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Abstract: Individual mobility is an essential element of a prosperous society. Multimodal transportation can offer greater
time, cost, and environmental efficiency than relying on a single mode of transport. Personalized itinerary
planning is crucial to enhance the appeal of multimodal transport. Our proposed approach for recommending
personalized itineraries tailors them by integrating diverse mobility preferences, routing services, and calibrat-
ing parameters of these services to provide individualized options. We optimize itineraries within the existing
routing services and available data. The aim of this approach is to enhance travel experiences, making them
more efficient, cost-effective, and aligned with each traveler’s unique needs and preferences. The approach
was evaluated in a mid-sized German city by analyzing real-world mobility preferences, available routing
services, and mobility providers. Personalization criteria relevant to the evaluation area were selected. A sim-
ulation was conducted, which demonstrated a 10.48% increase in travel utility when compared to the shortest
path itinerary recommendation.

1 INTRODUCTION

Individual mobility is essential in advancing soci-
etal well-being, particularly in promoting work-life
balance. Multimodal transportation can be a cost-
effective and time-efficient alternative to a reliance on
a single transport mode in urban areas, reducing traf-
fic congestion and enhancing overall travel satisfac-
tion. Personalized travel suggestions can improve the
appeal of multimodal transportation by incorporating
the diverse preferences individuals consider when se-
lecting a route. These preferences, which may change
based on situational context or travel purpose, can
also vary throughout the day or within a route.

When choosing a route, individuals take into ac-
count a variety of mobility preferences, whether con-
sciously or unconsciously. However, the routing rec-
ommendation systems can only integrate preferences
that it can evaluate and interpret. For example, pref-
erences such as the “behavior of cyclists” may be im-
portant for car drivers, but their integration depends
on available data, which may not be uniformly col-
lected in all regions of the world. Incorporating such
preferences will not enhance personalization if the
system cannot assess them. In addition, each pref-
erence introduces a new optimization criterion, which

requires an estimation of its importance to the indi-
vidual users.

This paper addresses these challenges by conduct-
ing an analysis of mobility preferences and propos-
ing a unified itinerary recommendation system with
a multi-stage personalization strategy that integrates
diverse preferences, transport modes, and routing ser-
vices. To achieve this, we propose a strategic se-
lection process for integrating multiple routing ser-
vices into a unified system. The proposed approach
aims to incorporate a specific subset of routing ser-
vices that maximizes the overall number of supported
personalization options and travel modes. Further-
more, the paper presents an algorithm for identifying
utility-maximizing parameterization of the selected
routing services. Finally, our proposed approach ad-
dresses the issue of overchoice, where individuals are
faced with too many options, making the decision-
making process overwhelming. This is achieved by
dynamically estimating the optimal routes for indi-
vidual users based on their mobility preferences and
presenting the user with only the top three routes.

We evaluate our approach in a medium-sized
German city, where we analyze travelers’ mobility
preferences, available routing services, and mobility
providers. As an example, we identify a specific sub-
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set of mobility preferences and routing services that
can be integrated into the travel planner in the evalua-
tion region. Finally, we integrate the selected services
into a unified itinerary recommendation platform and
perform simulations on a real-world transport net-
work using real-time travel information to evaluate
the effectiveness of our proposed approach.

2 RELATED WORK

Recently, multiple frameworks for personalized rout-
ing have been developed. In (Nuzzolo and Comi,
2016), researchers proposed a utility-based approach
for path suggestions that considers individual mobil-
ity preferences, improving path advice performance
over using average preferences. The FAVOUR frame-
work, which offers personalized route recommenda-
tions based on situational awareness, has been intro-
duced in (Campigotto et al., 2016). This method con-
sists of three stages: the initialization stage, which
chooses one of a few initial profiles based on gen-
eral user information; the second stage, which per-
sonalizes the profile further through a stated pref-
erence survey; and the third stage, where the pro-
file is continuously updated through analysis of ac-
tual choices the users make. The method proposed in
(Lathia et al., 2012) focuses on personalized user ex-
periences by utilizing a hypernetwork that intercon-
nects private and public transport networks. It opti-
mizes advice based on individual preferences and for
different modes of transport. The system generates
customized routes for users based on factors such as
speed, cost-effectiveness, convenience, and environ-
mental impact. Personalized parameters are loaded
to the network to generate routes for each individual
case and user.

