
Hosting-Aware Pruning of Components in Deployment Models

Miles Stötzner a, Sandro Speth b and Steffen Becker c

Institute of Software Engineering, University of Stuttgart, Stuttgart, Germany

Keywords: Pruning, Hosting, Constraints, Deployment Models, Variability Management, TOSCA, EDMM, VDMM.

Abstract: The deployment of modern composite applications, which are distributed across heterogeneous environments,
typically requires a combination of different deployment technologies. Besides, applications must be de-
ployed in different variants due to varying customer requirements. Variable Deployment Models manage such
deployment variabilities based on conditional elements. To simplify modeling, elements, such as incomplete
relations or hosting stacks without hosted components, are pruned, i.e., automatically removed from the model
and, therefore, from the deployment. However, components whose hosting stack is absent are not automati-
cally removed. Manually ensuring the absence of these components is repetitive, complex, and error-prone.
In this work, we address this shortcoming and introduce the pruning of components without a hosting stack.
This hosting-aware pruning must be correctly integrated into the already existing pruning concepts since, oth-
erwise, a major part of the deployment is pruned unexpectedly. We evaluate our concepts by implementing a
prototype and by conducting a case study using this prototype.

1 INTRODUCTION

Manually managing the deployment of applications is
error-prone and complex (Oppenheimer et al., 2003;
Oppenheimer, 2003). Therefore, deployment tech-
nologies, such as Terraform and Ansible, automate
their deployment. Modern applications consist of
multiple components that are distributed across het-
erogeneous environments (Brogi et al., 2018). Their
deployment typically requires a combination of dif-
ferent deployment technologies (Guerriero et al.,
2019; Wurster et al., 2021), which all have their area
of application. Besides, applications must be de-
ployed in different variants due to varying customer
requirements, such as costs, elasticity, or required fea-
tures. This further increases the complexity when de-
ploying modern applications.

Variable Deployment Models (Stötzner et al.,
2022, 2023a) manage such deployment variabilities.
A Variable Deployment Model represents all possible
deployment variants of an application based on con-
ditional elements, i.e., application components, re-
lations, configurations, and component implementa-
tions. Conditions assigned to elements specify when
the elements are present in the model and, there-

a https://orcid.org/0000-0003-1538-5516
b https://orcid.org/0000-0002-9790-3702
c https://orcid.org/0000-0002-4532-1460

fore, in the deployment. To reduce manual model-
ing efforts, elements are pruned, i.e., automatically
removed from the deployment due to consistency is-
sues and semantic aspects (Stötzner et al., 2023c). For
example, a hosting component, such as Kubernetes, is
removed once no hosted components are present, such
as web applications, web servers, or databases.

However, hosted components themselves are not
automatically removed once their hosting stack is ab-
sent. Kubernetes typically hosts not only application
components but also operational components, such as
monitoring agents, logging agents, or reverse proxies.
Such operational components must be only present if
Kubernetes is present. Also, if application compo-
nents are absent but operational components are not,
then Kubernetes is not pruned. Manually modeling
conditions at all operational components to check for
the presence of Kubernetes is repetitive and error-
prone. Moreover, simply checking for the presence of
Kubernetes leads to circular conditions, which intro-
duces ambiguity and leads to the unexpected pruning
of elements (Stötzner et al., 2023c).

To address this manual modeling effort and the
ambiguity, we introduce the hosting-aware pruning of
components, which prunes hosted components once
their hosting components are absent while being in-
teroperable with existing pruning concepts. Our con-
tributions are as follows.

Stötzner, M., Speth, S. and Becker, S.
Hosting-Aware Pruning of Components in Deployment Models.
DOI: 10.5220/0012671900003711
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 14th International Conference on Cloud Computing and Services Science (CLOSER 2024), pages 65-76
ISBN: 978-989-758-701-6; ISSN: 2184-5042
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

65



(i) Hosting-Aware Pruning: We introduce the host-
ing pruning condition to prune components with-
out hostings. Therefore, we model persistent
components and constraints to ensure that compo-
nents and relations are not unexpectedly pruned.
Moreover, we minimize the number of compo-
nents to address ambiguity.

(ii) Evaluation: We evaluate our concepts by imple-
menting an open-source prototype and by con-
ducting a case study.

The remainder of this work is structured as follows.
In Section 2, we provide the required background and
introduce our motivating scenario. We contribute re-
quired building blocks in Section 3 and present the
final method for the hosting-aware pruning of com-
ponents in Section 4. In Section 5, we evaluate our
concepts by implementing a prototype and by con-
ducting a case study. Finally, in Section 6, we discuss
related work and conclude our work in Section 7.

2 BACKGROUND &
MOTIVATION

In the following, we introduce the required back-
ground and our motivating scenario. Based on this
scenario, we illustrate the shortcomings of pruning
components considering absent hostings.

2.1 Background

Manually managing the deployment of applications
is error-prone and complex. Therefore, deployment
technologies automate their deployment. However,
we also need to manage deployment variabilities due
to varying requirements.

2.1.1 Essential Deployment Models

Declarative deployment models (Endres et al., 2017)
automate the deployment of applications. These mod-
els require only modeling what should be deployed by
declaring the desired state and not how. Deployment
technologies, such as Terraform and Ansible, auto-
matically derive required deployment steps. However,
modern applications consist of multiple components
which are distributed across heterogeneous environ-
ments. Their deployment typically requires a combi-
nation of multiple deployment technologies. There-
fore, Essential Deployment Models (Wurster et al.,
2019) have been introduced. They are declarative de-
ployment models, which can be executed while us-
ing multiple deployment technologies in combina-

Deployment PhaseModeling Phase Enrichment Phase

Variable 
Deployment 

Model

Enriched
Variable Deployment

Model

Variability-Resolved
Deployment 

Model

Application
Instance

?1 2 3 4??

Figure 1: Managing deployment variability (simplified and
based on Stötzner et al. (2023c)).

tion (Wurster et al., 2021). The corresponding Essen-
tial Deployment Metamodel (EDMM) (Wurster et al.,
2019) consists of the following core elements.

• Components represent application components,
e.g., Node.js applications and virtual machines.

• Relations represent relationships between compo-
nents, e.g., hosting and connection relations.

