
From Tracking Lineage to Enhancing Data Quality and Auditing:
Adding Provenance Support to Data Warehouses with ProvETL

Matheus Vieira1, Thiago de Oliveira2, Leandro Cicco2, Daniel de Oliveira1 and Marcos Bedo1

1Institute of Computing, Fluminense Federal University, Brazil
2Information Technology Superintendence, Fluminense Federal University, Brazil

Keywords: Data Warehousing, ETL, Provenance, Data Quality, Business Intelligence.

Abstract: Business intelligence processes running over Data Warehouses (BIDW) heavily rely on quality, structured
data to support decision-making and prescriptive analytics. In this study, we discuss the coupling of prove-
nance mechanisms into the BIDW Extract-Transform-Load (ETL) stage to provide lineage tracking and data
auditing, which (i) enhances the debugging of data transformation and (ii) facilitates issuing data account-
ability reports and dashboards. These two features are particularly beneficial for BIDWs tailored to assist
managers and counselors in Universities and other educational institutions, as systematic auditing processes
and accountability delineation depend on data quality and tracking. To validate the usefulness of provenance
in this domain, we introduce the ProvETL tool that extends a BIDW with provenance support, enabling the
monitoring of user activities and data transformations, along with the compilation of an execution summary
for each ETL task. Accordingly, ProvETL offers an additional BIDW analytical layer that allows visualizing
data flows through provenance graphs. The exploration of such graphs provides details on data lineage and the
execution of transformations, spanning from the insertion of input data into BIDW dimensional tables to the fi-
nal BIDW fact tables. We showcased ProvETL capabilities in three real-world scenarios using a BIDW from
our University: personnel admission, public information in paycheck reports, and staff dismissals. The results
indicate that the solution has contributed to spotting poor-quality data in each evaluated scenario. ProvETL
also promptly pinpointed the transformation summary, elapsed time, and the attending user for every data flow,
keeping the provenance collection overhead within milliseconds.

1 INTRODUCTION

Business Intelligence (BI) processes have become
commonplace for decision-making across various
corporate activities and domains. These pro-
cesses are typically integrated with Data Warehouses
(BIDW) (Kimball and Ross, 2011) or even Data
Lakes (Nargesian et al., 2023), especially when deal-
ing with unstructured data. One domain in which
BIDW is particularly useful is the strategic planning
and management of Universities and other educa-
tional institutions (Rudniy, 2022). The challenges in
this context include monitoring courses, student per-
formances, maintenance and personnel costs, and re-
search initiatives. Deans, managers, and board mem-
bers can benefit from accurate reports and consistent
data to make informed decisions on new projects and
social policies.

Typically, required data to support these decisions
(or estimate potential educational impacts) are struc-

tured and stored in relational databases through large-
scale educational information systems. Additional
data are gathered from government sources, press re-
leases, non-governmental organizations, and ad-hoc
spreadsheets. Such heterogeneous data must undergo
conformation and consolidation into the Data Ware-
house through Extract-Transform-Load (ETL) pro-
cesses (Vassiliadis et al., 2002).

The context of this study revolves around an insti-
tutional BIDW of our University, encompassing more
than five million tuples. The BIDW is a collection of
six Data Marts, each following the star schema and
associated with their respective ETL routines. The
transformation processes are essential to conform and
standardize data from heterogeneous sources, ensur-
ing proper consumption and avoiding inconsistencies.
ETL routines are specifically designed with the as-
sumption data sources are static, i.e., their schemas
do not change over time. However, changes in the
schema may be usual as data sources are hetero-

Vieira, M., de Oliveira, T., Cicco, L., de Oliveira, D. and Bedo, M.
From Tracking Lineage to Enhancing Data Quality and Auditing: Adding Provenance Support to Data Warehouses with ProvETL.
DOI: 10.5220/0012634500003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 1, pages 313-320
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

313



geneous, requiring the adaptation of existing rou-
tines, which can be error-prone (Rahm and Bernstein,
2006). Those errors may result in loading inconsistent
data into the BIDW, which makes the identification of
such inconsistencies a top priority.