While the approaches mentioned above focus
on developing a personalized itinerary recommenda-
tion framework, our approach suggests an alternative
method for offering extensive personalization options
within a single platform without requiring the devel-
opment of a new routing service. This can be achieved
by integrating multiple services into a unified plat-
form. A similar system has been introduced in (Spi-
tadakis and Fostieri, 2012). A WISETRIP planner is
an innovative multimodal journey planner that inte-
grates multiple journey planners by providing a com-
munication interface to connect heterogeneous plan-
ners. The approach introduced in (Esztergár-Kiss
et al., 2022) aims to create mobility solutions and
establish multimodal transport networks that connect
different systems. This is achieved by identifying ap-
propriate exchange points between separate networks

to implement the routing algorithm using various lo-
cal journey planners. In contrast to the approach pre-
sented in this paper, the aforementioned approaches
do not address the issue of the parameters calibration
of the integrated services.

3 PERSONALIZED ITINERARY
RECOMMENDATION SYSTEM

In order to integrate a wide range of mobility pref-
erences, transport modes, and routing services in a
unified platform, we propose a personalized itinerary
recommendation system with a multi-stage personal-
ization approach, as depicted in Figure 1. In the ini-
tial step, user preferences are obtained through sim-
ple surveys and choice experiments. Subsequently,
in the preprocessing phase, relevant data is gathered
from external sources. Personalization rules, derived
from user preferences and gathered data (e.g., avoid-
ing cycling if it is raining), are applied to prune pos-
sible travel options. In the following phase, external
routing services are requested using the start and des-
tination addresses specified by the user and a utility-
maximizing parameterization that is tailored specifi-
cally to individual user preferences. In the final post-
processing phase, routes are prioritized based on their
utility for a specific user and preference profile. The
best three options are then selected and visualized to
the user. Subsequent sections will provide a detailed
description of each stage, including the necessary ini-
tialization and implementation steps, as well as a de-
scription of the functionality and workflow for each
stage.

3.1 Creation of Preference Profile

The preference profile enables the definition and esti-
mation of individual mobility preferences of the users.
These preferences can vary depending on the region
of operation.

3.1.1 Initialization and Configuration

The prerequisite for implementing the preference pro-
file is the analysis of the accessibility of single pref-
erences in the region of operation. To achieve effec-
tive personalization, it is crucial for the system to fil-
ter out inaccessible preferences, such as the compliant
behavior of other road users, and focus solely on pref-
erences with relevant available data. To identify such
preferences, one must first establish their interpreta-
tion and then the source of the data for that prefer-
ence. Attributes like safety need interpretation spe-
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Figure 1: Multi-stage Personalisation Process.

cific to each mode. For instance, safety while cycling
can be interpreted as the number of left turns, dis-
tance traveled along motorized roads, or the number
of accidents on a specific route. Preferences should
be considered in the personalization process if one of
the following conditions is met:

• The preference can be used as a means of pre-
selecting a transportation option, such as avoiding
biking in the rain.

• At least one routing service provides the neces-
sary personalization option, such as wheelchair
accessibility.

• Preference can be evaluated by utilizing available
data sources, such as user input (e.g., the presence
of a driver’s license) or open data (e.g., air qual-
ity).