• Properties represent configurations of compo-
nents and relations, e.g., RAM size and ports.

• Deployment artifacts represent implementations
of components, e.g., Node.js files and binaries.

2.1.2 Variable Deployment Models

Applications must be deployed in different variants
due to varying requirements, such as costs, elastic-
ity, and enabled features. Deployment technologies
typically support proprietary and non-interoperable
variability modeling concepts. Since we use multi-
ple deployment technologies in combination to de-
ploy modern applications, we require a holistic vari-
ability modeling layer across heterogeneous deploy-
ment technologies.

We introduced Variable Deployment Mod-
els (Stötzner et al., 2022, 2023a) to manage such
deployment variabilities based on modeling con-
ditional EDMM elements. The overall process
is given in Figure 1. In the modeling phase, the
modeler creates the Variable Deployment Model of
an application by modeling EDMM elements and
assigning variability conditions to them. Variability
conditions are expressions over variability inputs
representing varying requirements. In the enrichment
phase, the software component Condition Enricher
automatically generates and assigns pruning con-
ditions targeting consistency issues and semantic
aspects to the elements of the Variable Deployment
Model (Stötzner et al., 2023c). Therefore, the
modeler must not model them. In the deployment
phase, the operator assigns variability inputs, which
the software component Variability Resolver uses
to resolve variability automatically. The Variability
Resolver evaluates all conditions, removes elements

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

66



Shop
(Shop Component)

GCP Runtime
(GCP AppEngine)

Database
(MySQL Database)

GCP DBMS
(GCP CloudSQL)

Cloud Deployment Variant

js

GCP
(GCP Provider)

Shop
(Shop Component)

K8s Compute
(OpenStack VM)

Database
(MySQL Database)

OpenStack
(OpenStack Provider)

On-Premise Deployment Variant

js

Connection RelationDeployment ArtifactPropertyComponent (Type) Hosting Relation

K8s Monitor
(Node Exporter)

K8s Logger
(Fluent Bit)

K8s
(Kubernetes)

K8s DBMS
(MySQL DBMS)

Relation (Type)

Figure 2: The motivating scenario is either deployed on-premise using Kubernetes on a local OpenStack instance (on the left)
or in the cloud on the Google Cloud Platform (GCP) (on the right).

whose conditions do not hold, and conducts consis-
tency checks. As a result, an Essential Deployment
Model is generated, which is subsequently executed
to deploy the application with multiple deployment
technologies in combination. The corresponding
Variable Deployment Metamodel (VDMM) (Stötzner
et al., 2022, 2023a) extends EDMM as follows.

• Conditional elements represent elements, which
might have conditions assigned, i.e., components,
relations, configurations, and deployment arti-
facts.

• Variability inputs represent the context under
which variability is resolved.

• Variability conditions represent Boolean expres-
sions over variability inputs.

• Manual conditions represent manually assigned
variability conditions.

• Pruning conditions represent automatically as-
signed variability conditions.

The following pruning conditions are generated and
assigned to remove any inconsistent or semantically
incorrect element from the deployment automatically.

• Is any incoming relation present for components
with at least one incoming relation.

• Is any deployment artifact present for components
with at least one deployment artifact.

• Are the source and target present for relations.

• Is the container present for properties and deploy-
ment artifacts.

2.2 Motivating Scenario

In our motivating scenario, we manage the deploy-
ment of a webshop application. The webshop consists
of a shop component and a database. An overview
is given in Figure 2. The webshop can be either de-
ployed on-premise or on a public cloud provider and

is based on our motivating scenario for pruning ele-
ments (Stötzner et al., 2023c). We use this scenario
throughout our work to illustrate our concepts.

2.2.1 Deployment Variants

In the on-premise deployment variant, the webshop is
deployed using Kubernetes on a virtual machine on a
local OpenStack (OS) instance, as shown on the left
of Figure 2. This deployment variant is only appli-
cable if the virtual machine is capable of handling the
expected workload and if, e.g., due to compliance rea-
sons, the usage of a public cloud is not allowed. Due
to operational requirements, a monitoring agent and
a logging agent are additionally deployed on Kuber-
netes. These agents ship their monitoring data and
logs to external servers, which are not shown.

In the cloud deployment variant, the webshop is
deployed on the public cloud Google Cloud Plat-
form (GCP), as shown on the right of Figure 2. There-
fore, the shop component is deployed using GCP
AppEngine, and the database using GCP CloudSQL.
In this variant, we are not required to deploy a mon-
itoring agent or a logging agent since we can rely on
the respective capabilities provided by GCP.

There might be more deployment variabilities.
Depending on the customer, the webshop might be
differently implemented or configured (Stötzner et al.,
2023a). For the sake of simplicity, we restrict our sce-
nario to hosting variabilities.

2.2.2 Problem

The Variable Deployment Model of the webshop is
given in Figure 3. The shop component and the
database are present in all variants and have no condi-
tions assigned. Some elements are automatically re-
moved due to pruning and do not require manual con-
ditions. For example, Kubernetes is automatically re-
moved once all hosted components are absent. How-
ever, we must manually assign conditions to the mon-
itoring agent and the logging agent to be only present

Hosting-Aware Pruning of Components in Deployment Models

67



Shop Database
K8s 

Monitor
K8s 

Logger

K8s
GCP 

Runtime
GCP 

DBMS
VM

Open
Stack

K8s
DBMS

GCP

Variable Deployment Model

Manual Variability Condition Generated Variability Condition On-Premise? Cloud? Incoming Relation?

Hosting?Artifact?</> Container? Source and Target? Persistent

Unexpected Empty 
Deployment

Variant

∅

Figure 3: The Variable Deployment Model of our motivating scenario and the unexpected variant, which is derived indepen-
dently of the variability inputs (simplified). The legend already standardizes the visualization of all pruning conditions.

for the on-premise deployment. This is repetitive,
error-prone, and time-consuming. Thus, we automate
this and prune elements without hostings.

