
Using Trace Clustering to Group Learning Scenarios: An Adaptation of
FSS-Encoding to Moodle Logs Use Case

Noura Joudieh1 a, Marwa Trabelsi1 b, Ronan Champagnat1 c, Mourad Rabah1 d

and Nikleia Eteokleous2 e

1L3i Laboratory, La Rochelle University, La Rochelle, France
2Frederick University, Cyprus

Keywords: Learning Process, Trace Clustering, Process Mining, Learning Scenarios, Learning Paths, Quality of
Education.

Abstract: Learners adopt various learning patterns and behaviors while learning, rendering their experience a valuable
asset for recommending learning paths for other learners. Process Mining is useful in this case to discover
models that reveal learners’ taken learning paths in an educational platform. Nonetheless, due to the hetero-
geneity of behavior and the volume of data, trace clustering is crucial to reveal various groups of learners and
discover relevant process models rather than ‘spaghetti’ ones. In this paper, we address the limits of and im-
prove on a feature-based trace clustering approach known as FSS-encoding, ideal for unstructured processes to
extract diverse learning patterns adopted by students, to be later employed in a learning path recommendation.
Our enhancements include a refined pattern selection, preserving the uniqueness of less frequent events and
increasing the overall effectiveness of the trace clustering process. Our method was applied to Moodle logs
acquired from 2018 to 2022, comprising 471 students in the Computer Science and Engineering Department
of Frederick University in Cyprus. The results show three clusters with a 25% improvement in silhouette coef-
ficient. Their consequent discovered process models depict the various learning scenarios adopted, including
activities like studying, solving exercises, undergoing assessments, applying, and others.

1 INTRODUCTION

Learning is no longer confined to classrooms or con-
ventional teacher-student scenarios, thanks to ad-
vancements in technology that improved the educa-
tional sector. On the other hand, e-learning is becom-
ing more prevalent, as learning material and resources
are accessible to everyone, at any time, and anywhere.
However, this accessibility comes at a cost: learners
may become overwhelmed when attempting to meet a
learning goal, which could ultimately result in a drop
in motivation and learning efficiency. In this direc-
tion, Recommender Systems (RS) (Aggarwal, 2016)
in e-learning aim to personalize the learning experi-
ence by intelligently filtering online content based on
individual learner preferences, actions, and needs, de-

a https://orcid.org/0000-0003-3142-2962
b https://orcid.org/0009-0001-2040-063X
c https://orcid.org/0000-0001-5256-5706
d https://orcid.org/0000-0001-8136-5949
e https://orcid.org/0000-0003-4364-9558

viating from one-size-fits-all models. On the other
hand, users in information systems leave their traces
recorded by logging system in the form of event logs.
Process Mining (PM), a discipline that combines data
mining, machine learning and process modeling uses
these event logs to discover process models that reveal
the behavior followed by users in a system (Van der
Aalst, 2016). In educational platforms and systems,
the former has paved the way for a rich line of re-
search to discover the behaviors of students while per-
forming different learning activities like attending a
course, or taking a quiz (Cenka and Anggun, 2022).

In a previous work (Joudieh et al., 2023), we have
proposed a framework to recommend a personalized
adaptive learning path for a learner seeking a learn-
ing objective, while employing past learning experi-
ence extracted via Process Mining. The framework
constitutes 3 main modules: Recommender Module,
Data Module and Process Mining Module. The PM
module is the focal point of this article. The for-
mer is in charge of using event logs from the Moodle
learning management system to discover a model that

Joudieh, N., Trabelsi, M., Champagnat, R., Rabah, M. and Eteokleous, N.
Using Trace Clustering to Group Learning Scenarios: An Adaptation of FSS-Encoding to Moodle Logs Use Case.
DOI: 10.5220/0012636400003693
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Computer Supported Education (CSEDU 2024) - Volume 2, pages 247-254
ISBN: 978-989-758-697-2; ISSN: 2184-5026
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

247

shows the learning paths taken by students while tak-
ing courses. It enables the generation of insights into
students’ learning journeys, forming the foundation
for personalized and effective learning path recom-
mendations. However, a huge amount of logs might
generate incomprehensible “spaghetti” models, thus
the need of trace clustering (Song et al., 2008) as a
primary step to capture the different learning patterns
and discover more understandable models.

