
Analysing Learner Strategies in Programming Using Clickstream Data

Daevesh Singh a, Indrayani Nishane b and Ramkumar Rajendran c

IDP in Educational Technology, Indian Institute of Technology Bombay, Mumbai, India

Keywords: Digital Learning Environments, Programming Behaviour, Process Mining, PyGuru.

Abstract: Programming courses have high failure rates and to address this, it is crucial to better understand learning
strategies associated with higher learning gains. Digital learning environments capture fine-grained data
that offer valuable insights into learners’ learning strategies. Although much research has been dedicated
to analysing student programming behaviours in integrated development environments, it remains unclear
how their reading and video-watching behaviours, which are used for knowledge acquisition, influence these
programming behaviours. In this study, we aim to bridge this gap by analysing learners’ actions in PyGuru,
a learning environment for Python programming, using process mining techniques to capture their tempo-
ral learning behaviours. Our objective is to understand the behaviours associated with high and low-scoring
learners. Study reveals that high-scoring learners execute codes more, indicating a correlation between execu-
tion actions and conceptual reinforcement and engaging in active video-watching behaviours, contributing to
higher learning gains. Conversely, low-scoring learners tend to rely on trial and error techniques, neglecting
content review after execution. Furthermore, despite the frequent use of the ‘highlight’ action, low-scoring
learners fail to revisit highlighted content, suggesting a lack of comprehensive information processing. By
uncovering such behaviours, we aim to shed light on effective strategies associated with higher performance,
thereby helping instructors provide feedback to struggling learners.

1 INTRODUCTION

Programming is a valuable skill that is applicable to
both academic and industry settings. This often gen-
erates strong interest in enrolling in computer sci-
ence courses, especially those related to program-
ming. The programming skill is considered diffi-
cult to learn and even more difficult to attain mas-
tery. This leads to high dropout rates in programming
courses (Bennedsen and Caspersen, 2019). In one of
the big five open questions in computing education,
Kim Bruce highlights how the dropout rates in intro-
ductory courses to programming can be minimized
(Bruce, 2018). This has led to a lot of avenues for
research in computing education. The use of learn-
ing analytics can help in improving learners’ perfor-
mance by identifying students in need and providing
them support. However, the literature suggests that to-
day’s CS (Computer Science) classes still miss out on
using diverse forms of Learning Analytics (Ihantola
et al., 2015) to improve student performance some-

a https://orcid.org/0000-0001-6610-3887
b https://orcid.org/0000-0002-1223-3528
c https://orcid.org/0000-0002-0411-1782

how. This issue can be solved using digital learn-
ing environments that allow capturing of student data
(Ihantola et al., 2015). These learning environments
help us capture the interaction data of learners called
click-stream data, which includes clicks on links, but-
tons, videos, or other elements of the digital learn-
ing environment and may also include the duration of
time spent on each interaction. Click-stream data pro-
vides a detailed record of a student’s activity within
the learning environment and can be used to analyze
patterns of behaviour, identify areas where learners
may be struggling, and make data-driven decisions to
provide support thereby improving their learning ex-
perience (Long and Siemens, 2014).

With the advent of educational data mining and
learning analytics, it has become possible to use this
fine-grained clickstream data to uncover patterns that
would otherwise remain unobserved. Thereby en-
abling us to understand the learning process rather
than just focusing on the learning outcome. Further,
the need to use data mining techniques to examine
fine-grained data is particularly crucial in the case
of introductory programming courses due to the high
failure and withdrawal rates in these courses(Yogev

Singh, D., Nishane, I. and Rajendran, R.
Analysing Learner Strategies in Programming Using Clickstream Data.
DOI: 10.5220/0012636500003693
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Computer Supported Education (CSEDU 2024) - Volume 2, pages 87-96
ISBN: 978-989-758-697-2; ISSN: 2184-5026
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

87



et al., 2018). Additionally, the amount of digital
traces learners leave behind in programming is far
more than in other domains, providing researchers a
better opportunity to understand the learning process.