However, simply combining a pruning condition
checking for the presence of hosted components with
a pruning condition checking for the presence of host-
ing components leads to the unexpected removal of
the majority of the deployment model due to circu-
lar dependencies (Stötzner et al., 2023c). The Vari-
ability Resolver essentially tries to remove elements
while complying with the conditions and might de-
cide to remove Kubernetes. With Kubernetes being
absent, the virtual machine and OpenStack are re-
moved. When following the envisioned pruning of
components without hostings, the monitoring agent,
the logging agent, and the shop component are re-
moved. As a result, every element is always pruned
independently of the variability inputs. Therefore, in
this paper, we present concepts to prevent this.

3 BUILDING BLOCKS

Before we extend our Pruning Method (Stötzner et al.,
2023c) by the hosting-aware pruning of components,
we contribute several building blocks. These blocks
include, e.g., modeling constraints between elements
and minimizing the number of components to remove
components, which are not relevant.

3.1 Constraints

In the following, we introduce the concepts of con-
straints, which cross element boundaries to enforce
the presence of elements. We introduce concepts to
support modeling them, including the automated gen-
eration of hosting constraints.

1 function enrich(vdm: VariableDeploymentModel):

2 # Add relation constraints

3 for (relation of vdm.relations)

4 constraint = createRelationConstraint(relation)

5 vdm.constraints.add(constraint)

6
7 # Add hosting constraints

8 for (component of vdm.components)

9 constraint = createHostingConstraint(component)

10 vdm.constraints.add(constraint)

11
12 return vdm

Listing 1: The function for enriching a Variable
Deployment Model with constraints.

3.1.1 Constraint Enricher

We introduce the Constraint Enricher. The Constraint
Enricher is a software component that automatically
processes a given Variable Deployment Model dur-
ing the enrichment phase after the Condition Enricher.
The goal is to generate constraints to reduce man-
ual modeling efforts. For a better understanding, we
briefly introduce the executed logic. The used con-
cepts are introduced in the following sections.

The corresponding function enrich is given in
Listing 1. On a given Variable Deployment Model,
the Constraint Enricher first transforms relation con-
straints into variability constraints (Lines 3 to 5) to
simplify modeling constraints in which a component
implies a relation and then generates hosting con-
straints (Lines 8 to 10) to ensure that the hosting of
a present component is present.

3.1.2 Variability Constraints

Modeling constraints between elements is a known
concept, e.g., to model dependencies of features in
feature models (Kang et al., 1990). We use this
concept and introduce variability constraints between
VDMM elements. For example, the shop component

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

68



Shop
(Shop Component)

K8s
(Kubernetes)

Relation

Shop? & ⇒
Variable Deployment Model

Variability Constraint

Figure 4: The Kubernetes hosting relation of the shop com-
ponent is required for the on-premise variant (simplified).

Shop
(Shop Component)

K8s
(Kubernetes)

Shop
(Shop Component)

K8s
(Kubernetes)

Implied Relation

Implied Relation

&

Shop? & ⇒

Variable Deployment Model

Enriched Variable Deployment Model

Figure 5: The Kubernetes hosting relation of the shop com-
ponent modeled as implied relation (simplified).

requires the Kubernetes hosting for the on-premise
variant. Therefore, we model the variability con-
straint, which implies the presence of the relation un-
der the given condition, as given in Figure 4. How-
ever, we also need to model a variability condition at
the relation to ensure that the relation is absent for the
cloud variant. The modeled implication also ensures
the presence of Kubernetes: If Kubernetes is absent,
then the relation is pruned. This contradicts our mod-
eled constraint and, thus, is not allowed.

In contrast to variability conditions, variability
constraints can enforce the presence or the absence
of other elements, while variability conditions only
state the presence considering the element they are as-
signed to. We extend the Variability Resolver to eval-
uate constraints and require that all constraints must
be fulfilled when resolving variability.

3.1.3 Relation Constraints

Modeling variability constraints for relations requires
duplicating manual variability conditions, as shown in
Figure 4. Therefore, we automate this and introduce
relation constraints into VDMM. The Constraint En-
richer derives them from the variability conditions as-
signed to relations, which are implied by their source.
For example, the shop component implies the Kuber-
netes hosting relation for the on-premise deployment
variant, as shown in Figure 5.

The corresponding function createRelationCon-
straint is given in Listing 2. On a given relation, the
Constraint Enricher first checks if the relation is im-
plied (Line 3) and ignores this relation if not. Other-
wise, the Constraint Enricher constructs the relation
constraint (Lines 6 to 9), which implies the presence

of the relation if the relation source is present and
manual conditions hold.

1 function createRelationConstraint(relation:

Relation):

2 # Ignore relations that are not implied

3 if (!relation.isImplied()) return true

4
5 # Source and condition imply relation

6 conditions = relations.manualConditions

7 antecedent = {and: [relation.source.id,

conditions]}

8 consequent = relation.id

9 constraint = {implies: [antecedent, consequent]}

10
11 return constraint

Listing 2: The function for creating the relation constraint.

3.1.4 Hosting Constraints

Each component with a hosting relation requires this
hosting relation. Moreover, only a single hosting rela-
tion must be present. Manually ensuring these aspects
is repetitive and error-prone. For example, we must
model a corresponding constraint for the monitoring
agent, logging agent, Kubernetes, etc. Therefore, we
introduce hosting constraints into VDMM, which are
automatically generated constraints.

The Constraint Enricher automatically generates
and assigns hosting constraints to components with
hostings. The corresponding createHostingCon-
straint is given in Listing 3. If the component has
no hosting relations, then no constraint is gener-
ated (Line 3). Otherwise, all hosting relations are
collected (Lines 6 to 8). To ensure that only a single
hosting relation is present if the component is present,
they are joined by an xor and implied by the presence
of the component (Line 11). This also allows the Vari-
ability Resolver to select a hosting relation if no other
conditions or constraints are modeled.

1 function createHostingConstraint(component:

Component):

2 # Ignore components without hosting relations

3 if (component.hostingRelations.isEmpty()) return

true

4
5 # Add hosting relations

6 hostings = []

7 for (relation of component.hostingRelations)

8 hostings.add(relation.id)

9
10 # Component implies exactly one hosting relation

11 return {implies: [component.id, {xor: hostings}]}

Listing 3: The function for creating the hosting constraint.