Provenance (Freire et al., 2008; Herschel et al.,
2017) presents a natural solution to support users in
tracking the steps of a process, following the data
derivation path, and monitoring relevant metadata
and parameters associated with data transformations.
Provenance data have been employed in workflows
from various domains, such as healthcare (Corrigan
et al., 2019). We observe ETL routines are similar to
large-scale workflows as they are iterative processes
that face the challenge of feedback loops and involve
multiple data transformations, users, datasets, and pa-
rameters (Silva and others., 2021).

Therefore, in this study, we propose the inte-
gration of provenance capturing and storing mecha-
nisms into the ETL routines of a BIDW. Specifically,
we introduce a novel strategy for automatically in-
jecting instructions into the ETL transformations to
collect and store both prospective and retrospective
provenance in a dedicated database. This database
serves as a valuable source of information for mon-
itoring, auditing, and correcting issues in the BIDW,
thereby enhancing data quality. Our solution, named
ProvETL, integrates a provenance schema with in-
jection strategies to create a BIDW extension that ad-
dresses the following questions: (i) Which data out-
put was produced after the ETL transformation con-
suming a given input? (ii) Which user executed this
transformation with specific input data and setup?
(iii) What is the summary for the execution of this
transformation and input data (in terms of an aggre-
gation function, such as COUNT and AVG)? (iv) What
transformation sequence generates this data product?

ProvETL also provides a web-based analytical
layer with a provenance graph of the executed ETL
routine, allowing users to interactively explore an-
swers to previous questions by traversing the graph.
To showcase the capabilities of our proposed solu-
tion, we investigated three real-world scenarios re-
lated to personnel admission, public information in
paycheck reports, and staff dismissals from our Uni-
versity BIDW. The results indicate that ProvETL
was effective in (i) detecting poor-quality inputs and
(ii) identifying transformations susceptible to noisy
data with acceptable processing overhead.

The remainder of this paper is divided as follows.
Section 2 discusses the background. Section 3 in-
troduces the material and methods, while Section 4
presents the qualitative and quantitative results. Fi-
nally, Section 5 offers the conclusions.

2 BACKGROUND

Provenance Data. This term denotes metadata that
explains the process of generating a specific piece of
data. Thus, provenance records data derivation paths
within a particular context for further querying and
exploration, which fosters reproducibility in scientific
experiments. We apply this concept as a rich source
of information, encompassing the routines, parameter
values, and data transformations executed by users
during the ETL process, i.e., a resource for moni-
toring and assuring the data quality of the BIDW.
The W3C recommendation, PROV (Groth and
Moreau, 2013), defines a data model for representing
provenance data. It conceptualizes provenance in
terms of Entities, Agents, Activities, and various
relationship types. Here, an entity could represent
a specific table of the OLTP database. Activities
are actions performed within the ETL routines that
affect entities, such as currency standardization,
with execution times and error messages. Lastly,
an Agent is a user responsible for executing ETL
routines. The specification of an ETL pipeline can be
viewed as Prospective Provenance (p-prov), a form of
provenance data that logs the steps carried out during
ETL routines. Another category of provenance is
Retrospective Provenance (r-prov), which captures
details related to the execution process, such as when
transformations are executed.

Provenance Capturing. Capturing provenance is
a process that can take two forms: (i) based on
instrumentation or (ii) instrumentation-free. In the
first category, the collection of provenance or the in-
vocation of a provenance system, e.g., YesWorkflow
(McPhillips et al., 2015), requires injecting specific
calls into the script or program where provenance
needs to be captured. While this approach offers the
advantage of capturing only the necessary prove-
nance, it does require some effort from the users.
The latter category captures every action performed
in the script without requiring any modification in
the source code. The approaches in this category,
e.g., noWorkflow (Murta et al., 2015), present the
advantage of being transparent for the user, but it
may result in collecting a substantial volume of data
with a significant portion may be irrelevant for the
user analysis, e.g., registering a file opening.