Existing research on understanding learners’ be-
haviour in computer programming using learning an-
alytics has focused on learners’ interactions with the
programming environment (Azcona et al., 2019), ne-
glecting the strategies they employ while interacting
with the course content. Therefore it is important
to understand learners’ interactions with the content
to determine the reason behind differences in student
performance or mastery. To address this lacuna cre-
ated due to the focus on using data from isolated pro-
gramming learning environments, we collected the
clickstream data of learners from PyGuru, an on-
line learning environment for Python programming.
PyGuru allows learners to interact with the course
content through reading content and videos and prac-
tising programming exercises. This allows us to un-
cover the relationships between actions performed by
learners to access the content and programming be-
haviours to identify effective learning strategies that
can improve learner performance. We have consid-
ered the temporal nature of the actions performed by
the learners while analysing the click-stream data of
the learners’ interaction with PyGuru. We will refer
to these sequences of actions the learners perform as
learning strategies.

This motivated us to investigate the learner be-
haviour and their learning strategies while interact-
ing with different learning environments elements like
reading content, video content, and Interactive Devel-
opment Environment (IDE). There are multiple min-
ing techniques available to analyse the temporal data,
such as Sequential Pattern mining (SPM), Differen-
tial Sequence Mining (DSM), Process Mining (PM),
etc. SPM and DSM give us selective common and un-
common patterns from the log data. While PM gives
us a visual depiction of the entire sequence of actions
based on the complete log for all learners, enabling
us to draw inferences about learner behaviours while
they interact with different components of the learn-
ing environment.

In this study, we collected the click-stream data
of learners to understand different learning strategies
and their impact on performance. Our objective is
to identify effective learning techniques that enhance
learner performance by establishing connections be-
tween learners’ actions to access content and their
programming behaviour.

The results indicate that high-scoring learners sig-
nificantly perform code execution, indicating a corre-
lation between execution actions and conceptual rein-

forcement. Notably, high-scoring individuals engage
in active video-watching behaviors, contributing to
higher learning gains. Conversely, low-scoring learn-
ers tend to rely on trial and error techniques, neglect-
ing content review after execution, potentially perpet-
uating misconceptions. Furthermore, despite frequent
use of the ‘highlight’ action, low-scoring learners fail
to revisit highlighted content, suggesting a lack of
comprehensive information processing compared to
their high-scoring counterparts.

The study’s findings carry significant implications
for educators, researchers, and system designers aim-
ing to enhance educational outcomes in programming
education. Since it was observed that certain actions
like the execution of code and active-video watch-
ing behaviours are associated with higher learning
gains, it is, therefore, crucial for educators to pro-
mote such actions. Also, researchers can leverage
this information to explore targeted interventions, de-
velop adaptive learning systems, and refine instruc-
tional approaches based on the observed correlations
between actions and learning gains. These findings
offer practical insights for educational stakeholders
to tailor their approaches, interventions, and system
designs, ultimately fostering more effective learning
experiences and improving student outcomes in pro-
gramming education.

The paper is organized as follows: In Section 2,
we discuss related work, and in Section 3, we provide
context for the data. Section 4 describes our method-
ology, including the prepossessing of click stream
data, and we present our results in Section 5. Finally,
we conclude Section 6.

2 BACKGROUND AND
LITERATURE REVIEW

To analyze student strategies in programming, we will
first present how learning analytics was used in com-
puter programming, followed by different methods
to analyze click-stream data, and finally present how
process modelling was used to understand learners’
learning process.

2.1 Learning Analytics in Computer
Programming

The use of learning analytics to understand student
behaviour in computer programming has been an
area of research for several years, and researchers
have collected and used different kinds of data to
understand student behaviour. For instance, com-

CSEDU 2024 - 16th International Conference on Computer Supported Education

88



puter programming problem solving success (Guerra
et al., 2014; Sosnovsky and Brusilovsky, 2015), help-
seeking behaviour (Price et al., 2017), programming
assignments progression (Piech et al., 2012), pro-
gramming information seeking strategies (Lu and
Hsiao, 2017), the use of hints (Rivers and Koedinger,
2017; Price et al., 2017), troubleshooting behaviours
(Buffardi and Edwards, 2013), code snapshot process
state (Carter et al., 2015), and generic Error Quo-
tient measures (Carter et al., 2015). While exten-
sive research has been done to understand learners’
behaviour in computer programming using learning
analytics, much of it has focused on learners’ interac-
tions with the programming environment, neglecting
the strategies they employ while interacting with the
course content. Understanding learners’ interactions
with the content is crucial for understanding the rea-
soning behind different learning levels.

To address this gap, in this paper, we explore pro-
cess mining to obtain a comprehensive view of learn-
ers’ different action sequences and better understand
their learning behaviours.

