forum post. Accessed on December 26, 2023.

SPIFFE (2023). Spiffe overview.
spiffe.io/docs/latest/spiffe-about/overview/. SPIFFE
online documentation. Accessed on November 21,
2023.

SPIFFE (2024). The jwt spiffe verifiable identity document.
Online forum post. Accessed on February 10, 2023.

Wendt, C. and Peterson, J. (2018). PASSporT: Personal As-
sertion Token. RFC 8225.

Enhancing SPIFFE/SPIRE Environment with a Nested Security Token Model

191