3.1.2 Workflow and Functionality

In our itinerary recommendation system, users first
register by providing basic sociodemographic infor-
mation and static preferences that remain constant
across different trip contexts, such as mobility im-
pairment. Users can then create separate preference

profiles for different situational contexts, incorporat-
ing dynamic preferences that adjust based on these
contexts. For example, a profile labeled as “travel”
may require the accommodation of luggage, while a
profile labeled as “night travel” may prioritize illumi-
nated paths. Static preferences are set during regis-
tration but can be modified within situational prefer-
ence profiles to reflect changes, such as traveling with
someone who has a mobility impairment. The system
proposed in (Nuzzolo and Comi, 2016) distinguishes
between rule-based preferences, which can be easily
defined by users through simple surveys (such as a
maximum number of transfers), and more complex
preferences (such as “security” or “reliability”) that
lack a direct rule-based application and require pri-
oritization or comparison for optimization. Further-
more, these preferences may conflict with each other.
Utility theory can be used to represent conflicting ob-
jectives by quantifying the importance of each pref-
erence (Campigotto et al., 2016; Nuzzolo and Comi,
2016). The utility of a route is calculated as the sum
of weighted utilities for each route attribute, address-
ing conflicting criteria. The utility function of a route
r is illustrated in Equation 1, where β is a baseline
utility, αai is a binary value, depicting the relevance
of the attribute ai to the mode of the route (e.g., traffic
is irrelevant for the train routes; therefore α will take
the value of 0), βai is the weight of the corresponding
attribute ai. The utility of a route U(r) is the sum of
weighted attributes ai.

U(r) = β+
N

∑
i=1

ai ∗βai ∗αai (1)

Quantifying the importance of a wide variety of pref-
erences can be complicated and time-consuming for
a user. Therefore, we propose the iterative approach
for learning individual user preferences based on the
approach outlined in (Campigotto et al., 2016). The
initial sociodemographic data is employed to estab-
lish default weights of the preferences. For example,
the speed parameter could be determined based on the
average speed for a specific gender and age. A more
sophisticated strategy involving transfer learning, as
suggested in (Campigotto et al., 2016), can be em-
ployed to initialize user preferences. An alternative
method for initializing the default weights is to uti-
lize the weights obtained from surveys conducted in
the operation region. These default weights can be
further adjusted for each individual user using choice
experiments (Campigotto et al., 2016). The method
used in this study for generating choice experiments
and estimating individual utility functions based on
the results of these experiments is described in (Wins
et al., 2024) and follows the method outlined in (Lou-
viere et al., 2008).
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3.2 Preprocessing

The preprocessing phase is responsible for filtering
travel options before the actual optimization process.
The filter criteria are derived from the available data
and rule-based constraints defined in the preference
profile.

3.2.1 Initialization and Configuration

In order to customize the route, data needs to be gath-
ered from different services, such as Breezometer for
weather and air quality. The choice of these services
depends on the travel region. To enable preprocess-
ing, the analysis and integration of the available ser-
vices in the operational region must be conducted dur-
ing implementation.

3.2.2 Workflow and Functionality

Based on the selected preference profile and travel de-
mand, the travel options and requested routing ser-
vices are filtered in the preprocessing phase. In the
first step, data required for the personalization (e.g.,
weather) is requested from various services available
in the region of operation. In the subsequent step,
appropriate transport modes and routing services are
determined based on the user preferences and avail-
able data (including real-time data). For instance, if
a user prefers not to cycle during pollination, modes
involving cycling (bike, bike-sharing, bike and ride)
will be eliminated from further consideration. Fur-
thermore, routing services are selected based on the
required personalization options and available data.
For instance, if a user prefers public transport and
wheelchair accessibility, only services with these op-
tions are chosen. However, preferences relying on
real-time data, such as weather and pollination, may
not be used if information is unavailable at the re-
quest time. Therefore, service selection should con-
sider not only feature support, like avoiding specific
streets when computing the route but also data avail-
ability.

3.3 Calibration of Routing Services

The third phase of our proposed approach to comput-
ing personalized itineraries involves requesting rout-
ing services that support the specified personalization
options and desired travel modes and cover the re-
quired areas. To achieve route personalization, map-
ping of the mobility preferences from the selected
profile to the routing request parameters of each re-
quested routing service is essential.

