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Abstract:  Efficient query planning is crucial in large smart databases, where the complexity of joining tables can exceed 
a hundred. This paper addresses the pivotal role of cardinality estimation in generating effective query plans 
within a Database Management System (DBMS). Over the past decade, various estimation methods have been 
developed, yet their accuracy tends to decrease as the number of joined tables increases due to specific 
constraints and prerequisites. This paper introduces EVACAR, a novel cardinality estimation method rooted 
in the theory of approximate aggregate calculations. Unlike existing methods, EVACAR is designed to 
alleviate limitations associated with increasing table joins. Our method not only matches but often surpasses 
the accuracy of machine learning methods, achieving superior results for 75-88% of the evaluated queries 
(subplans). This advancement signifies a promising step towards optimizing query performance in large-scale 
smart databases. 

1 INTRODUCTION 

In the realm of modern Database Management 
Systems (DBMSs), the query optimizer serves as an 
indispensable component with the vital task of 
crafting top-tier SQL query execution plans. 
Cardinality estimation, known as CardEst, holds a 
key position in the optimization of queries. CardEst 
involves the proactive computation of record counts 
for all subplans within each query, providing the 
optimizer with the means to make informed choices 
regarding table join operations. The accuracy and 
efficiency of CardEst exert a profound influence on 
the quality of the resultant query plans. Recognizing 
its central importance in DBMSs, the CardEst 
problem has received extensive attention from both 
the academic and industrial communities. 

Cardinality Estimation is conventionally 
characterized as a statistical challenge (Han et al., 
2021). Consider a table, denoted as T, with attributes 
A = {A1, A2, ..., Ak}. Table T can represent either a 
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solitary relational table or a composite of joined 
tables. Underlying this framework, the assumption 
prevails that each attribute, Ai, for every 1 ≤ i ≤ k, falls 
into one of two categories: categorical, wherein 
values can be mapped to integers, or continuous. The 
comprehensive set of unique attribute values is 
signified as Di. For any search query, Q, executed on 
table T, a canonical representation emerges: Q={A1 ∈ 
R1 ∧ A2 ∈ R2 ∧ ... ∧ Ak ∈ Rk }, where Ri ⊆ Di serves 
as the specified constraints on attribute Ai (i.e., Ri acts 
as a filtering predicate). The cardinality, denoted as 
Card(T, Q), signifies the exact count of records within 
T that satisfy all the constraints imposed by Q. The 
fundamental objective of CardEst is to provide an 
accurate estimation of Card(T, Q) without the need to 
execute the query Q on the table T. 
 Within the existing literature, several CardEst 
methods can be categorized into three distinct classes: 
 1) Traditional Methods: These methods primarily 
rely on histograms and samples, finding widespread 
utilization in Database Management Systems 
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(DBMSs). They often hinge on simplified 
assumptions and heuristic expertise. A range of 
enhancements has been proposed to bolster their 
performance, such as: multivariate histogram-based 
techniques (Gunopoulos et al., 2005), correcting and 
self-tuning histograms, incorporating query feedback 
(Khachatryan et al., 2015), approaches for updating 
statistical summaries within the DBMS (Stillger et al., 
2001; Wu et al., 2018), sampling-based solutions 
including kernel density methods (Heimel et al., 
2015; Kiefer et al., 2017), index-based methods (Leis 
et al., 2017), and random walk-based techniques (Li 
et al., 2016; Zhao et al., 2018). Some novel 
methodologies, like the sketch-based approach (Cai et 
al., 2019), explore innovative directions in CardEst. 
 2) Query-Based Machine Learning (ML) 
Methods: These methods strive to train models that 
can estimate Card(T, Q) directly from a query. 
Advanced ML techniques have emerged, featuring 
more complex models like deep neural networks 
(DNNs) (Kipf et al., 2019) or gradient boosted trees 
(Dutt et al., 2019). 
 3) Data-Driven ML Methods: These methods 
exhibit query-agnostic characteristics by treating each 
tuple in table T as a point drawn from the joint 
distribution PT(A) = PT (A1, A2, ..., Ak). The 
probability corresponding to a query Q, PT(Q), can be 
formulated as PT(A1 ∈ R1 ∧ A2 ∈ R2 ∧ ... ∧ Ak ∈ Rk). 
The cardinality Card(T, Q) can be expressed as the 
product of PT(Q) and the size of table T. 
Consequently, the CardEst problem is reduced to 
modeling the Probability Density Function (PDF) 
PT(A) for the table T. A variety of ML-based models 
have been introduced for representing PT(A), 
including the deep autoregressive model (Yang et al., 
2020), trained Probabilistic Graphical Models 
(PGMs) such as Bayesian Networks (BN) (Wu et al., 
2020), a deep probabilistic model over database 
(RSPN) (Hilprecht et al., 2020), and a novel 
unsupervised graphical model (FSPN) (Zhu et al., 
2021). These methods differ in their estimation 
approaches. Recent proposals aim to integrate diverse 
ML methods based on queries and data (Wu et al., 
2021). 
 Currently, prevalent open-source and commercial 
DBMSs predominantly employ two traditional 
CardEst methods: PostgreSQL and MS SQL Server 
utilize histograms, while MySQL and MariaDB make 
use of sampling. 
 Nonetheless, existing cardinality assessment 
methods suffer from various limitations, including: 
 Large evaluation times, scaling with the 