2.2 Methods for Analysing
Click-Stream Data

Understanding how learners behave in learning envi-
ronments can be beneficial in identifying when scaf-
folding, such as personalized hints and positive en-
couragement, should be provided to create a more
productive learning experience (Munshi et al., 2018).
Analytics and mining schemes can be utilised to gain
insight into learner strategies when using any digital
learning environment (Saint et al., 2018). Analysing
the temporal links between the actions of high and
low performers can help identify the differences in
their respective learning strategies (Rajendran et al.,
2018). Several methods like DSM, PM are available
for such analysis. DSM can identify less common but
distinct behaviour patterns of different groups (Ra-
jendran et al., 2018), while PM involves the anal-
ysis of temporally ordered action sequences per-
formed by learners, which can be interpreted as their
temporal problem-solving model (Günther and Van
Der Aalst, 2007). PM can help visualize learner
action sequences while interacting with the learn-
ing environment and provide insights into these se-
quences by visually depicting the interaction (Rajen-
dran et al., 2018). Hence, in this work, we apply PM
to understand learner strategies while interacting with
PyGuru.

2.3 Analysing Click-Stream Data Using
Process Mining

There are different techniques to analyse the click-
stream data for insights about learners’ learning
strategies, as discussed in the previous subsection.
Process mining (PM) is the technique that captures
the temporal nature and the sequence of actions and
showcases it pictorially. The temporal data con-
sists of a sequence of events where each represents
the learner’s action in a digital learning environment.
(Reimann et al., 2009; Winne and Nesbit, 2009).
PM visually represents the temporal data in multiple
forms such as Petri net or automata, etc (Günther and
Van Der Aalst, 2007).

In previous work, (Sedrakyan et al., 2016) ap-
plied process mining techniques to interpret learners’
cognitive learning processes by identifying novice
modelling activities. The aim was to provide feed-
back which is process oriented rather than outcome
based. Another interesting work by(Rajendran et al.,
2018) visualized and explored temporal differences
in learning behaviour sequences of high versus low-
performing learners working on causal modelling
tasks in Betty’s Brain environment. Process mod-
els gave insights into different strategies deployed by
the learners. Use of PM has also shown differences
in learning interactions novices had when they inter-
acted with a TELE to create a software conceptual de-
signs (Nishane et al., 2021). This works highlighted
that students who had higher learning interacted with
design elements more frequently and created the de-
signs compared to those who had lower learning. One
study reported using PM to differentiate the behaviour
of students based on their mindset, while they inter-
acted with the learning environment (Nishane et al.,
2023). PM showed the difference in the interaction
pattern of learners with Fixed and Growth mindset
as it is able to retain the sequential nature of actions
along with the frequencies of the commonly occurring
actions.

Learning Analytics (LA) holds a crucial role in
the intersection of education and technology, objec-
tives such as decoding learning strategies and com-
prehending how learners engage with programming
environments, etc. needs more work for allowing re-
searchers a deeper understanding of the learning com-
puter programming. Employing methodologies like
SPM, DSM, and PM, learner behaviour is systemat-
ically analysed in existing literature. Notably, PM
serves as a valuable instrument for dissecting the tem-
poral dimensions of learners’ data, presenting a visual
representation of their learning journey. In address-
ing existing research voids, our investigation centers

Analysing Learner Strategies in Programming Using Clickstream Data

89



(a) Book Reader

(b) Video Player

Figure 1: (a) displays the book reader interface, featuring
digital text. Users can highlight text with different colours
and add comments with tags for the organization. (b) dis-
plays a screenshot of the interactive video-watching plat-
form in PyGuru. The interface has basic video player con-
trols (play, pause, seek, and speed enhancement) underneath
it. It allows learners to respond to the embedded questions
within the video.

on scrutinising learner conduct within programming
learning settings, utilising PM as a key methodol-
ogy. This approach is poised to unveil nuanced in-
sights into the rationale behind distinct learning lev-
els, thereby significantly contributing to the ongoing
evolution of Learning Analytics.

3 LEARNING ENVIRONMENT:
PyGuru

3.1 Description of Learning
Environment

PyGuru 1 is a computer-based learning environment
developed to teach and learn Python programming
skills. PyGuru has four components: a book reader,
video player, code editor, and discussion forum. This
section describes each of these components.

1https://pyguru.personaltutoring.in/

1. Book Reader. PyGuru contains a book reader
(shown in Fig 1 (a)) that allows the reader to high-
light and annotate the text. Highlight in the digital
context consists of selecting a text and colouring
it. The annotating feature in the learning environ-
ment comprises selecting a text, commenting on
that text, and providing a tag to that text.