3.3.1 Initialization and Configuration

The first prerequisite for the implementation of the
routing calibration stage is the selection of the rout-
ing services to integrate into the itinerary recommen-
dation platform. Routing services such as Brouter and
OpenTripPlanner(OTP) offer extensive customization
of algorithm parameters to cater to diverse user needs.
However, due to their complexity, integrating these
services requires time to understand their features
through documentation and source code. In contrast,
services like Naviki offer predefined profiles, such as
leisure and mountain biking, without the option to ad-
just internal parameters. This simplifies use but limits
personalization.

To identify the most effective combination of rout-
ing services for a specific region, an analysis should
be conducted to determine the intersection of routing
services that maximize the support for preferences,
modes, and region coverage without causing a neg-
ative impact on performance. Although routing ser-
vices can be requested concurrently, prolonged pro-
cessing time for a single service may adversely affect
the overall system performance. Thus, routing ser-
vices should be selected under consideration of the
trade-off between supporting additional features and
maintaining optimal performance.

The second prerequisite for the implementation of
the routing calibration stage is the integration of var-
ious routing services in the system. We propose us-
ing the Adapter Pattern (Gamma, 1995) for this pur-
pose. This pattern assists in adapting the interface of
the itinerary planner to various routing service inter-
faces. Each newly added routing service requires an
adapter implementation that supports routing requests
and provides information on the supported prefer-
ences, transport modes, and regions. This data is uti-
lized during the preprocessing stage to determine the
suitable routing services. Additionally, the adapter
consolidates routing responses and returns them to the
itinerary planner in a unified data format.

3.3.2 Workflow and Functionality

The personalization of routing can be achieved
through the utility-maximizing calibration of the pa-
rameters of routing services. In this process, users’
mobility preferences are mapped onto the technical
parameters of the respective routing services. These
mappings can be complex due to variations in pa-
rameter value ranges, data types and sensitivities. To
overcome these issues, we suggest a parameter cal-
ibration approach based on simulated annealing and
utility theory.

The proposed approach, which is based on the
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method described in (Teodoro et al., 2017), involves
identifying and pruning non-influential parameters
while simultaneously auto-tuning influential param-
eters. To enhance calibration performance, a sensi-
tivity analysis is conducted to prune non-influential
parameters - those with minimal or no impact on
the routes - and exclude them from further analysis.
This pruning step can substantially reduce the search
space. Parameter calibration is performed individ-
ually for each preference profile and transportation
mode. This is necessary because certain parameters
may only be relevant for specific modes and prefer-
ence profiles. For example, preferences such as bi-
cycle speed are only relevant to modes such as bik-
ing, bike-sharing, and bike-and-ride. It is also cru-
cial to consider the interactions between parameters
to ensure accurate calibration. For instance, giving
equal weight to conflicting parameters such as “scenic
route” and “fastest route” may lead to unsatisfactory
outcomes. Resolving conflicting parameterization of-
ten relies on the internal algorithms of the routing ser-
vice being used. To address this problem, it is crucial
to identify an appropriate parameter mapping.

For sensitivity analysis, we propose using the
Morris Method (Morris, 1991) to evaluate the impact
of changes in individual parameters on routing. As-
sessing the impact based on a single route can be mis-
leading due to route variability, including the avail-
ability of direct public transport connections. There-
fore, we propose a systematic selection of multiple
routes across the evaluation region, aiming for com-
prehensive coverage that considers the trade-off be-
tween high-quality results and the computational effi-
ciency of the analysis. These routes form a test set T .
We consider parameters that affect at least one route
as influential, recognizing that changes to parameters
can affect routes differently.