Data Warehousing. The BIDW model encompasses
four main layers. The first layer represents External
Data Sources, containing all input data that may
provide valuable insights. Data sources include
relational databases (i.e., OLTP databases), JSON

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

314



files, and spreadsheets. The second layer is the Data
Staging Layer, which stores data already extracted
from external data sources but not yet standardized,
cleaned, and aggregated. It serves as a data prepara-
tion area, where ETL routines transform data before
loading them into the BIDW. The ETL process can
be conducted using off-the-shelf tools or in-house
scripts. The Data Warehouse Layer contains consol-
idated BIDW data (modeled as either a star schema
or a snowflake schema) ready for querying (Kimball
and Ross, 2011). The last BIDW layer (Presentation
Layer) contains the tools responsible for consuming
data from the BIDW and supporting decision-making,
typically through analytical dashboards.

Talend ETL Suite. In this study, we adopt the
off-the-shelf ETL tool Talend Studio1 following the
already coded ETL routines from the real-world
BIDW we examine in the experiments (our solution
does not depend on the ETL tool). Talend provides
a unified suite for ETL and data management that
addresses data integration issues and provides data
quality and sharing mechanisms. It enables users
to implement complex ETL routines visually and to
extend transformations based on their specific needs.

Related Work. Various provenance management so-
lutions are available across different contexts, but
most existing studies focus on supporting scientific
experiments. Within the context of ETL routines, pro-
pose a provenance model designed for ETL routines
as a vocabulary based on the deprecated Open Prove-
nance Model (OPM) standard (Kwasnikowska et al.,
2015). Despite its advantages, the approach relies on
an outdated provenance standard since OPM was re-
placed by PROV in 2013. (Zheng et al., 2019) intro-
duce a tool named PROVision, which aims to leverage
fine-grained provenance to support ETL and match-
ing computations by extracting content within data
objects. While PROVision represents a step forward,
it primarily focuses on fine-grained provenance. Ad-
ditionally, it requires users to model the ETL routines
using PROVVision, limiting the choice of tools. (Reis
Jr et al., 2019) also propose a provenance architec-
ture for open government data, storing metadata in a
Neo4J graph database. Provenance is implemented
within the UnBGOLD tool, which is designed for
Linked Open Government Data and is unable to han-
dle generic ETL routines.

In this study, we aim to bridge the gap in utilizing
provenance data to enhance data quality within ETL
routines in an agnostic manner, i.e., without depen-
dency on any specific ETL tool.

1https://www.talend.com/

3 MATERIALS AND METHODS

In this section, we introduce the ProvETL tool,
which supports provenance data capturing and stor-
ing during the ETL stage of BIDW systems. The core
idea of ProvETL involves intercepting data trans-
formations performed by ETL routines by injecting
provenance calls within the routines. The calls cap-
ture both r-prov and p-prov and store them in a rela-
tional database for analysis. The intercept-and-inject
strategy takes place during the instrumentation of the
ETL routine. Essentially, it involves adding a script
to the routine to capture provenance data of inter-
est, such as the user who started the ETL routine
and the start/end time of each data transformation.
ProvETL assumes that ETL routines can be imple-
mented in various forms. Therefore, it relies on a
generic provenance-capturing mechanism that avoids
targeting a particular tool, such as Talend, Knime, and
scripts in specific languages like Python.

Therefore, a ProvETL communication condition
is to make HTTP requests within the ETL routine.
Once provenance data have been captured, an HTTP
request must be made, incorporating the collected
data as the requested content (i.e., body). The
request is then intercepted by a ProvETL server,
which stores the provenance data in a relational
database. This message-passing approach involves
an observable trade-off as it allows the capture of
provenance from generic ETL routines while relying
on a client-server application protocol, which is
subject to bottlenecks on the server side and network
throughput. To minimize performance issues, we
addressed the following functional requirements.