Hosting-Aware Pruning of Components in Deployment Models

69



3.2 Pruning

To automatically remove components without hosts,
we introduce the pruning condition checking for the
presence of hostings. However, we require additional
concepts such as not-prunable components and select-
ing the smallest deployment model.

3.2.1 Pruning Components

We extend the Condition Enricher to ignore not-
prunable components and to generate conditions
checking for the presence of hostings. For a better un-
derstanding, we briefly introduce the executed logic.
Details are introduced in the following sections.

The corresponding function createPruningCondi-
tion extends the original function (Stötzner et al.,
2023c) and is given in Listing 4. On a given compo-
nent, the Condition Enricher checks if the component
is persistent (Line 5) and ignores it. Otherwise, the
Condition Enricher checks if the component has any
hosting relations (Line 8). If that is the case, the prun-
ing condition checking the presence of these relations
is generated. From here on, the Condition Enricher
proceeds unchanged. A pruning condition checking
for the presence of any incoming relation is gener-
ated if the component has at least one incoming rela-
tion (Line 11), and a pruning condition checking for
the presence of any deployment artifact is generated
if the component has at least one artifact (Line 12).
The component is only present if all conditions hold.
Therefore, they are joined by an and (Line 15).

1 function createPruningCondition(component:

Component):

2 conditions = []

3
4 # Ignore persistent components

5 if (component.isPersistent()) return true

6
7 # Add hosting pruning condition

8 if (!component.hostingRelations.isEmpty())

9 conditions.add(createHostingCondition(component))

10
11 # Add incoming relation pruning condition ...

12 # Add deployment artifact pruning condition ...

13
14 # All conditions must hold

15 return {and: conditions}

Listing 4: The function for creating the component pruning
condition (based on Stötzner et al. (2023c)).

3.2.2 Hosting Pruning

Components whose hostings are absent should be au-
tomatically removed from the deployment. This is
the ultimate goal of this paper. Therefore, we intro-

K8s Monitor
(Node Exporter)

K8s
(Kubernetes)

K8s Monitor
(Node Exporter)

K8s
(Kubernetes)

Hosting

Hosting

Variable Deployment Model

Enriched Variable Deployment Model

Figure 6: The monitoring agent is pruned when Kubernetes
is absent (simplified).

duce the host pruning condition into VDMM, which
checks if any hosting relation is present. The Con-
dition Enricher generates and assigns this condition
to components that have at least one hosting rela-
tion. For example, instead of manually assigning a
condition to the monitoring agent checking for the
on-premise deployment variant, no condition must be
modeled, as shown in Figure 6.

The corresponding function createHostingCondi-
tion is given in Listing 5. On a given compo-
nent, the Condition Enricher collects all hosting rela-
tions (Lines 3 to 5). If any hosting relation is present,
the component should be present. Therefore, relations
are joined by an or (Line 8).

1 function createHostingCondition(component:

Component):

2 # Add hosting relations

3 hostings = []

4 for (relation of component.hostingRelations)

5 hostings.add(relation.id)

6
7 # A single hosting is sufficient

8 return {or: hostings}

Listing 5: The function for creating the pruning condition
of a component with hosting relations.

3.2.3 Persistent Components

Simply combining the hosting pruning condition with
the existing pruning conditions leads to circles within
variability conditions: hosted components check for
their hosting while hosting components check for
hosted components. Such circles result in the un-
expected removal of the majority of the deployment
model (Stötzner et al., 2023c). When resolving vari-
ability, the Variability Resolver tries to remove el-
ements while complying with conditions and con-
straints. Therefore, the Variability Resolver might de-
cide to remove Kubernetes. As a result, the virtual
machine and OpenStack are removed. With our en-
visioned hosting-aware pruning of components, the
monitoring agent, the logging agent, and the shop
component are removed. As a result, every element is
pruned, and an empty unexpected variant is derived.

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

70



Shop

GCP 
Runtime

Database

GCP 
DBMS

Shop Database
K8s 

Monitor
K8s 

Logger

K8s

Shop Database
K8s 

Monitor
K8s 

Logger

K8s
GCP 

Runtime
GCP 

DBMS

Shop Database
K8s 

Monitor
K8s 

Logger

K8s
GCP 

Runtime
GCP 

DBMS

On-Premise Deployment Variant Unexpected Deployment Variant Cloud Deployment Variant

Variable Deployment Model

✓✗✓

On-Premise

Cloud 

Shop Database
K8s 

Monitor
K8s 

Logger

K8s
GCP 

Runtime
GCP 

DBMS

Intermediate Variability-Resolved Variable Deployment Model

Figure 7: An isolated graph of coexistences leads to an unexpected deployment variant (simplified).

Shop
(Shop Component)

Database
(MySQL Database)

Shop
(Shop Component)

Database
(MySQL Databse)

Connection

Connection

Variable Deployment Model

Enriched Variable Deployment Model
Shop? ⇒

Figure 8: The shop component is modeled as a persistent
component (simplified).

Therefore, we introduce persistent components
into VDMM, which cannot be pruned. They essen-
tially give a presence impluse and enforce, in combi-
nation with constraints, the presence of required el-
ements. For example, the shop component is con-
sumed by users and should never be removed from
the deployment. Therefore, we annotate the compo-
nent as persistent, as shown in Figure 8. As a result,
the Condition Enricher ignores the component and
does not generate any pruning conditions. With the
presence of the shop component, the presence of the
database connection is ensured. But also, the presence
of the database is ensured since otherwise assigned
constraints and conditions would be contradicted.

3.2.4 Optimization

With persistent components, we only prevent circles
at annotated components. However, we introduced
more circles and ambiguities. For example, a condi-
tion generated for the monitoring agent checks for the
presence of its hosting while the pruning condition at
Kubernetes checks for the presence of any incoming

relations, as shown at the bottom of Figure 6.
We describe such scenarios as coexistences since

these components only exist if their co-component ex-
ists while missing a presence impulse, e.g., by a per-
sistent component or by an implied incoming rela-
tion. Therefore, these components are not relevant
and should be automatically removed.