To assess the elementary effect of a parameter
pi, routes are generated for start and destination
using the default parametrization of a routing ser-
vice Pa = {p0, ...pia ...pn}. Subsequently, routes are
computed with an alternative parametrization Pb =
{p0, ...pib ...pn}, where pia ̸= pib , generated based on
the Morris Method, while keeping all other parame-
ter values unchanged. The resulting routes Ra and Rb
under parametrizations Pa and Pb are then compared.
Initially, the comparison is based on spatial factors,
particularly the area enclosed by the two routes Ra
and Rb (see Figure 2). Subsequently, the compari-
son focuses on temporal factors. The temporal factors
considered are:

• Difference in the start times of routes Ra and Rb.
• Difference in the end times of routes Ra and Rb.
• Duration of routes Ra and Rb

Route ARoute B

Area between routes

Figure 2: Area between two routes.

Input: Pde f ault = default parametrization
T = set of start/end coordinates
U(x) = utility function
N = maximum iterations

Result: utility-maximizing parametrization
Pmax

Pmax← null;
Pcurrent ← Pde f ault ;
while i← 0 to N do

if (Pmax ̸= null) then
pi← random({p0, ..p j, ..pn} ∈
Pcurrent)

val←
random(set o f possible pi values)

Pcurrent .pi← val
end
sum← 0
forall t in T do

r← computeRoute(t,Pcurrent)
u←U(r)
sum← sum+u

end
f (Pcurrent)← sum/T.size()
if Pmax = null or f (Pcurrent)> f (Pmax)

then
Pmax← Pcurrent ;

end
end

Algorithm 1: Simulated Annealing.

After completing the sensitivity analysis and prun-
ing non-influential parameters, the subsequent step is
auto-tuning the remaining parameters. Similar to the
sensitivity analysis, the auto-tuning process is carried
out for a selected mode, preferences profile, and test
set T . We suggest employing Simulated Annealing
for the auto-tuning process. The pseudocode of the
used algorithm is outlined in Algorithm 1. Neigh-
bours are generated by randomly choosing a param-
eter pi and then randomly selecting a value from the
value range associated with that parameter pi. The
fitness function is determined by the utility function
of a chosen preference profile, as defined in Equation
1. To compute the fitness of a new parametrization
Pcurrent , routes are requested for every combination
of start and destination coordinates from the test set
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T using the parametrization Pcurrent . The utility of
each calculated route is then evaluated using the util-
ity function U(x) corresponding to the selected pref-
erence profile. The fitness of the new parametrization
f (Pcurrent) is calculated as the mean of the utilities
across all generated routes from test set T .

Once the utility-based parametrization is com-
puted, it can be used to request personalized routes
for individual users and preference profiles.

3.4 Postprocessing

In the postprocessing phase routes are consolidated
and rated based on user preferences. Postprocessing
begins with the consolidation of responses: these are
transformed into a single format whereby duplicates
are eliminated. The remaining routes are rated and
prioritised based on the selected preference profile.
To avoid overchoice, the user is presented with only
three routes with the highest utilities. The actual route
choice of a user can be used to update the utility func-
tion of the preferences profile using the method de-
scribed in (Campigotto et al., 2016).

4 EVALUATION

The evaluation of the proposed approach was carried
out in a mid-sized city in Germany. Initially, we cre-
ated training and validation sets T and T ′ by dividing
the evaluation region into 30 equal grids. We have de-
fined the geofence of the evaluation region as a quad-
rangle with the following coordinates: (49.08144;
8.34344), (49.08189; 8.55081), (48.95559; 8.54806),
(48.95491; 8.25967). The overall area of the evalua-
tion region is 254 km2, which we divided into 30 grid
areas of approximately 8.5 km2 each. From each grid,
two coordinates ti and t j are selected and added to co-
ordinate lists Ti and Tj, respectively. The training set
T is subsequently formed by considering all potential
combinations of coordinates from the list Ti, exclud-
ing those where the start and end destinations are the
same. The divergent validation set T ′ is formed anal-
ogously from the coordinates from the list Tj.