Driven by this objective, we adopt a recent trace
clustering approach (Trabelsi et al., 2021) based on
encoding the traces in terms of the frequent subse-
quent patterns within, called FSS Encoding. Origi-
nally applied to digital library users, this method was
able to discover three different profiles of users. In
this paper, we address the limitations of this method
and propose an improved version that enhances the
clustering results and discovered models. The im-
proved approach is applied on collected Moodle Logs
of 471 students taking courses in the Department of
Computer Science and Engineering in Frederick Uni-
versity in Cyprus for the period of 2018-2022.

The paper provides an overview of trace cluster-
ing approaches in Section 2, followed by an in-depth
discussion of FSS encoding, its limitations, and pro-
posed improvements in Section 3. The enhanced FSS
approach is demonstrated using Moodle logs, with
data collection and treatment detailed in Section 4 and
results presented in Section 5. The paper concludes in
Section 6 with discussions on future perspectives.

2 RELATED WORKS

Process Mining is a field of science bridging the gap
between data-oriented analysis and process-oriented
analysis, which aims to extract knowledge from event
logs. The application of process mining techniques
extends across various domains, including hospitals,
banks and municipalities (Van der Aalst, 2016; Lu
et al., 2019; Trabelsi et al., 2021).

Process mining techniques utilize event logs as in-
put to generate, enhance, or validate process models.
An event log comprises a set of execution traces, each
representing a specific process instance. For example,
the workflow of a student on an e-learning platform.
Starting with the action of viewing a course (Course
viewed), the student may navigate to explore specific
elements within the course (Course module viewed).
These elements could include lectures, videos, assign-
ments, or quizzes. Upon selecting a quiz element, the
student proceeds to submit his/her answers (Quiz sub-
mitted). Each of these activities constitutes a unique
trace within the main process.

Table 1: Sample of students event logs.

CaseId Timestamp Activity label
1 2018-01-12T10:34:25 Course viewed
2 2018-01-12T10:36:25 Course viewed
1 2018-01-12T10:34:26 Course module viewed
1 2016-01-12T10:34:28 Submission viewed
3 2018-01-12T10:36:26 Course viewed
3 2018-01-12T10:36:27 Submission form viewed

For instance, in the Moodle platform, every stu-
dent can be considered as a case following a learning
process. The series of events associated with a spe-
cific case is referred to as a trace. Each row in Table 1
represents an executed event, including details such
as the event identifier (CaseId), the activity label, the
timestamp (day, hour, minute, and second), and ad-
ditional attributes relevant to the event. Formally, an
event log L = {t1, t2, ..., tk} is a set of k traces where
each trace ti (1≤ i≤ k) is a set of ni consecutive events
ti =< ei1,ei2, ...eini > made by the same CaseId.

Many process discovery methods have been pro-
posed in the literature in order to automatically gen-
erate process models. Process discovery algorithms
aim to discover process models based on event logs.
The discovered process models are intended to rep-
resent the whole event logs. Several models can be
used for this purpose such as Petri nets or Fuzzy mod-
els (Van der Aalst, 2016).

Nevertheless, numerous process mining studies
have demonstrated that creating a single process
model for an entire log is not ideal, particularly for
very large datasets containing unstructured processes.
An unstructured process is one that is driven by a user
rather than a software. It results in many possible
paths, but only few are relevant. Process mining tech-
niques often result in complex and/or overfitted mod-
els, such as the widely recognized spaghetti model
or flower model (Van der Aalst, 2016). To overcome
these issues, existing works proposed trace clustering
methods prior to modeling (Diamantini et al., 2016).

The literature offers numerous approaches to trace
clustering, which can be categorized into three types
of clustering techniques based on how the traces are
presented before clustering (Song et al., 2008; Zand-
karimi et al., 2020). Additionally, there is a hybrid-
based clustering category that integrates various tech-
niques from the aforementioned methods (De Kon-
inck and De Weerdt, 2019).