2. Video Player. PyGuru has an interactive video
watching platform (Fig. 1(b)). The learners can
interact with the video using basic video player
features like enhancing the speed of the video
and performing other actions like play, pause and
seek. Additionally, more advanced interactive
features are embedded into the system, allowing
the instructor to add questions within the video.
The video automatically stops and waits for the
learner’s response.

3. Code Editor. Learning programming requires a
code editor where learners can practise coding.
PyGuru offers two kinds of code editors. The first
kind of code editor (Fig 2(a)) is embedded into
the book reader to facilitate learners to practice
codes immediately after learning about the con-
cept. This code editor has a coding window and
an execute button. The second kind of code editor
shown in (Fig 2(b)) is more advanced and used to
assign programming questions to learners. It eval-
uates the learners’ code against the test cases. The
‘verify’ button allows learners to check their pro-
gram for errors and test cases before submitting.
This code editor consists of four panels:

(a) Instruction Panel -To provide details about the
problem or algorithm like the inputs that the
program will receive, the expected output, and
an example to demonstrate the problem.

(b) Input Panel - To provide the test cases for the
problem, and the learners’ code will be tested
against these inputs.

(c) Coding Panel - The coding panel is where the
student is expected to write the code, and the
instructor can also present some partial codes.

(d) Output Panel - To display the output once the
program is run. It will also provide informa-
tion about the number of test cases passed and
failed.

3.2 Log Data

In this subsection, we will first describe students’ ac-
tions in PyGuru. The actions documented in Table 1
encompass diverse student actions within the learning
environment.

CSEDU 2024 - 16th International Conference on Computer Supported Education

90



Table 1: Description of the actions learner performs in the learning environment

Action Description
Log In Logged into the learning environment

Log Out Logged out of the learning environment
Assessment Assessment (Program IDE) page is viewed

Execute Executing the code on embedded Code Editor
Verified Executing the code on Advanced Code editor

Video Player Visiting the video Player
Reading The course materials page is viewed

Video Played Video content is played
Highlight view The page where highlights are saved is viewed

Annotation view The page where annotations are saved is viewed
Paused The video is paused

Highlighted Highlighting features is used
Continue Video The video content is resumed after answering the in-video question

Seek Navigation controls are used to seek specific sections within video
VQ retry In-video question is reattempted

view VQ Sol The solution of the in-video questions is verified
See Errors The errors within the code notified by IDE is checked
Annotation Annotated or tagged the content

VQ opt selected The in-video question is attempted

(a) Embedded Code Editor

(b) Advanced code Editor

Figure 2: (a) Displays the code editor embedded in the book
reader. (b) displays a screenshot of the second code editor
used for formative assessment.

In book reader, the actions performed are reading,
highlighting, annotation. Several actions focus on
reading and text-related activities, such as ‘Reading,’
which denotes involvement in course materials, and
‘Highlighted,’ which involves highlighting features.
‘Annotation’ refers to the act of selecting a text and
supplementing texts with user-generated comments or

notes. These highlighted and annotated text can be
collectively accessed on a separate page. These ac-
tions are referred as ‘Highlight view’ and ‘Annota-
tion view’.

In the video player, the actions performed are
played, paused, and seek. These actions pertain
to initiating and managing multimedia content, with
‘Video Player’ action defined as the act of visit-
ing the video player and ‘Video Played’ signify-
ing engagement with educational video materials,
while ‘Paused’ denotes the interruption of video play-
back. ‘Seek’ encompasses using navigation con-
trols to locate specific sections within video con-
tent. ‘Continue Video’ marks the resumption of
video content after responding to in-video questions.
Since the videos have in-video questions, the action
‘VQ response’ corresponds to selecting one of the op-
tions in the in-video question. If the option selected is
incorrect, learners can retry the question and the ac-
tion ‘VQ retry’ corresponds to this.

As mentioned earlier, PyGuru has two code ed-
itors. The ‘Execute’ action corresponds to execut-
ing the code in the embedded editor. The second
kind of code editor is more advanced and the action
‘Assessment’ corresponds to using or accessing this
code editor. The learners can also click the submit
or verify button to check if their code is thriving on
the given test cases. The learners can look at the
‘See Error’ and ‘Look messages’ tabs in the output
panel for more information about the logical and syn-
tax error.