Regional routing services and mobility and data
providers were analyzed to select the mobility pref-
erences that can be integrated into itinerary planning
based on relevant data availability. Our proposed
itinerary planner considers several static preferences,
such as mobility impairment, subscriptions, payment
methods, favorite places and routes, and type of pri-
vate vehicle (e.g., electric or diesel car). This infor-
mation is gathered through a general survey, along
with basic sociodemographic data. The itinerary plan-

ner allows for the definition of multiple situational
preference profiles, which incorporate further prefer-
ences of two types: those with and without rule-based
application, as suggested in (Nuzzolo and Comi,
2016). The following preferences with rule-based ap-
plications have been integrated: luggage, maximum
number of transfers, minimum transfer time, car park
time, car pickup time, speed, maximum distance for
walking and cycling, and environmental friendliness.
The user can directly adjust the default values of these
preferences, which are based on the default values of
OTP (OpenTripPlanner, 2024).

The user’s utility function (see Equation 1) in-
corporates more complex preferences without rule-
based application. In our itinerary planner, we have
incorporated the following preferences into the util-
ity function: travel mode preference, travel time re-
luctance, travel cost reluctance, waiting time reluc-
tance, access and egress walk time reluctance, access
and egress mode preference, and elevation reluctance.
These preferences can be accessed through choice ex-
periments, as described in section 3.1, or learned by
the system based on the user’s previous choices (Ar-
entze, 2013) or transfer learning (Campigotto et al.,
2016). The preferences are then incorporated through
parameterization and calibration of routing services,
followed by prioritization of routes during the post-
processing phase.

It is important to note that the preferences in-
volved in routing parametrization and post-processing
may be different. For example, cycling speed is only
relevant for routing parametrization, not for evaluat-
ing route utility in the postprocessing phase. When
selecting preferences for routing parametrization, it is
important to examine the available routing services
in the evaluation region thoroughly. In our analy-
sis, we have considered the following routing ser-
vices: BlaBlaCar, Brouter, Cycle.travel, Graphhop-
per, HERE, Mapbox, MAPQUEST, Naviki, Open-
RouteService, OpenTripPlanner, Trassenfinder, Trias,
TripGo, TomTom. An analysis of the personalization
options and supported modes provided by each rout-
ing service has been conducted. This analysis identi-
fies the preferences applicable during the calibration
phase of routing services, which are detailed in Table
1. The selection of OTP, Valhalla, and TomTom con-
stitutes a minimal set of routing services that collec-
tively maximize the range of personalization options
in the evaluation region.

The route planning in this study focuses on inte-
grating parameters aligned with individual mobility
preferences, neglecting those that could influence the
performance of routing algorithms. For instance, such
parameters as “search window” have not been incor-
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Table 1: Routing parametrization.

Preference Routing Services Type
Mobility

impairment
OTP, Valhalla,
Trias, TripGo,
Graphhopper

RB

Travel time all F
Number of
transfers

OTP RB

Transfer time OTP RB
Transfer OTP F

Waiting time OTP F
Board with bike OTP F
Mode reluctance OTP F

Car park time, cost OTP RB
Car pickup time OTP RB

Speed OTP, Valhalla,
Brouter,

Graphhopper,
TomTom

RB

Distance
(walking/cycling)

all RB,
F

Elevation Brouter, Valhalla,
OTP

F

Road type (e.g.
highway)

Brouter, Valhalla F

Road condition
(e.g. paved)

Valhalla F

Existence of a
cycling path

Brouter, Valhalla F

Existence of a
sideway

Brouter, Valhalla F

Safety OpenTripPlanner F
Environmental

friendliness
TomTom RB

Windigness TomTom F
Hilligness TomTom F
Barriers Brouter, OTP F

porated. Routing services commonly employ both
rule-based preferences (e.g., speed) with direct as-
signments and preferences that can be calibrated to
match a user’s specific preferences or situational con-
text (e.g., walk reluctance). The latter type of parame-
ters is flexible and lacks universal values across differ-
ent routing services, requiring identification for each
specific service. The “Type” column in Table 1 spec-
ifies whether a preference is rule-based (RB) or flexi-
ble (F).