The first category, referred to as trace-based clus-
tering, groups traces based on syntax similarity, as
explained in (Bose and Van der Aalst, 2009) and
(Chatain et al., 2017). This approach draws in-
spiration to the Levenshtein distance metric, which
measures the dissimilarity between two strings. In
this context, a trace can be transformed into another

CSEDU 2024 - 16th International Conference on Computer Supported Education

248

through edit operations like substitution, addition, or
removal of events. The edit distance between two
traces is then calculated as the minimum number of
these edit operations required to convert one trace into
the other. A lower edit distance indicates a higher
level of similarity between the traces. Following this,
distance-based clustering algorithms are applied to
group the traces into distinct clusters. In the field
of education, both (Laksitowening et al., 2023) and
(Zhang et al., 2022) focus on students’ logs to capture
various characteristics and learning patterns. They
both employ hierarchical clustering as a clustering al-
gorithm to group students’ traces.

The second category is the model-based cluster-
ing. It assumes that accurate models are discovered
from homogeneous sub-logs (Cadez et al., 2003; Fer-
reira et al., 2007). The process model is considered
as input for the clustering in order to structure traces.
These traces are used back to mine process models.
The obtained clusters strongly depend on the quality
metrics used for evaluating the accuracy of discovered
process models (De Weerdt et al., 2013).

The third category, called feature-based cluster-
ing, involves the conversion of each trace into a vector
of features based on predefined characteristics. The
similarity between two traces is then determined by
the similarity between their corresponding vectors.
Existing methods within this category often rely on
metrics such as the frequency of events or the fre-
quency of direct succession relations between events
to transform traces into vectors (Song et al., 2008).
For instance, (Song et al., 2008) analyzed traces from
healthcare information systems, converting them into
features such as the count of individual event occur-
rences or the count of pairs of events in immediate
succession. (Bose and van der Aalst, 2009) employed
a similar technique on longer sub-parts of traces, eval-
uating the occurrence of more complex motifs like re-
peats, defined as n-grams observed at different points
in the trace. Subsequently, distance-based clustering
algorithms are applied to group the traces into distinct
clusters (Zandkarimi et al., 2020).

Our work in this article aligns with the feature-
based approach, as we enhance a feature-based
method called FSS encoding (Trabelsi et al., 2021).
The foundational FSS encoding method originated
in the context of digital libraries. Its primary con-
cept involves extracting features from traces through
the identification of frequent sub-sequences and their
corresponding encoding. The encoding of frequent
sub-sequences considers multiple parameters to ef-
fectively distinguish traces of digital libraries users.
A clustering algorithm was then applied on the con-
verted traces to finally assign each trace to the appro-

priate cluster. In the case of digital libraries, FSS en-
coding results showed the effectiveness of the method
to cluster users and to model their journeys. These re-
sults were validated on a real-world data provided by
the national library of France1.

3 [F]REQUENT
[S]UB-[S]EQUENCES
ENCODING OF LEARNERS
INTERACTIONS

As mentioned in Section 1, we extended the FSS
encoding method (henceforth baseline) proposed by
(Trabelsi et al., 2021). The improvement preserves
more information about the traces and the uniqueness
of each trace, and allows better patterns to be discov-
ered from the traces.

3.1 Baseline

In this section, we briefly describe the baseline, the
FSS encoding proposed in (Trabelsi et al., 2021). The
fundamental strategy of this method operates under
the assumption that a trace containing a frequent sub-
sequence (FSS) is the most significant trace (Lu et al.,
2019). This strategy involves grouping traces based
on frequent sub-sequences. An FSS, denoted as
< e1, ...,en >, comprises a finite set of events of
length n (n > 1), where the events are executed in or-
der at least two times.

Traces are converted using a specific FSS encod-
ing. In this encoding, each identified FSS in a trace is
replaced by its corresponding encoding. Events that
don’t belong to any FSS are deemed irrelevant, and
only their positions contribute to the clustering. Thus,
such events in the traces are replaced by 1.

The baseline itself aims to effectively distinguish
traces within different clusters by considering factors
such as the [1-length] and [2-frequency] of the FSS,
the [3-frequency of events] within the FSS, and the
[4-frequency of direct succession relations between
events] in the FSS. This encoding strategy enhances
the vector representation of traces, emphasizing the
significance of longer FSSs, higher frequencies, and
the occurrence of specific events and relations within
the sequences.