Functional Requirements. The main functional re-
quirements observed prior to the ProvETL construc-
tion are listed in Table 1.

Table 1: Functional requirements.

ID Description
#1 Users may create traceable instances repre-

senting the dataflow
#2 Users may define the transformations that oc-

cur in the dataflow
#3 Users may define the input and output set

schemas for the transformations
#4 The system must define endpoints to receive

data from the dataflow transformations
#5 Users may visualize the dataflow on a graph
#6 Users may explicitly search provenance data

Requirement #1 involves providing an endpoint
for creating user-defined dataflows. The user needs
to specify a name and description for the dataflow,

From Tracking Lineage to Enhancing Data Quality and Auditing: Adding Provenance Support to Data Warehouses with ProvETL

315



which will be displayed later on the ProvETL
web interface. Once the dataflow is created, the
system should return an identifier for the subsequent
instrumentation. Requirement #2 involves providing
an endpoint to create the transformations that will be
mapped to a dataflow. Requirement #3 ensures the
specification of the schema for the input/output data
transformations, including attribute names and their
types. Both the input and output attributes return
internal identifiers for subsequent instrumentation.
Requirement #4 is analogous to an API definition,
created internally by ProvETL during the execution
of transformations to obtain data instances, and is not
directly called by the user. Requirement #5 specifies
the creation of a graphical interface for visualizing
the provenance graph associated with the dataflow.
Finally, Requirement #6 defines an entry point for
querying collected data.

Data Model. ProvETL stores provenance data from
ETL data transformations in a relational DBMS.
However, any physical model can be used for data
storage by mapping the conceptual model proposed
in Figure 1, represented by a simplified Entity-
Relationship Diagram. The central entity, Dataflow,
models the dataflow and includes descriptive at-
tributes. The second entity is DataTransformation,
representing all data transformations. One instance
of Dataflow may be associated with multiple in-
stances of DataTransformations. The third entity
is DataSetSchema, which represents the structure
of transformed data, both at the input (before the
transformation) and at the output (after the trans-
formation). A DataTransformation can be related
to multiple DataSetSchemas, and this relationship
is categorized as input/output. A DataSetSchema
includes a list of meta-attributes representing the
dataflow attributes and their types. Finally, the last
entity is the DataSet, representing the data files con-
sumed/produced by data transformation, including
the schema and values.

Architecture and Implementation. ProvETL was
designed following a 3-layer pattern in a distributed
architecture: (i) an Interface Layer, (ii) an Applica-
tion Layer, and (iii) a Data Layer – Figure 2. The Web
Portal in the Interface Layer allows users to interact
with provenance data, listing the captured dataflows
and the corresponding data transformations defined
in the instrumentation stage. The transformations
within a dataflow and its relationships are displayed
as an expandable provenance graph built in the web
interface with the Vis.js library. The REST API
provides endpoints to receive collected provenance

data from external ETL Clients, as previously defined
in the data model (Figure 1). The Application Layer
coordinates the ProvETL logic. This layer was
implemented as a complete application developed
in Java 8 using the Spring Boot framework version
2.7.14. The backend is subdivided into several
modules, following a structure called Package by
Layer: (i) the Controller, responsible for managing
the endpoints, (ii) the Service, in charge of the
enforcing logic rules, (iii) the Repository, responsible
for accessing the data, and (iv) the Entity, responsible
for defining the entities. Finally, the Data Layer
contains the Provenance Database, which manages
all collected provenance data in a persistent form.