Considering our motivating scenario, if the on-
premise deployment variant is required, then the shop
component enforces the presence of Kubernetes. As a
result, the monitoring and logging agents are present,
as shown at the bottom left of Figure 7. If the cloud
deployment variant is required, then the shop compo-
nent enforces the presence of GCP. However, this re-
sults in an isolated graph of on-premise components
consisting only of coexistences, as shown at the top
right of Figure 7. Two possible deployment variants
can be derived: the shop component hosted on GCP,
as shown at the bottom right of Figure 7, and the shop
component hosted on GCP along with Kubernetes,
the monitoring agent, and the logging agent, as shown
at the bottom middle of Figure 7. The last deployment
variant is unexpected and occurs due to an underspec-
ification of variability conditions and constraints.

One way to address this is to model additional
conditions and constraints manually. However, we
propose to minimize the number of components when
resolving variability. Since circles are allowed to be
removed, we remove them to reduce the number of
components. This results in the Variability Resolver
removing any coexistence and has the positive side-
effect of reducing the overall deployment complexity,
which typically reduces costs and execution time.

However, this does not completely address am-

Hosting-Aware Pruning of Components in Deployment Models

71



Modeling Phase Enrichment Phase

Variable 
Deployment Model

?1

Variability-Resolved
Deployment Model

5

Application
Instance

7

Enriched Variable 
Deployment Model I

2 ??

Enriched Variable
Deployment Model II

3 ???

!

Variability
Inputs

4

Modeler Operator
Condition
Enricher

Variability
Resolver

Deployment
Technologies

Constraint
Enricher

Deployment Phase

Operator

!

Deployment
Inputs

6

Figure 9: The Hosting-Aware Pruning Method. Differences from the original Pruning Method are presented in dark gray (fig-
ure based on Stötzner et al. (2023c)).

biguity issues. There may be multiple minimal
Variability-Resolved Deployment Models. We re-
quire that the Variability Resolver aborts in such cases
to ensure that variability is always resolved consis-
tently. The approach could be extended to incorporate
other elements, such as relations, to reduce this risk.

3.2.5 Circle-Based Incoming Relation Pruning

There are two different variants of the incoming rela-
tion pruning condition for components: one that leads
to circles and one that mitigates them (Stötzner et al.,
2023c). In the original Pruning Method, the circle-
mitigating variant is used. However, since we have
the concepts of optimization, persistent components,
and constraints in place, we use the circle-based in-
coming relation pruning condition, which improves
modeling in some edge cases. In these edge cases,
the Variability Resolver can now decide, due to the
hosting constraints and circles, how to prune. For
example, an application is either hosted on a static
host along with its database or on an elastic host, as
shown in Figure 10. With the circle-mitigating vari-
ant, the Variability Resolver cannot resolve variability
due to the hosting constraints and the fact that, by de-
sign, the elastic host cannot be pruned. However, with
the circle-based incoming relation pruning, the Vari-
ability Resolver is allowed to choose between the two
hostings of the app.

App

Elastic

Variable Deployment Model Deployment Variant

DB

Static

App DB

Static

Figure 10: The Variability Resolver can derive a deploy-
ment variant (simplified).

3.3 Checks

The Variability Resolver conducts consistency checks
to assess that the generated model conforms to
EDMM. We extend this resolver to check that each
component has exactly one deployment artifact if it
had at least one deployment artifact assigned before
resolving variability. In addition, the resolver checks
that the same aspect considering incoming relations.

4 HOSTING-AWARE PRUNING

With our building blocks in place, we extend our orig-
inal method and present the Hosting-Aware Pruning
Method. This method has the following steps. An
overview is given in Figure 9.

Step 1: Create Model. The modeler creates the Vari-
able Deployment Model. In contrast to the original
method, the modeler can use variability constraints
and implied relations. Moreover, the modeler must
not consider the removal of components without host-
ings and the modeling of hosting constraints. How-
ever, at least one persistent component is required.

Step 2: Enrich Conditions. The Condition Enricher
enriches the Variable Deployment Model. In contrast
to the original method, the Condition Enricher gen-
erates the hosting pruning condition for components
and ignores persistent components.

Step 3: Enrich Constraints. The newly introduced
Constraint Enricher enriches the Variable Deploy-
ment Model by generating relation constraints and
hosting constraints.

Step 4: Assign Variability Inputs. The operator as-
signs the variability inputs as described in the original
method. This step might also be automated.

Step 5: Resolve Variability. The Variability Re-
solver derives the Variability-Resolved Deployment
Mode under given variability inputs. In contrast to

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

72



the original method, the Variability Resolver also con-
siders constraints. Moreover, the Variability Resolver
minimizes the number of components. To ensure that
variability is not resolved differently in different runs
under the same inputs, the Variability Resolver aborts
if there are multiple minimums.

Step 6: Assign Deployment Inputs. The operator as-
signs the deployment inputs, e.g., access credentials.
This step has not been explicitly mentioned before.

Step 7: Deploy Application. The Variability-
Resolved Deployment Model, which is an Essential
Deployment Model, is executed as described in the
original method.

5 EVALUATION

We evaluate our concepts by implementing a proto-
type and by conducting a case study. The prototype
and the model of the case study are open-source and
publicly available on Zenodo1 and GitHub2.

5.1 Prototype

Our prototype is based on OpenTOSCA Vint-
ner (Stötzner et al., 2022, 2023a,b,c). OpenTOSCA
Vintner is a preprocessing and management layer for
TOSCA (OASIS, 2020). TOSCA is an open standard
for the orchestration of cloud applications. Thereby,
EDMM is implemented by TOSCA Light (Wurster
et al., 2020), an EDMM-compliant subset of TOSCA.
Moreover, VDMM is implemented by Variabil-
ity4TOSCA (Stötzner et al., 2022, 2023a,b,c), which
extends TOSCA by conditional elements and the
pruning of them. OpenTOSCA Vintner supports ex-
ecuting TOSCA models based on orchestrator plug-
ins. Plugins for the open-source TOSCA orchestra-
tors Unfurl3 and xOpera4 are implemented.