All the extracted FSS are encoded in each trace as
follows:

1Bibliothèque Nationale de France: https://www.bnf.fr/

Using Trace Clustering to Group Learning Scenarios: An Adaptation of FSS-Encoding to Moodle Logs Use Case

249

Encoding(FSS) =
1

fFSS ∑
n−1
i=1 fei fei+1 fri,i+1

(1)

Where, fFSS is the frequency of the extracted FSS,
n is its length (number of events), fei is the frequency
of the event ei in the event logs and fri,i+1 is the fre-
quency of the direct relation between all consecutive
events of the FSS in the event logs. The resulting
encoding value falls between 0 and 1, where a value
closer to 0 signifies the significance of the FSS within
the entire event logs.

This encoding method allows the distinction be-
tween traces that share the same FSS but not in the
same position. Furthermore, by replacing all events
not part of an FSS with 1, the information about the
position of the FSS was retained, the gaps between
different FSS, as well as the size of the trace. Follow-
ing the FSS encoding, all the traces in the event logs
are converted into sparse vectors. These vectors are
then clustered based on the similarity between them.

3.2 Our Approach

While the baseline approach replaces all events not
part of a Frequent Sub-sequence with 1, it leads to
a loss of information regarding the uniqueness of in-
dividual activities that do not participate in a pat-
tern. These activities might carry significance even
though they occur less frequently. The baseline’s
simplification may overlook the diversity and im-
portance of such singular activities, potentially im-
pacting the comprehensiveness of the analysis. For
instance, two traces, t1 = < e1,e2,e3,e4,e5 > and
t2 = < e0,e1,e2,e3 >, are converted into vectors
[EFSS1 ,1,1] and [1,EFSS1], respectively, where EFSS1
represents the encoding of < e1,e2,e3 >. Addition-
ally, the events e0, e4 and e5 are not considered in the
clustering.

On the other hand, our proposed FSS encoding
method takes into account the frequency and rela-
tionships of both the FSS and individual events, of-
fering a more nuanced representation that preserves
the distinctive characteristics of each activity. For ex-
ample in Moodle, a learner is more likely to view a
course several times before taking a quiz once. Thus,
it is important to preserve the position and identity
of these less frequent activities as they might hold
significant information to understand the undertaken
learning process. Driven by this, using our approach
traces t1 and t2 in the previous example, are con-
verted respectively into vectors [EFSS1 , f (e4), f (e5)]
and [f (e0),EFSS1]. f (a) represents the frequency of
occurrence of activity a in all the traces, thus preserv-
ing its identity in means of its frequency that eventu-
ally reflects its significance.

Algorithm 1 depicts our proposed approach. As
outlined, the initial step involves the transformation
of the original event logs R (refer to Table 1) into a set
of traces L. This set organizes the sequence of events
chronologically based on the unique identifier CaseId.
For example, based on the Table 1, the corresponding
trace of CaseId 1 is < Course viewed, Course module
viewed, Submission viewed >.

Algorithm 1: Improved FSS Encoding algorithm.
Data: Original log file R, Minimum pattern

support percentage minSup, Minimum
pattern Length minLen, Number of Clusters
n clusters

Result: Log Files F corresponding to resulting
clusters

begin
Convert R to a set of traces L;
From L, extract frequent sub-sequences FSS

with length >= minLen and minimum
support >= minSup;

From FSS, remove x ∈ FSS if x does not exist
as is in L;

For x ∈ FSS, compute Encoding(x) ;
Sort FSS in descending order of pattern

lengths ;
For each trace in L, replace any existing FSS

by their encoding;
Remove traces from L where no FSS is found;
For remaining traces in L, replace remaining

activities with their frequency ;
Scale the values in the traces using MinMax

Scaler, to have a range of [0,1] ;
Add padding of −1 for the traces to have same

lengths ;
Cluster the traces in L into n clusters;
Generate Log Files F for resulting clusters;
Return F ;

end

Subsequently, we employ the PrefixSpan algo-
rithm (Pel et al., 2001) to extract sequential patterns
FSSs from the modified event logs L. This algo-
rithm efficiently identifies recurring patterns within
the traces, aiding in the discovery of significant se-
quences of activities over time.