Analysing Learner Strategies in Programming Using Clickstream Data

91



Lastly, actions like ‘Log In’ and ‘Log Out’ encap-
sulate the initiation and termination of learning ses-
sions by logging in and out of the learning environ-
ment.

4 METHODOLOGY

To investigate the difference in temporal actions be-
tween high and low-performing learners in computer
programming, we apply PM models to the data col-
lected from learners’ interaction data to seek the an-
swer for the following research question.

How do learning strategies differ for high and
low scoring learners for Python Programming?

We first describe the study design, data prepro-
cessing and parameters set for process mining to an-
swer this.

4.1 Participants

The study was conducted with 37 students who used
PLE to learn Python programming in 2022. Out of
which 18 were females. These students were aged be-
tween 18 to 19 years. These students were enrolled in
a bachelor’s program at an Engineering Institute in an
IT course. The researchers provided students with a
demographic survey that involved questions like their
name, age, gender, etc., at the beginning of the study.
Further, they were also asked to report their prior ex-
perience with any other programming language. The
data shows that most students were learning program-
ming for the first time. Informed consent was ob-
tained from the student, and the Institute Research
Board (IRB) cleared the study. No monetary com-
pensation was given to the students.

In addition, the students took a pre and post-test
containing ten multiple-choice questions from Python
basics (variables, operators, conditional statements,
etc.). Students’ interaction with the system (click-
stream) and the time stamp was captured (more details
about log data are provided in the previous subsec-
tion). This study lasted four days, of which students’
interaction which system happened for two days and
each day, the students interacted with the system for
3 hours.

4.2 Study Design

At the commencement of the study, a comprehensive
procedural protocol was followed to ensure the in-
formed participation of the students. Initially, on day
one, the research objectives were explained, and the
students were given consent forms, which they duly

completed and signed, affirming their voluntary par-
ticipation. Subsequently, a demographic survey was
administered to gather pertinent background informa-
tion. Following this, a pre-test was administered to as-
sess the students’ baseline programming knowledge,
comprising 10 multiple-choice questions that spanned
various programming topics, including variables and
conditional statements, among others. After the pre-
test, students were introduced to the learning envi-
ronment, which included a detailed demonstration of
the system’s functionalities. They were informed of
the diverse features available within the learning envi-
ronment and were tasked to master Python program-
ming using the system. The learning curriculum was
structured into four distinct modules, each address-
ing specific programming concepts. The initial mod-
ule encompassed topics such as print functions, in-
put operations, and escape sequences, while the sec-
ond module delved into identifiers, variables, funda-
mental data types, and operators. The third module
concentrated on conditional statements, encompass-
ing constructs such as ‘if,’ ‘elif’, and ‘else.’ The final
module was dedicated to the comprehensive coverage
of loops and control statements. Students were ex-
plicitly instructed to engage with the system for a du-
ration of 3 hours per day over the next two days to
facilitate their Python programming learning experi-
ence. On the fourth day, a post-test with a similar dif-
ficulty level as the pre-test was administered to gauge
the extent of learning progression. Additionally, an
engagement survey was distributed to the students for
triangulation; however, it is important to note that the
results are not included in the scope of this research
endeavour. The study was done in a lab setup to con-
trol the conditions.

4.3 Data Preprocessing

Participants were categorized as high or low per-
formers based on their performance in the post-test,
with the median score being 4.5 out of a total of 10
marks. Those who scored 5.5 or higher (n=9) were
grouped as “High”, while those who scored 3.5 or
lower (n=16) were grouped as “Low”. Participants
who scored between 3.5 and 5.5 were excluded to
maintain a clear distinction between the two groups.

4.4 Process Mining

To visualize the temporal differences in the learn-
ing behaviour of high and low-scoring learners in
PyGuru, we employ the fuzzy miner algorithm using
the ProM tool (Günther and Van Der Aalst, 2007).

CSEDU 2024 - 16th International Conference on Computer Supported Education

92



Figure 3: This figure represents the process model of high-scoring learners.

Figure 4: This figure represents the process model of low scoring learners.

ProM is an open-source process mining tool2. This
tool provides process models of the temporal data,
which are often very complex due to multiple events
and transactions between them. The tool manipulates
multiple parameters to change the degree of abstrac-

2www.promtools.org

tion represented by certain key metrics to get a suit-
able abstraction. The next paragraph summarises the
various parameters involved in obtaining the abstract
view of the model. For more details, refer (Günther
and Van Der Aalst, 2007)).