OpenTOSCA Vintner implements the Condition
Enricher and Variability Resolver. We extend Open-
TOSCA Vintner as follows. First, we extend the Con-
dition Enricher implementation to generate the host-
ing pruning condition and to ignore persistent com-
ponents. Then, we implement the Constraint En-
richer. Also, we extend the Variability Resolver,
which is based on the open-source satisfiability solver
MiniSat5, to respect variability constraints, to mini-
mize the number of components and to abort if there

1https://doi.org/10.5281/zenodo.10452506
2https://github.com/OpenTOSCA/opentosca-vintner
3https://github.com/onecommons/unfurl
4https://github.com/xlab-si/xopera-opera
5http://minisat.se

Shop Database
K8s 

Monitor
K8s 

Logger

K8s
GCP 

Runtime
GCP 

DBMS

Figure 11: The hosting-aware Variable Deployment Model
of our motivating scenario (simplified).

are multiple minimums. Therefore, we assign each
component a weight of one and minimize the sum of
all weights using the underlying satisfiability solver.

5.2 Case Study

We evaluate the technical feasibility of our con-
cepts by conducting a case study using our prototype.
Therefore, we model the variability of the webshop,
resolve the variability, and deploy the webshop. We
show that our concepts are functional and that our ex-
tensions to the method and prototype are working.

5.2.1 Modeling Phase

In the modeling phase, we take the modeler’s role
and model the Variability4TOSCA model of the web-
shop, as depicted in Figure 11. We must model at
least one persistent component and choose the shop
component. Also, we model the constraint that the
shop component always requires a database connec-
tion. Last, we model conditions at the hosting rela-
tions of the shop component, checking for the corre-
sponding variant. Due to the hosting-aware pruning,
we do not need to model any other variabilities.

5.2.2 Execution Phase

In the execution phase, we take the operator’s role
and deploy the webshop on-premise. We use the
CLI of OpenTOSCA Vintner to import the Variabil-
ity4TOSCA model and to state that we require the on-
premise variant. OpenTOSCA Vintner automatically
enriches the Variability4TOSCA model, resolves the
variability, minimizes the number of components, re-
moves absent elements, conducts consistency checks,
and generates a TOSCA model. Then, we provide
additional inputs required for the deployment, e.g.,
access credentials to OpenStack, and OpenTOSCA
Vintner instructs Unfurl to execute the generated
TOSCA model. As a result, a virtual machine is
started on OpenStack, and Minikube is installed as
Kubernetes on this virtual machine. Finally, the shop,
database, monitoring agent, and logging agent are in-
stalled on Kubernetes.

Hosting-Aware Pruning of Components in Deployment Models

73



5.2.3 Discussion

In contrast to the original method, our concepts re-
duce the number of manual variability conditions
from six to two. However, we must model one per-
sistent component and one relation constraint. Hence,
the number of variability concepts that must be mod-
eled is reduced from six to four. These numbers de-
pend on the explicit scenario. However, our approach
is of value, whenever many coexistences occur.

5.3 Modeling Hints

We assume that, in most cases, the modeler requires
relation constraints. Therefore, we recommend using
relation constraints instead of relying on conditions.

We recommend modeling manual conditions at
hosting relations if there are different hostings avail-
able. Otherwise, variability might not be resolved as
expected. Considering the example from Figure 10, a
variant in which the application is hosted on the elas-
tic host is impossible. The database is always present
and, therefore, the static host. Thus, the static hosting
between the application and the static host must be
present since, otherwise, there is a contradiction with
the pruning conditions at this relation. A condition at
the static hosting of the application must be modeled
to ensure its absence when desired. A condition at the
elastic hosting of the application is not sufficient.

6 RELATED WORK

Software product line engineering (Pohl et al., 2005;
Pohl and Metzger, 2018) is a methodology for man-
aging the variability of software. Typically, con-
straints between features are modeled as feature mod-
els (Kang et al., 1990) while reusable artifacts are
implemented, whose components have conditions as-
signed linked to features. Based on a given feature
configuration representing, e.g., a customer configu-
ration, the product, i.e., the software, is generated. A
general approach of such product lines for structural
models has been proposed (Groher and Voelter, 2007;
Voelter and Groher, 2007). Our method essentially
implements such a product line for Essential Deploy-
ment Models while focusing on modeling reusable ar-
tifacts and the generation part.

Czarnecki and Antkiewicz (2005) use manual and
default conditions to manage the variability of mod-
els. They propose post-processing the derived model
to patch or simplify it. In contrast, pruning pre-
processes models before variability is resolved. Wę-
sowski (2004) also discuss post-processing derived

models, e.g., to remove unused state machines of a
state chart. Post-processing methods for deployment
models (Harzenetter et al., 2020; Soldani et al., 2022;
Knape, 2015; Soldani et al., 2015) can be integrated
into our method.

Over the last decades, there has been plenty of
research in the area of product line engineering and
UML (Ziadi et al., 2004; Clauß and Jena, 2001; Ju-
nior et al., 2010; Korherr and List, 2007; Dobrica
and Niemelä, 2008, 2007; Sun et al., 2010). Typi-
cally, the variability of UML models is modeled us-
ing UML stereotypes and the UML Object Constraint
Language. In comparison, we also use the concept of
constraints to model dependencies between VDMM
elements. However, we focus on simplifying model-
ing variability by pruning elements.

There is various research in the domain of deploy-
ment optimization (Kichkaylo and Karamcheti, 2004;
Hens et al., 2007; Fehling et al., 2010; Glaser, 2016;
Tsagkaropoulos et al., 2021; Zhu et al., 2021; An-
drikopoulos et al., 2014; Leymann et al., 2011). Typ-
ically, these works optimize the deployment consid-
ering costs, resource consumption, energy consump-
tion, service qualities, etc. Thereby, for example, sim-
ilar to us, Hens et al. (2007) model a constraint to
ensure that each component has exactly one host. In
contrast to these works, we utilize optimization to ad-
dress ambiguity when pruning elements.

Pruning elements simplifies modeling variability.
Loesch and Ploedereder (2007) and Von Rhein et al.
(2015) also propose methods to simplify variability.
However, these methods are used for restructuring
and debugging variability, whereas we simplify mod-
eling variability in the first place.

Other research (Boucher et al., 2010; Dehlinger
and Lutz, 2004; Krieter et al., 2023; Faust and Ver-
hoef, 2003) uses the terminology pruning in the do-
main of product line engineering, however, with an-
other meaning. For example, Faust and Verhoef
(2003) propose a method to merge changes applied
to derived variants back into the product line.