In the baseline, the frequent subsequences selec-
tion criteria using PrefixSpan is the top-k patterns,
that extracts the top k frequent patterns extracted by
PrefixSpan leading to a loss of control over the rele-
vance of patterns based on their support. This could
result in situations where all top-k patterns have sup-
port percentages above 90%, or conversely, some pat-
terns have support percentages below 50%. Also, us-
ing top-k patterns can be computationally expensive
because it requires generating and checking many po-
tential patterns. In our approach, we refine the pat-
tern selection criteria by incorporating two thresholds,

CSEDU 2024 - 16th International Conference on Computer Supported Education

250

(i) a minimum support percentage (minSup) and (ii)
a pattern length (minLen). In this refinement, the
dataset is scanned once to determine the support of
candidate patterns and then filters out those below the
specified threshold. The support of a pattern X is the
ratio of traces in which X appears to the total number
of traces, and the length of a pattern is the number of
activities it includes. Also, as PrefixSpan can extract
patterns that do not exist as they are in the traces, the
extracted patterns are filtered from such cases.

Following, the encoding of each FSS is calculated
using equation 1 and the FSSs are sorted in descend-
ing order of their length (the longer the pattern, the
more important it is). This defines the priority of
replacement in the next step. For each trace, where
found, the FSS is replaced by its encoding. If 2 FSSs
are found in the same trace, the longer FSS is first re-
placed and then the rest of the trace is searched for
other FSSs. After the replacement, traces with no
found FSSs are removed as they count as unrepresen-
tative ones. For remaining traces, individual activities
that did not belong to a pattern are replaced by their
frequency as previously explained. Finally, the en-
coded values are scaled to a range of [0,1] and cluster-
ing is performed on the resulting traces converted to
numerical vectors. Finally, the log files correspond-
ing to each cluster are generated and returned as an
output. These files are later used to discover a process
model describing the general behavior of learners in
each cluster.

In a nutshell, our method enhances trace encoding
in two key ways. First, it refines the selection crite-
ria for patterns by replacing the top-k approach with a
combination of minimum support percentage and pat-
tern length. Second, in the conversion of traces, in-
dividual activities within traces possessing FSSs are
substituted with their respective frequencies instead
of a uniform value of 1. This alteration preserves the
identity and positional significance of less frequent
events. These enhancements have a direct impact on
the representation of traces, consequently elevating
the quality of trace clustering. As a result, this im-
provement facilitates a more detailed understanding
and analysis of learning scenarios within each cluster.

4 DATA TREATMENT

As the context of this work lies within the previously
proposed framework, as mentioned in Section 1, the
data we are dealing with is Moodle Logs. This section
is dedicated to elaborate on the data collection and
treatment steps of the former.

4.1 Data Collection and Preprocessing

Moodle, a well-known learning management system
that is extensively used in universities and educational
institutions, contains a logging system that captures
any user’s activity in the system at any point in time.
In the current study, Moodle event logs of 471 stu-
dents enrolled in courses at Frederick University’s
Department of Computer Science and Engineering in
Cyprus from 2018 to 2022 were collected.
The collected event logs were cleaned to keep only
actions made by students on Moodle while studying,
such as taking courses, tests, and assignments, as the
initial logs included the actions taken by all users in
the system (students, instructors, assisting instructors,
manager, etc.). Additionally, a unique identifier for
each student was created to be used in the trace clus-
tering later on.
The structure of a single log file is illustrated by Ta-
ble 2. The “Regnum” is the registration number, used
as a unique identifier to track the path of a student
throughout different courses and different years, i.e.
it is used as “CaseId”. The “Timestamp” records the
exact time of each event taken by the students, used
to order the events. While the “Event Name” is used
as the activity and the “Event Context” gives infor-
mation about the concerned learning resource (file,
assignment, folder, etc.) affected by the event. Fi-
nally, the “Description” explains the event in a more
detailed manner.

Table 2: The structure of a single event log.
Regnum Timestamp Event Context Event Name Description

The initial number of event names was 65, includ-
ing events related to course actions, quiz taking, as-
signments submissions, chats and discussions, pro-
file viewing, and others. Only 14 events are kept,
as shown in Table 3. These events were chosen as
they particularly show actions like completion of an
assignment or a learning resource, assessment, taking
feedback, studying, and exploring. The log is filtered
given the chosen events to finally end with 471 stu-
dents with a total of 3942 traces for the period of 2018
until 2022.