Analysing Learner Strategies in Programming Using Clickstream Data

93



The process model includes nodes that represent
the events or actions, while the edges in the model
represent the transitions between these events or ac-
tions. In all the PMs, the node represents the actions
performed by learners, and the edge represents the
transition from one activity to another. Each node has
a significance value (between 0 and 1), and each edge
has thickness indicating significance, while darkness
depicts the correlation (Günther and Van Der Aalst,
2007). The abstraction of the model is done using
these two key metrics, correlation and significance.
Correlation measures the common occurrence of two
events, i.e. if two events occur together more fre-
quently will have a higher correlation. This metric is
only used for nodes. On the other hand, significance
is measured for both nodes and edges. It is defined as
the relative relevance of a node or edge’s occurrence
with respect to all other occurrences. For instance,
higher significance indicates that a particular node or
edge occurs more frequently.

Using the above two metrics, the abstraction and
simplification of the process model are done(Günther
and Van Der Aalst, 2007), using the following three
rules:

1. highly significant nodes are preserved as is;

2. less significant nodes that are highly correlated are
aggregated and grouped into clusters; and

3. less significant nodes with low correlations to
other nodes are dropped, thus creating more ab-
stract forms of the model.

Now in the process mining tool, the abstraction is
done by manipulating three parameters: node cutoff,
edge cutoff, and utility ratio(ur). Node and edge cut-
off is used to remove the nodes and edges having sig-
nificance value(for nodes) and utility value (for edges)
below the given threshold. The utility value (uv) of
an edge is the convex combination of significance (s)
and correlation value (cv) of an edge. In mathematical
terms, it is defined as:

uv = ur ∗ s+(1−ur)∗ cv (1)

To compare the process models of high and low
learners, we retain all the nodes in the process model
by keeping the node cutoff fixed at 0. We wanted the
log conformance value to be above 80%, so we fixed
the utility ratio as 0.5 and varied the edge cutoff value
to achieve the desired log conformance. The signifi-
cance metric is represented by each action node’s nu-
merical value (between 0 and 1). The thickness and
darkness of the edges indicate the significance and
correlation values associated with the edges, respec-
tively.

5 RESULTS AND DISCUSSION

This section describes the result of the research ques-
tion posed in the previous section. We first high-
light the differences between the high and low-scoring
learners using process models. We also present the
discussion based on the results.

Figure 3 and Figure 4 show the process models of
high and low-scoring groups, respectively. We find
the following differences in the process models of
these groups:

1. The significance of nodes like ‘Verified’ and ‘Ex-
ecute’ is higher for high-scoring learners. These
two actions correspond to executing the code in
two different IDEs. They implement the concepts
learned by reading the content or watching the
course videos. A higher frequency of such actions
might be one of the reasons for higher learning
gains.

2. The high-scoring learners, after performing the
‘Execute,’ refers to the reading or video con-
tent, whereas the low-scoring learners opt for a
trial and error technique and do not refer back
to the content; therefore, after performing ‘Exe-
cute,’ a couple of times, they logout from the sys-
tem. There are possibilities that the code executed
might have produced an error or the output might
be different from their expectations; in such cases,
it is crucial to refer to the content to rectify the
misconceptions. We see low-scoring learners do
not refer back. As a result, they may continue to
hold on to some of their misconceptions.

3. We also see the process model of high-scoring
learners has a node ‘pause’, which is absent in
low-scoring learners. The pause action corre-
sponds to active video-watching behaviour (Dod-
son et al., 2018) and is linked to higher learning
gains.

4. Another interesting thing to note is that the ‘high-
light’ node, which corresponds to the action of
highlighting the text, has a higher significance
value in the process models of low scorers. The
action highlight is usually linked to higher learn-
ing gains. This is since the act of deciding what to
and what not to highlight itself denotes the deeper
processing of the textual information as compared
to simple reading (Yogev et al., 2018). However,
the non-judicial use of highlighting indicates that
the learners might not be processing all the infor-
mation.

5. We also see that despite performing the high-
light action relatively more times, the low-scoring
learners never went to the highlight page to check

CSEDU 2024 - 16th International Conference on Computer Supported Education

94



what they have highlighted, unlike high-scoring
learners.