After selecting the routing services and defining
the utility function, the routing services calibration,
detailed in section 3.3, has been evaluated for OTP
(version 2.2). Considering space constraints, we will
solely present the results acquired for OTP for the bi-

cycle mode. The parameters “Car reluctance”, “Car
pickup cost” were not considered during the calibra-
tion for the bicycle mode. The sensitivity analysis re-
sults, both spacial and temporal, showed that the pa-
rameters “Bike switch cost” and “Optimize type” ap-
peared to have the most influence on the course of the
route. To account for this, the simulated annealing al-
gorithm was adjusted to modify this parameter more
frequently than the others. None of the parameters
was be excluded from further consideration.

To evaluate the effectiveness of the utility-based
auto-tuning approach in the bicycle scenario, we have
generated 100 utility functions u ∈U . The values of
the weights of route attributes have been randomly se-
lected from the range [-1; 0.1]. This range was se-
lected based on the results of the travel preferences
studies, such as (Arentze and Molin, 2013). As we are
conducting a simulation, we have set the base utility
β to zero for all utility functions. Subsequently, we
have performed calibration of OTP with each utility
function u ∈Ubike, for bicycle mode and a previously
defined training set T to obtain a utility-maximizing
parametrization for each particular utility function u∈
Ubike.

−60 −50 −40 −30 −20 −10 0

default

with utility

Figure 3: Average utility distributions of bicycle itineraries
with and without personalization.

To comprehensively evaluate the calibration re-
sults, we use a validation set T ′. Routes for the
mode bicycle are computed with OTP for each com-
bination of coordinates from the validation set T ′ us-
ing the default parametrization Pde f ault and the per-
sonalized parametrization Pu obtained from the cal-
ibration with the utility function u. For each route
ru computed using parametrization Pu and a route
rde f ault computed using parametrization Pde f ault , we
employ the utility functions u to estimate the utilities
of these routes, denoted as U(ru) and U(rde f ault) re-
spectively. The difference in utilities U(rde f ault) and
U(ru) is then compared to assess the enhancement
in satisfaction with the proposed route when utiliz-
ing the calibrated parametrization. On average, there
is a 10.48% improvement in utility. Figure 3 visually
presents the utility distributions for routes computed
with and without parameter calibration for OTP bi-
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cycle mode. Finally, a carried-out paired t-test with a
resulting p-value of 2.2e-16 ensured the statistical sig-
nificance of the observed differences, affirming that
it cannot be attributed to random fluctuations. How-
ever, it is essential to evaluate each routing service
separately to ensure that routing results based on cal-
ibrated parametrizations improve travel satisfaction.

5 CONCLUSIONS

Individual mobility is pivotal for societal well-being,
and multimodal transportation offers an efficient al-
ternative to exclusive car use in urban areas. The
process of personalizing travel suggestions based on
diverse preferences can enhance the attractiveness of
multimodal transportation. The proposed multi-stage
personalization approach exhibits the capability to ef-
ficiently integrate a broad range of mobility prefer-
ences and routing services. Leveraging the adapter
pattern makes it highly adaptable for different regions
worldwide. New operational regions can be inte-
grated by including additional routing services and
data sources in the system. The proposed routing cal-
ibration approach helps establish utility-maximizing
mapping rules for each preference profile and routing
service, which is particularly important for efficiently
exploiting the personalization capabilities of highly
customizable routing services. Additionally, a utility-
based comparison of routing options tailored to indi-
vidual users promises an enhanced user experience.
However, challenges persist, including managing ex-
tensive preferences, estimating their significance, and
ensuring data availability. An additional critical issue
is the quality of data, which can be addressed through
crowdsensing. The platform’s route recommendation
quality will improve with more users, mitigating the
need for a physical route assessment. Despite these
complexities, our proposed approach has the poten-
tial to enable the transition towards more personalized
and efficient itinerary recommendations in the realm
of mobility services.
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