Table 3: The chosen event names from Moodle logs.
Event Name

“A submission has been submitted” “Quiz attempt submitted”
“Course activity completion updated” “Course module viewed”
“Zip archive of folder downloaded” “Content page viewed”

“Clicked join meeting button” “Course summary viewed”
“Course module instance list viewed” “Sessions viewed”

“Lesson started” “Lesson resumed”
“Feedback viewed” “Course viewed”

Using Trace Clustering to Group Learning Scenarios: An Adaptation of FSS-Encoding to Moodle Logs Use Case

251

Table 4: The generated semantic activity.

Semantic Activity
Study P Study A Revise Expand

Exercise P Exercise A View Interact
Assess P Assess A Feedback Apply

Table 5: The structure of the trace file.

CaseId Trace
1 course1 <View, Exercise P, Assess A >
1 course2 <View, View, Study P, Study A >
2 course1 <Interact >

4.2 Enrichment /Transformation

As the collected logs express the interaction between
students and Moodle of different courses, a transfor-
mation step followed to create a new activity that
gives more information on the pedagogical action
done by the student. We refer to this activity as
‘Semantic Activity’. It is rule-based created using
the ‘Event Context’, ‘Event Name’ and ‘Description’
from the original logs. The details of this transfor-
mation step are outside the scope of this paper. This
activity can have one of the 12 values presented in
Table 4. We differentiate between two types of ac-
tions: passive and active (denoted by P and A re-
spectively). When a student downloads a lecture ma-
terial to study it, it is considered a ’passive’ action as
there is no guarantee of completion. When a student
submits an assignment, we presume they completed
exercises, referred to as ’active’ actions.

4.3 Traces Preparation

This part explains the initial step of Algorithm 1.
To perform clustering, the traces should be extracted
from the event logs. As each event log corresponds to
activities done in one course, we define a trace as an
ordered sequence of events taken by a student in one
course. Thus, the trace file used to perform clustering
looks as illustrated in Table 5, where the CaseId is the
unique value of a student behaving in one course and
the trace ti (1 ≤ i ≤ k) is an ordered sequence of ni
‘Semantic Activity’ events ti =< sei1,sei2, ...,seini >
made by the same CaseId.

5 IMPLEMENTATION AND
RESULTS

In what follows, we illustrate the improvement im-
plied by our approach at the level of the extracted pat-

Table 6: Comparison among extracted patterns.
Baseline Our Approach

Parameters K = 100 (MinSup = 80%, MinLen = 2)
of Extracted Patterns 100 1412

of Patterns Existing in Traces 32 248
Among Patterns that exist as they are in the Traces

[Min - Max] Pattern Length [1 - 6] [2 - 9]
[Min - Max] Pattern Support % [86% - 100%] [80% - 95%]

On Trace Level
[Min - Max] Original Trace Length [2 - 5599] [2 - 5599]
[Min - Max] Encoded Trace Length [1 - 2484] [1 - 1618]

of Traces with no FSS 49 45

terns and their encoding, the level of clusters and the
discovered models.

5.1 Patterns Extraction and Encoding

Table 6 compares the baseline and our approach in
pattern extraction and trace encoding. Our refined
selection criteria yield better control over minimum
support and pattern length, resulting in more and
longer patterns with high support. The encoded traces
in our approach are shorter, emphasizing longer and
more significant patterns, outperforming the baseline
in both extraction and encoding levels, as reflected in
subsequent trace clustering results.

5.2 Trace Clustering

In the final section of Algorithm 1, FSS-encoded
traces are clustered using Hierarchical Agglomera-
tive Clustering (HAC) with ward linkage, known for
merging similar clusters in a bottom-up approach.
Our approach is demonstrated as efficient through a
comparison with baseline and ‘Activity Profile’ (Song
et al., 2008), where the latter transforms traces into
binary vectors (0 and 1) using one-hot encoding. The
vector length equals the number of unique activities,
providing a binary representation of activity presence
in each trace. As for the clustering, the optimal num-
ber of clusters, determined through dendrogram anal-
ysis, is found to be 3 for all approaches as shown in
Figure 1. Evaluation metrics, including Silhouette co-
efficient (-1 to 1, higher is better) and Davies Bouldin
index (lower is better), reveal the quality of resulting
clusters, as presented in Table 7.