ProvETL Setup. This stage involves minimal steps
to implement the automatic intercept-and-inject strat-
egy into ETL routines, which can be implemented in
various ways, including scripts or specific ETL tools.
The only requirement for integrating ProvETL into
the existing ETL routines implemented in any ETL
tool is the ability to establish an HTTP connection
to make requests and receive confirmations from the
ProvETL server-side. The first step for setting up
ProvETL is the identification of the current dataflow
(See Functional Requirement #1), which is persisted
as one Dataflow entity by the system. After creat-
ing the entity following a user-submitted request, the
endpoint provides a dataflow identifier. Thereafter,
the transformations (jobs) must be defined, which is
carried out by an HTTP request that also returns one
identifier associated with the created transformation.
Each data transformation definition includes the input
and output datasets, which enables the instantiation
of DataSetSchema entities. After obtaining the iden-
tifiers, we inject the provenance calls in the ETL rou-
tine, sending provenance data by making a series of
HTTP requests, i.e., r-prov data. An additional block
of code is added for each data transformation to col-
lect the current user executing the step in the ETL
routine, the start and end time of the transformation,
and the number of input and output tuples for the pro-
cess. Then, another block of code is used to build the
body of the HTTP request to the ProvETL server-
side. Next, we present a code snippet to be added to
a Python-based script that captures r-prov and con-
siders the transformation summary as the counting of
the involved tuples (data summarization is defined in
terms of SQL aggregation functions, e.g., COUNT, SUM,
MAX, etc.). The endpoint has already been connected
in the definition of the dataflow, i.e., p-prov, so it can
be directly invoked.
current_user = getpass.getuser()
current_time = datetime.now()

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

316



Figure 1: ProvETL Data Model.

Figure 2: ProvETL three-layer architecture.

Figure 3: Example of BIDW Talend job that cleans and anonymizes enrolled students’ data.

#Data summarization
data_in = [1, 2, 3, 4, 5]
payload = {"executedBy": current_user,

"startedAt": current_time,
"numberOfInputTuples": len(data_in)}

#Request building and posting
endp = "dataflows/1/transformations/3"
headers = {’Content-Type’: ’application/json’}
requests.post(endp, data=json.dumps(payload),

headers=headers)

The injected script will execute whenever the ETL
routine runs, sending the r-prov data to ProvETL
server-side. Received requests will be persisted into
the database to be further queried in the graphical in-
terface that presents the provenance graph.

4 ProvETL EVALUATION

We evaluated ProvETL in a practical BIDW of
our University, encompassing six data marts and
more than one million tuples. In particular, in this
section, we discuss three case studies that showcase

ProvETL capabilities in using provenance data for
monitoring the ETL routines, detecting poor quality
data (debugging), and accountability.

Experimental Setup. Our BIDW consumes data
from several relational data sources, unstructured text
files, and spreadsheets produced by internal and exter-
nal sources. The Data Mart subjects include courses,
students, dropouts, research projects, and staff infor-
mation, with the last Data Mart directly supporting the
dean of the university and the counselors. All com-
ponents of the BIDW undergo a series of ETL rou-
tines implemented as Talend jobs. The BIDW model
allows integration with existing ETL tools, but the
project managers decided on Talend jobs. These jobs
execute as pieces of Java code, and their outputs re-
sult in commits to an Oracle DBMS 12.2. Each ETL
routine writes to a single BIDW table (Dimension or
Fact) to ensure better isolation.

Figure 3 presents an example of an ETL rou-
tine responsible for cleaning and anonymizing under-
graduate students’ data. Each workflow component

From Tracking Lineage to Enhancing Data Quality and Auditing: Adding Provenance Support to Data Warehouses with ProvETL

317



Figure 4: The three dataflows examined as ProvETL’s case studies.

Figure 5: ProvETL provenance graph for the first BIDW case study.