6 CONCLUSION AND
LIMITATIONS

In conclusion, this research has analysed learners’
strategies in programming using click-stream data
from the PyGuru learning environment using process
mining techniques. Our findings indicate that learn-
ers employ different strategies when interacting with
the course content and programming IDE and these
strategies are associated with different levels of learn-
ing.

One of the key insights from this study is that
high-scoring learners execute their codes more often
than low-scoring learners. These high-scoring learn-
ers also re-visit the content after code execution, pos-
sibly to identify the reasons for the error in the code
or the unexpected output. We also see high-scoring
learners employing active video-watching behaviour
like pausing the video to absorb and reflect, which is
missing in low-scoring learners. Another insight from
this study is that although low-scoring learners use the
highlight feature frequently, they do not visit the high-
light page containing all the highlights learners have
done.

We will now discuss the implications of this study.
The following strategies were observed to be adopted
by the learners. Each strategy is discussed for high
and low-scoring learners.

Understanding the learning process: This study
sheds light on the differences in the learning process
of high and low-scoring learners. This information
can be useful in developing learning strategies that
can help learners achieve better outcomes and the de-
sired level of mastery.

Importance of implementing concepts: The re-
sults indicate that implementing concepts through ex-
ecuting the code and referring back to the content af-
ter execution is crucial for high-scoring learners. This
highlights the importance of hands-on experience in
learning and reinforcing the concepts learned. How-
ever, this strategy was not observed for low-scoring
learners. Low-scoring learners must be motivated to
apply their learning and verify their understanding by
cross-checking the content.

Active video-watching behaviour: The presence
of the ‘pause’ node in the process model of high-
scoring learners suggests that active video-watching
behaviour is linked to higher learning gains. This can
be useful information for educators to design video-
based learning activities that engage learners actively.

Non-judicious highlighting: Low-scoring learn-
ers’ non-judicious use of highlighting suggests that
they might not be processing all the information. Ed-
ucators can use this information to encourage learners
to use highlighting more meaningfully. The fact that
low-scoring learners never checked what they high-
lighted suggests that they might not be retaining the
information highlighted. Educators can use this in-
formation to encourage learners to review their high-
lights regularly.

This research study offers valuable understanding
regarding the variations in learning strategies used
by high-scoring and low-scoring learners. This un-
derstanding can be utilized to develop learning sys-
tems that capitalize on effective learning strategies,
resulting in improved learning outcomes. Also, it
will enable instructors to provide the learners with
targeted feedback and support to improve the over-
all learning experience for learners in programming
education. The study has also shown that the process
mining approach helps to view learners’ temporal ac-
tion sequences to better understand their learning be-
haviours.

We now highlight some of the limitations. Our
study is based on data from a single online learning
environment, PyGuru, and hence, the findings may
not be generalised to other programming languages or
learning environments. The sample size used in this
study is relatively small, which is preventing us from
asserting any claims.

To address concerns regarding the duration of
student engagement, future iterations of this study
should consider extending the duration of interaction
to more closely align with the comprehensive nature
of programming topics, which typically demand more
extensive periods of study. This adjustment will af-
ford a more accurate representation of the learning
process and its associated dynamics.

Immediate future work may include conducting
similar studies using a larger sample size. Our work
can be extended by using other educational data min-
ing techniques and evaluating the impact of the feed-
back and support provided to learners using the in-
sights gained from this study. The study can be repli-
cated in other programming languages and learning
environments.

REFERENCES

Azcona, D., Hsiao, I.-H., and Smeaton, A. F. (2019).
Detecting students-at-risk in computer programming
classes with learning analytics from students’ digital
footprints. User Modeling and User-Adapted Interac-
tion, 29:759–788.

Analysing Learner Strategies in Programming Using Clickstream Data

95



Bennedsen, J. and Caspersen, M. E. (2019). Failure rates
in introductory programming: 12 years later. ACM
inroads, 10(2):30–36.

Bruce, K. B. (2018). Five big open questions in computing
education. ACM Inroads, 9(4):77–80.

Buffardi, K. and Edwards, S. H. (2013). Effective and inef-
fective software testing behaviors by novice program-
mers. In Proceedings of the ninth annual international
ACM conference on International computing educa-
tion research, pages 83–90.

Carter, A. S., Hundhausen, C. D., and Adesope, O. (2015).
The normalized programming state model: Predict-
ing student performance in computing courses based
on programming behavior. In Proceedings of the
eleventh annual international conference on interna-
tional computing education research, pages 141–150.