To conclude, we base on established concepts.
However, we use, combine, and adapt them in our do-
main to manage the variability of deployment models
while focusing on reducing manual modeling efforts.

7 CONCLUSION

To address the manual modeling effort of modeling
hosting conditions at components, we introduce the
hosting-aware pruning of components. Therefore, we
annotate components to be persistent and model con-
straints between elements to prevent the unexpected

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

74



removal of elements of deployment models. More-
over, we minimize the number of components to ad-
dress ambiguity. To evaluate the technical feasibility
of our concepts, we implement a prototype and con-
duct a case study. Concluding, our concepts reduce
the manual modeling effort and support the modeler.

However, our approach requires a variety of un-
derlying concepts. Integrating additional concepts
and ensuring that they are interoperable is challeng-
ing. To this end, we think we have reached the limits
of pruning elements in deployment models.

In future work, we plan to evaluate the cognitive
load when modeling. Moreover, we plan to optimize
the deployment considering, e.g., deployment time.

ACKNOWLEDGEMENTS

This publication was partially funded by the German
Federal Ministry for Economic Affairs and Climate
Action (BMWK) as part of the Software-Defined
Car (SofDCar) project (19S21002).

REFERENCES

Andrikopoulos, V., Gómez Sáez, S., Leymann, F., and Wet-
tinger, J. (2014). Optimal Distribution of Applications
in the Cloud. In Proceedings of the 26th International
Conference on Advanced Information Systems Engi-
neering (CAiSE 2014), pages 75–90. Springer.

Boucher, Q., Classen, A., Heymans, P., Bourdoux, A., and
Demonceau, L. (2010). Tag and Prune: A Pragmatic
Approach to Software Product Line Implementation.
In Proceedings of the 25th IEEE/ACM International
Conference on Automated Software Engineering, ASE
’10, page 333–336. ACM.

Brogi, A., Canciani, A., and Soldani, J. (2018). Fault-aware
management protocols for multi-component applica-
tions. Journal of Systems and Software, 139:189–210.

Clauß, M. and Jena, I. (2001). Modeling variability with
UML. In GCSE 2001 Young Researchers Workshop.
Springer.

Czarnecki, K. and Antkiewicz, M. (2005). Mapping Fea-
tures to Models: A Template Approach Based on Su-
perimposed Variants. In Generative Programming and
Component Engineering, pages 422–437, Berlin, Hei-
delberg. Springer.

Dehlinger, J. and Lutz, R. R. (2004). Software fault tree
analysis for product lines. In Eighth IEEE Interna-
tional Symposium on High Assurance Systems Engi-
neering, 2004. Proceedings., pages 12–21.

Dobrica, L. and Niemelä, E. (2007). Modeling Variabil-
ity in the Software Product Line Architecture of Dis-
tributed Services. In Proceedings of the 2007 Interna-
tional Conference on Software Engineering Research
& Practice, SERP, pages 269–275. CSREA Press.

Dobrica, L. and Niemelä, E. (2008). A UML-Based
Variability Specification For Product Line Architec-
ture Views. In Proceedings of the Third Interna-
tional Conference on Software and Data Technolo-
gies. SciTePress.

Endres, C., Breitenbücher, U., Falkenthal, M., Kopp, O.,
Leymann, F., and Wettinger, J. (2017). Declarative vs.
Imperative: Two Modeling Patterns for the Automated
Deployment of Applications. In Proceedings of the 9th

International Conference on Pervasive Patterns and
Applications (PATTERNS 2017), pages 22–27. Xpert
Publishing Services.

Faust, D. and Verhoef, C. (2003). Software product line
migration and deployment. Software: Practice and
Experience, 33(10):933–955.

Fehling, C., Leymann, F., and Mietzner, R. (2010). A
Framework for Optimized Distribution of Tenants in
Cloud Applications. In Proceedings of the 2010
IEEE International Conference on Cloud Computing
(CLOUD 2010), pages 1–8. IEEE.

Glaser, F. (2016). Domain Model Optimized Deployment
and Execution of Cloud Applications with TOSCA. In
System Analysis and Modeling. Technology-Specific
Aspects of Models, pages 68–83, Cham. Springer In-
ternational Publishing.

Groher, I. and Voelter, M. (2007). Expressing Feature-
Based Variability in Structural Models. In Workshop
on Managing Variability for Software Product Lines.

Guerriero, M., Garriga, M., Tamburri, D. A., and Palomba,
F. (2019). Adoption, Support, and Challenges of
Infrastructure-as-Code: Insights from Industry. In
2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 580–589.

Harzenetter, L., Breitenbücher, U., Falkenthal, M., Guth, J.,
and Leymann, F. (2020). Pattern-based Deployment
Models Revisited: Automated Pattern-driven Deploy-
ment Configuration. In Proceedings of the Twelfth
International Conference on Pervasive Patterns and
Applications (PATTERNS 2020), pages 40–49. Xpert
Publishing Services.

Hens, R., Boone, B., de Turck, F., and Dhoedt, B. (2007).
Runtime Deployment Adaptation for Resource Con-
strained Devices. In IEEE International Conference
on Pervasive Services, pages 335–340. IEEE.

Junior, E. A. O., de Souza Gimenes, I. M., and Maldonado,
J. C. (2010). Systematic Management of Variability
in UML-based Software Product Lines. J. Univers.
Comput. Sci., 16(17):2374–2393.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E.,
and Peterson, A. S. (1990). Feature-oriented domain
analysis (FODA) feasibility study. Technical report,
Carnegie-Mellon Univ Pittsburgh Pa Software Engi-
neering Inst.

Kichkaylo, T. and Karamcheti, V. (2004). Optimal
resource-aware deployment planning for component-
based distributed applications. In Proceedings of the
13th IEEE International Symposium on High Perfor-
mance Distributed Computing, pages 150–159. IEEE.

Knape, S. (2015). Dynamic Automated Selection and De-
ployment of Software Components within a Heteroge-

Hosting-Aware Pruning of Components in Deployment Models

75



neous Multi-Platform Environment. Master’s thesis,
Utrecht University.