Figure 6: ProvETL provenance graph for the second BIDW case study.

performs a specific step, such as connecting to the
DBMS, consuming input data, adjusting strings, treat-
ing missing values, and replacing coded terms un-
til loading processed data into the DBMS. To show
the potential of ProvETL in collecting provenance
data from these types of ETL routines, we set up
ProvETL for the case studies, following a similar
step-by-step process discussed in Section 3. The case
studies were selected after discussions with BIDW

analysts, with staff personnel identified as the most
relevant subject of interest. Figure 4 lists the three
dataflows of interest.

We instrumented the three dataflows by injecting
provenance instructions directly into the Talend jobs.
We observe there is a native offer to package HTTP
requests as a Talend component, which eases the
ProvETL communication as it relies on being able
to handle HTTP messages to collect provenance data.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

318



Figure 7: ProvETL provenance graph for the third BIDW case study.

A new component was added to every workflow that
defines an ETL routine so that extra Java code could
be executed. The inserted snippets make calls for
collecting provenance data of interest and integration
with ProvETL endpoints, taking into account the
identifiers provided by the proposed API. All evalua-
tions were conducted on a local workstation equipped
with a dual-core Intel i5, 8 GB RAM, and a 500 GB
hard drive running Windows 10.

Case Study 01 – Personnel Admission. The first
case study involves collecting provenance data from
all ETL routines that load data into the Fact table
containing measures and metrics associated with re-
cently hired university employees. The table includes
references to Dimension tables, such as entry identi-
fication, year of admission, employee residence (by
region/state), categorical information like nationality,
gender, race, and position, as well as numerical mea-
sures such as bonuses, workload, and the number of
legal dependents. References to Dimension tables are
inserted by ETL routines before loading the Fact ta-
ble, resulting in several routines associated with the
Dimension tables and one major routine related to the
Fact table that runs after every other ETL transfor-
mation. After mapping the dataflow (the first entry
in Figure 4) and instrumenting the ETL routines with
code injection, we run a data extraction from seven
data sources – See Figure 5.

This dataflow summarizes the number of tuples
by the COUNT aggregation function so the user can
identify inconsistencies in the ETL routines. For
example, in Case Study 01, the provenance data
revealed that 3.22% of the tuples were duplicated
in the dm tipos deficiencia fisica Dimension
table, which stored data regarding types of physical
disabilities.

Case Study 02 – Public Paycheck Reports. The
second case study involves collecting data from
various data sources and populating several Dimen-
sions and one Fact table with public information on
personnel salaries and paychecks. Similar to Case
Study 01, we instantiated a dataflow in ProvETL
and defined data of interest in all related ETL
transformations. Subsequently, we proceeded to
instrument Talend jobs with Java components. After
mapping the dataflow and ETL routines (second entry
in Figure 4), we executed all the transformations with
code injection over four data sources – See Figure
6. Here, the injected routine responsible for loading
PUBLICO DM ORGAOS data revealed that 3.63% tuples
were duplicated.

Case Study 03 – Former Personnel. Our final
case study collects provenance from various data
sources containing information on dismissed and
former personnel. To gather the provenance data,
we instantiated a dataflow on ProvETL and defined
the granularity of interest in all connected ETL
transformations. Next, we mapped the dataflow
and ETL routines (third entry in Figure 4) and
ran all the transformations over six data sources.
Figure 7 illustrates the dataflow for Case Study
03. In the experimental evaluation over six data
sources, all transformations produced no errors and
loaded data into the BIDW. However, the injected
routine responsible for processing the data to load the
Fact table PROGEPE FT DESLIGAMENTOS within this
dataflow revealed that 35.5% of the tuples had the
NIVEL CLASSIFICACAO of empty attributes.