Despite the initial impression that the Silhouette
is better without FSS, detailed analysis in Table 7 re-
veals potential misinterpretations of numeric values.
The Activity Profile yields clusters with almost all
elements in one, rendering its results meaningless.
In contrast, the baseline divides traces into different
clusters, but they lack clear separation, as reflected in
their Silhouette, while our approach combines well-
divided traces with acceptable Silhouettes for each
cluster.

CSEDU 2024 - 16th International Conference on Computer Supported Education

252

(a) On activity profile encoded traces. (b) On baseline encoded traces. (c) On improved FSS encoded traces.

Figure 1: The dendrogram of HAC using ward linkage.

Figure 2: Fuzzy models of the resulting clusters.

Table 7: Cluster and Silhouette Analysis with 3 Clusters.
Activity Profile Baseline Our Approach

Final # of Traces 3942 3893 3897
Silhouette Coefficient 0.546 0.117 0.360
Davies Bouldin Index 0.720 2.43 1.15

Detailed Silhouette Analysis
Cluster 0 # of Traces 710 1000 1496

Silhouette 0.156 -0.065 0.260

Cluster 1 # of Traces 3 1482 1961
Silhouette 0.520 0.038 0.470

Cluster 2 # of Traces 3229 1411 440
Silhouette 0.632 0.408 0.250

5.3 Process Models

The resulting clusters are used with the Fuzzy Miner
algorithm in ProM tool to discover process models,
chosen for its capacity to generate simplified models
with a focus on significant nodes and well-correlated

edges (Van der Aalst, 2016). With Fuzzy Miner, less
significant but highly correlated nodes are aggregated,
i.e. hidden in clusters within the simplified model.
Figure 2 displays the models of clusters 0, 1, and
2, simplified using node significance, leading to the
aggregation of some nodes into clusters. Analyzing
the learning scenarios through model readings, Clus-
ter 1, representing the majority of learners, primarily
engages in routine activities such as viewing, study-
ing, and solving exercises. In contrast, Cluster 0, the
second-largest cluster, encompasses learners who en-
gage in routine tasks but also actively ‘Apply’ knowl-
edge, often through project submissions. Lastly, Clus-
ter 2, with the smallest learner count, consists of in-
dividuals who show a preference for quizzes and tests
as part of their learning paths.

Using Trace Clustering to Group Learning Scenarios: An Adaptation of FSS-Encoding to Moodle Logs Use Case

253

6 CONCLUSION

This study revolves around a previous work pre-
senting a framework aimed at providing personal-
ized adaptive learning paths, taking into account a
learner’s objective and leveraging the learning expe-
rience of previous learners. Employing Process Min-
ing, we extract past learning experiences through the
discovery of learning scenarios. However, dealing
with the unstructured and voluminous Moodle data,
that holds specific learning characteristics, poses a
challenge, making trace clustering crucial. Thus,
our approach enhances a feature-based Frequent-
Subsequence (FSS) trace clustering method by re-
fining pattern selection, particularly preserving the
uniqueness of less frequent events. Applied to Moo-
dle logs, our method demonstrates significant im-
provements, generating more and longer patterns, in-
fluencing encoding results, and leading to better clus-
ters reflected by the silhouette coefficient. The iden-
tified clusters reveal three distinct learning scenar-
ios: one characterized by a focus on studying and
solving exercises, another by the application of ac-
quired knowledge through projects, and a third by a
preference for undergoing more assessments. These
scenarios provide valuable insights for tailoring per-
sonalized recommendations. Future work involves
integrating these findings into the recommendation
framework, leveraging past learning experiences for
more effective guidance. It’s noteworthy that exten-
sive testing of clustering algorithms and linkage crite-
ria preceded the selection of the best-performing ap-
proach presented in this work.

REFERENCES

Aggarwal, C. C. (2016). Recommender Systems. Springer
Int. Publishing, Cham.