Korherr, B. and List, B. (2007). A UML 2 Profile for Vari-
ability Models and their Dependency to Business Pro-
cesses. In 18th International Workshop on Database
and Expert Systems Applications (DEXA 2007), pages
829–834.

Krieter, S., Krüger, J., Leich, T., and Saake, G. (2023).
VariantInc: Automatically Pruning and Integrating
Versioned Software Variants. In Proceedings of the
27th ACM International Systems and Software Prod-
uct Line Conference - Volume A, SPLC ’23, page
129–140. ACM.

Leymann, F., Fehling, C., Mietzner, R., Nowak, A., and
Dustdar, S. (2011). Moving Applications to the Cloud:
An Approach based on Application Model Enrich-
ment. International Journal of Cooperative Informa-
tion Systems, 20(3):307–356.

Loesch, F. and Ploedereder, E. (2007). Optimization of
Variability in Software Product Lines. In 11th In-
ternational Software Product Line Conference (SPLC
2007), pages 151–162. IEEE.

OASIS (2020). TOSCA Simple Profile in YAML Version
1.3. Organization for the Advancement of Structured
Information Standards (OASIS).

Oppenheimer, D. (2003). The importance of understanding
distributed system configuration. In Proceedings of
the 2003 Conference on Human Factors in Computer
Systems workshop.

Oppenheimer, D., Ganapathi, A., and Patterson, D. A.
(2003). Why do internet services fail, and what can
be done about it? In 4th Usenix Symposium on Inter-
net Technologies and Systems (USITS 03).

Pohl, K., Böckle, G., and van der Linden, F. (2005). Soft-
ware Product Line Engineering. Springer Berlin Hei-
delberg.

Pohl, K. and Metzger, A. (2018). Software Product Lines,
pages 185–201. Springer International Publishing,
Cham.

Soldani, J., Binz, T., Breitenbücher, U., Leymann, F., and
Brogi, A. (2015). ToscaMart: A method for adapting
and reusing cloud applications. Journal of Systems
and Software, 113:395–406.

Soldani, J., Breitenbücher, U., Brogi, A., Frioli, L.,
Leymann, F., and Wurster, M. (2022). Tailor-
ing Technology-Agnostic Deployment Models to
Production-Ready Deployment Technologies. In
Cloud Computing and Services Science. Springer.

Stötzner, M., Becker, S., Breitenbücher, U., Kálmán, K.,
and Leymann, F. (2022). Modeling Different De-
ployment Variants of a Composite Application in a
Single Declarative Deployment Model. Algorithms,
15(10):1–25.

Stötzner, M., Breitenbücher, U., Pesl, R. D., and Becker,
S. (2023a). Managing the Variability of Component
Implementations and Their Deployment Configura-
tions Across Heterogeneous Deployment Technolo-
gies. In Cooperative Information Systems, pages 61–
78, Cham. Springer Nature Switzerland.

Stötzner, M., Breitenbücher, U., Pesl, R. D., and Becker, S.
(2023b). Using Variability4TOSCA and OpenTOSCA
Vintner for Holistically Managing Deployment Vari-
ability. In Proceedings of the Demonstration Track at
International Conference on Cooperative Information
Systems 2023, volume 3552 of CEUR Workshop Pro-
ceedings, pages 36–40. CEUR-WS.org.

Stötzner, M., Klinaku, F., Pesl, R. D., and Becker, S.
(2023c). Enhancing Deployment Variability Manage-
ment by Pruning Elements in Deployment Models. In
Proceedings of the 16th International Conference on
Utility and Cloud Computing (UCC 2023). ACM.

Sun, C., Rossing, R., Sinnema, M., Bulanov, P., and Aiello,
M. (2010). Modeling and managing the variability of
Web service-based systems. Journal of Systems and
Software, 83(3):502–516.

Tsagkaropoulos, A., Verginadis, Y., Compastié, M., Apos-
tolou, D., and Mentzas, G. (2021). Extending TOSCA
for Edge and Fog Deployment Support. Electronics,
10(6).

Voelter, M. and Groher, I. (2007). Product Line Implemen-
tation using Aspect-Oriented and Model-Driven Soft-
ware Development. In 11th International Software
Product Line Conference (SPLC 2007), pages 233–
242. IEEE.

Von Rhein, A., Grebhahn, A., Apel, S., Siegmund, N.,
Beyer, D., and Berger, T. (2015). Presence-Condition
Simplification in Highly Configurable Systems. In
2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 1, pages 178–188.
IEEE.

Węsowski, A. (2004). Automatic Generation of Program
Families by Model Restrictions. In Software Product
Lines, pages 73–89. Springer.

Wurster, M., Breitenbücher, U., Brogi, A., Diez, F., Ley-
mann, F., Soldani, J., and Wild, K. (2021). Automat-
ing the Deployment of Distributed Applications by
Combining Multiple Deployment Technologies. In
Proceedings of the 11th International Conference on
Cloud Computing and Services Science. SciTePress.

Wurster, M., Breitenbücher, U., Falkenthal, M., Krieger, C.,
Leymann, F., Saatkamp, K., and Soldani, J. (2019).
The Essential Deployment Metamodel: A System-
atic Review of Deployment Automation Technolo-
gies. SICS Software-Intensive Cyber-Physical Sys-
tems, 35:63–75.

Wurster, M., Breitenbücher, U., Harzenetter, L., Leymann,
F., Soldani, J., and Yussupov, V. (2020). TOSCA
Light: Bridging the Gap between the TOSCA Speci-
fication and Production-ready Deployment Technolo-
gies. In Proceedings of the 10th International Con-
ference on Cloud Computing and Services Science
(CLOSER 2020), pages 216–226. SciTePress.

Zhu, L., Giotis, G., Tountopoulos, V., and Casale, G.
(2021). RDOF: Deployment Optimization for Func-
tion as a Service. In IEEE 14th International Confer-
ence on Cloud Computing (CLOUD), pages 508–514.
IEEE.

Ziadi, T., Hélouët, L., and Jézéquel, J.-M. (2004). Towards
a UML Profile for Software Product Lines. In Soft-
ware Product-Family Engineering. Springer.

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

76