Provenance Overhead. Capturing and storing prove-
nance data offers analytical advantages for users to
monitor and debug ETL routines. However, it also
introduces a processing overhead. We measured the

From Tracking Lineage to Enhancing Data Quality and Auditing: Adding Provenance Support to Data Warehouses with ProvETL

319



dm niveis formacao dm tipos deficiencia fisica dm raca cor
0

2,000

4,000

6,000

Data Transformation

Ti
m

e
(m

s)

Without Instrumentation With Instrumentation

Figure 8: Average elapsed time to perform ETL routines with and without instrumentation.

overhead imposed by capturing provenance in all of
our instrumented ETL routines in the BIDW data
staging area, i.e., the average elapsed time with and
without instrumentation of the ETL routines. We ob-
served that some data transformations significantly
dominated others in terms of elapsed time, mean-
ing they were more costly than other parallel trans-
formations. As the Fact tables in all dataflows act
as barriers for parallel ETL executions, we report
only the cost of those dominant data transforma-
tions in Figure 8, i.e., routines dm niveis formacao,
dm tipos deficiencia fisica, and dm raca cor.
Figure 8 presents the average elapsed times after ten
executions for each data transformation. While there
is a large margin for improvement in future work, the
execution time was still within milliseconds, which
was deemed affordable by the BIDW analysts.

5 CONCLUSIONS

In this paper2, we discussed integrating provenance
mechanisms into ETL routines through a provenance-
aware extension to BIDWs, named ProvETL. We
evaluated ProvETL in three real-world scenarios
involving personnel admission, paycheck reports,
and staff dismissals, using data from our Univer-
sity BIDW. We effectively detected quality inputs
and identified potentially problematic transformations
within acceptable processing overhead.

REFERENCES

Corrigan, D., Curcin, V., et al. (2019). Challenges of de-
ploying computable biomedical knowledge in real-
world applications. In AMIA 2019.

Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008).

2This study was funded in part by FAPERJ - G.
SEI E-26/202.806/2019 (247357) and Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.

Provenance for computational tasks: A survey. Com-
puting in Sc. & Eng., 10(3):11–21.

Groth, P. and Moreau, L. (2013). W3C PROV - An
Overview of the PROV Family of Documents.

Herschel, M., Diestelkämper, R., and Lahmar, H. B. (2017).
A survey on provenance: What for? what form? what
from? The VLDB Journal, 26(6):881–906.

Kimball, R. and Ross, M. (2011). The data warehouse
toolkit: the complete guide to dimensional modeling.

Kwasnikowska, N., Moreau, L., and Bussche, J. V. D.
(2015). A formal account of the open provenance
model. ACM Trans. Web, 9(2).

McPhillips, T. M. et al. (2015). Yesworkflow: A
user-oriented, language-independent tool for recov-
ering workflow information from scripts. CoRR,
abs/1502.02403.

Murta, L., Braganholo, V., Chirigati, F., Koop, D., and
Freire, J. (2015). noworkflow: capturing and analyz-
ing provenance of scripts. In IPAW, pages 71–83.

Nargesian, F., Pu, K. Q., Bashardoost, B. G., Zhu, E., and
Miller, R. J. (2023). Data lake organization. IEEE
Trans. Knowl. Data Eng., 35(1):237–250.

Rahm, E. and Bernstein, P. A. (2006). An online bib-
liography on schema evolution. SIGMOD Rec.,
35(4):30–31.

Reis Jr, C. P., da Silva, W. M., Martins, L. C., Pinheiro, R.,
Victorino, M. C., and Holanda, M. (2019). Enhancing
open government data with data provenance. In Int.
Conf. on Man. of Dig. EcoSystems, pages 142–149.

Rudniy, A. (2022). Data warehouse design for big data in
academia. Computers, Materials & Continua, 71(1).

Silva, R. F. and others. (2021). Workflows community sum-
mit: Bringing the scientific workflows research com-
munity together.

Vassiliadis, P., Simitsis, A., and Skiadopoulos, S. (2002).
Conceptual modeling for etl processes. In DOLAP,
DOLAP ’02, page 14–21. ACM.

Zheng, N., Alawini, A., and Ives, Z. G. (2019). Fine-
grained provenance for matching & etl. In ICDE,
pages 184–195.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

320