Bose, R. J. C. and Van der Aalst, W. M. (2009). Context
aware trace clustering: Towards improving process
mining results. In Proceedings of the Int. Conf. on
Data Mining, pages 401–412. SIAM.

Bose, R. J. C. and van der Aalst, W. M. (2009). Trace clus-
tering based on conserved patterns: Towards achiev-
ing better process models. In Int. Conf. on Business
Process Management, pages 170–181. Springer.

Cadez, I., Heckerman, D., Meek, C., Smyth, P., and White,
S. (2003). Model-based clustering and visualization
of navigation patterns on a web site. Data mining and
knowledge discovery, 7(4):399–424.

Cenka, N. and Anggun, B. (2022). Analysing student be-
haviour in a learning management system using a pro-
cess mining approach. Knowledge Management & E-
Learning: An Int. Journal, 14(1):62–80.

Chatain, T., Carmona, J., and Van Dongen, B. (2017).
Alignment-based trace clustering. In Int. Conf. on
Conceptual Modeling, pages 295–308. Springer.

De Koninck, P. and De Weerdt, J. (2019). Scalable mixed-
paradigm trace clustering using super-instances. In
2019 Int. Conf. on Process Mining, pages 17–24.
IEEE.

De Weerdt, J., Vanden Broucke, S., Vanthienen, J., and Bae-
sens, B. (2013). Active trace clustering for improved
process discovery. IEEE Transactions on Knowledge
and Data Engineering, 25(12):2708–2720.

Diamantini, C., Genga, L., and Potena, D. (2016). Behav-
ioral process mining for unstructured processes. Jour-
nal of Intelligent Information Systems, 47(1):5–32.

Ferreira, D., Zacarias, M., Malheiros, M., and Ferreira, P.
(2007). Approaching process mining with sequence
clustering: Experiments and findings. In Int. Conf.
on business process management, pages 360–374.
Springer.

Joudieh, N., Eteokleous, N., Champagnat, R., Rabah, M.,
and Nowakowski, S. (2023). Employing a process
mining approach to recommend personalized adap-
tive learning paths in blended-learning environments.
In 12th Int. Conf. in Open and Distance Learning,
Athens, Greece.

Laksitowening, K. A., Prasetya, M. D., Suwawi, D. D. J.,
Herdiani, A., et al. (2023). Capturing students’ dy-
namic learning pattern based on activity logs using hi-
erarchical clustering. Jurnal RESTI (Rekayasa Sistem
dan Teknologi Informasi), 7(1):34–40.

Lu, X., Tabatabaei, S. A., Hoogendoorn, M., and Reijers,
H. A. (2019). Trace clustering on very large event
data in healthcare using frequent sequence patterns.
In Int. Conf. on Business Process Management, pages
198–215. Springer.

Pel, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q.,
Dayal, U., and Hsu, M. (2001). Prefixspan: Min-
ing sequential patterns by prefix-projected growth. In
Proc. 17th IEEE Int. Conf. on Data Engineering. Hei-
delberg, Germany, pages 215–224.

Song, M., Gunther, C. W., and Van der Aalst, W. M.
(2008). Trace clustering in process mining. In Int.
Conf. on Business Process Management, pages 109–
120. Springer.

Trabelsi, M., Suire, C., Morcos, J., and Champagnat, R.
(2021). A new methodology to bring out typical users
interactions in digital libraries. In 2021 ACM/IEEE
Joint Conf. on Digital Libraries (JCDL), pages 11–20.

Van der Aalst, W. (2016). Process mining: data science in
action. Springer.

Zandkarimi, F., Rehse, J.-R., Soudmand, P., and Hoehle, H.
(2020). A generic framework for trace clustering in
process mining. In 2020 2nd Int. Conf. on Process
Mining, pages 177–184. IEEE.

Zhang, T., Taub, M., and Chen, Z. (2022). A multi-level
trace clustering analysis scheme for measuring stu-
dents’ self-regulated learning behavior in a mastery-
based online learning environment. In LAK22: 12th
Int. Learning Analytics and Knowledge Conf., pages
197–207.

CSEDU 2024 - 16th International Conference on Computer Supported Education

254