Dodson, S., Roll, I., Fong, M., Yoon, D., Harandi, N. M.,
and Fels, S. (2018). An active viewing framework for
video-based learning. In Proceedings of the fifth an-
nual ACM conference on learning at scale, pages 1–4.

Guerra, J., Sahebi, S., Lin, Y.-R., and Brusilovsky, P.
(2014). The problem solving genome: Analyzing se-
quential patterns of student work with parameterized
exercises.

Günther, C. W. and Van Der Aalst, W. M. (2007).
Fuzzy mining–adaptive process simplification based
on multi-perspective metrics. In International con-
ference on business process management, pages 328–
343. Springer.

Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler,
J., Edwards, S. H., Isohanni, E., Korhonen, A., Pe-
tersen, A., Rivers, K., et al. (2015). Educational data
mining and learning analytics in programming: Liter-
ature review and case studies. Proceedings of the 2015
ITiCSE on Working Group Reports, pages 41–63.

Long, P. and Siemens, G. (2014). Penetrating the fog: an-
alytics in learning and education. Italian Journal of
Educational Technology, 22(3):132–137.

Lu, Y. and Hsiao, I.-H. (2017). Personalized information
seeking assistant (pisa): from programming informa-
tion seeking to learning. Information Retrieval Jour-
nal, 20:433–455.

Munshi, A., Rajendran, R., Ocumpaugh, J., Biswas, G.,
Baker, R. S., and Paquette, L. (2018). Modeling learn-
ers’ cognitive and affective states to scaffold srl in
open-ended learning environments. In Proceedings of
the 26th conference on user modeling, adaptation and
personalization, pages 131–138.

Nishane, I., Sabanwar, V., Lakshmi, T., Singh, D., and
Rajendran, R. (2021). Learning about learners: Un-
derstanding learner behaviours in software conceptual
design tele. In 2021 International Conference on Ad-
vanced Learning Technologies (ICALT), pages 297–
301. IEEE.

Nishane, I., Singh, D., Rajendran, R., and Sridhar, I. (2023).
Does learner mindset matter while learning program-
ming in a computer-based learning environment? In
2023 International Conference on Technology for Ed-
ucation (T4E). IEEE.

Piech, C., Sahami, M., Koller, D., Cooper, S., and Blikstein,
P. (2012). Modeling how students learn to program. In
Proceedings of the 43rd ACM technical symposium on
Computer Science Education, pages 153–160.

Price, T. W., Zhi, R., and Barnes, T. (2017). Hint gener-
ation under uncertainty: The effect of hint quality on
help-seeking behavior. In Artificial Intelligence in Ed-
ucation: 18th International Conference, AIED 2017,
Wuhan, China, June 28–July 1, 2017, Proceedings 18,
pages 311–322. Springer.

Rajendran, R., Munshi, A., Emara, M., and Biswas, G.
(2018). A temporal model of learner behaviors in oe-
les using process mining. In Proceedings of ICCE,
pages 276–285.

Reimann, P., Frerejean, J., and Thompson, K. (2009). Using
process mining to identify models of group decision
making in chat data.

Rivers, K. and Koedinger, K. R. (2017). Data-driven hint
generation in vast solution spaces: a self-improving
python programming tutor. International Journal of
Artificial Intelligence in Education, 27:37–64.

Saint, J., Gašević, D., and Pardo, A. (2018). Detecting
learning strategies through process mining. In Eu-
ropean conference on technology enhanced learning,
pages 385–398. Springer.

Sedrakyan, G., De Weerdt, J., and Snoeck, M. (2016).
Process-mining enabled feedback:“tell me what i did
wrong” vs.“tell me how to do it right”. Computers in
human behavior, 57:352–376.

Sosnovsky, S. and Brusilovsky, P. (2015). Evaluation
of topic-based adaptation and student modeling in
quizguide. User Modeling and User-Adapted Inter-
action, 25:371–424.

Winne, P. H. and Nesbit, J. C. (2009). Supporting self-
regulated learning with cognitive tools. In Handbook
of metacognition in education, pages 259–277. Rout-
ledge.

Yogev, E., Gal, K., Karger, D., Facciotti, M. T., and Igo, M.
(2018). Classifying and visualizing students’ cogni-
tive engagement in course readings. In Proceedings
of the Fifth Annual ACM Conference on Learning at
Scale, pages 1–10.

CSEDU 2024 - 16th International Conference on Computer Supported Education

96