number of subplans in the original query. 
 Limiting table joins to attribute equality. 

 Joined tables shall form an acyclic graph. 
 Simplified assumptions and "magic" numbers 

for complex table filtering conditions. 
 Declining cardinality estimation accuracy as 

the number of joined tables increases. 
 Lacking solid methodological justification, 

often relying on heuristics. 
In addition to these limitations ML-based methods 

suffer from costly learning and tuning, selection-
based methods require dependency on indexes for 
foreign key joins, while histogram-based methods 
neglect correlations between selectivity and join 
attributes. 

This paper addresses these limitations by 
introducing a cardinality estimation method 
EVACAR grounded in the theory of approximate 
aggregate calculations (sum, count, etc.) (Zhang et 
al., 2016; Grigorev et al., 2021; Grigorev et al., 2022), 
effectively overcoming the shortcomings of existing 
approaches.  EVACAR method was implemented, 
based on the random selection of small blocks of 
tables and their subsequent join. It is at least as 
accurate and efficient as data-based machine learning 
methods like BayesCard (Wu et al., 2020), DeepDB 
(Hilprecht et al., 2020), and FLAT (Zhu et al., 2021). 

2 DEVELOPMENT OF METHODS 
FOR ESTIMATING THE 
CARDINALITY OF TABLE 
JOINS BASED ON SAMPLING 
FROM A FULL OUTER JOIN 

In the realm of database query optimization, the 
meticulous estimation of cardinality plays a pivotal 
role in enhancing the efficiency and accuracy of query 
execution. In this section, we delve into a novel 
approach for estimating the cardinality of subqueries, 
shedding light on a practical methodology to navigate 
the complexities of large join operations. 
 Method. Consider a set of subquery tables, 
denoted as Q=(Q1, Q2, ..., Qm), which partake in a join 
operation following the application of filtering 
conditions dictated by the SELECT statement. These 
tables are presented in a topological order as: 𝑐(𝑄) = 𝑐(𝑄ଵ, … , 𝑄௠) = |𝑄ଵ ⊳⊲ 𝑄ଶ … ⊳⊲ 𝑄௠| = ∑ ∏ 1ொೕ,௜ொೕி௜ୀଵ  . (1)

 Where F represents the number of rows in a full 
outer join (FOJ), and value 1Qj,i equals 0 if, in the i-th 
row of FOJ = (Q1⊲⊳Q2...⊲⊳Qm), the attributes of 
some Qj are equivalent to the empty symbol ∅, 
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signifying no join with the records from Qj. 
Otherwise, it is equal to 1. Note: ⊳⊲ is an inner and ⊲⊳ is a full outer join (FOJ). 
 One of the key advantages of FOJ approach is its 
ability to be sequentially constructed, traversing 
through the tree structure of tables, including Q1, Q2, 
..., Qm, as indicated in Figure 1a. It achieves this by 
preserving joins solely between immediately adjacent 
related tables in structures that share the same tree, 
without necessitating verification of join conditions 
from preceding tables. For example, Q1⊲⊳Q2, 
Q2⊲⊳Q3, Q3⊲⊳Q4, Q2⊲⊳Q5, Q1⊲⊳Q6, and 
Q6⊲⊳Q7. The execution of expression (1) is 
achieved through navigation across these structures. 
 Implementing the FOJ method is inherently time-
consuming and generating a uniform sample from the 
FOJ for approximate cardinality calculation (as in 
expression (1)) becomes a formidable challenge, 
especially in scenarios involving a significant number 
of tables within the join (Zhao et al., 2018). 

 
 

a) 
 

b) 

Figure 1: Implementation of a full outer join: a) without 
breaking up tables of subqueries Qj into blocks, b) with the 
breakdown of the original tables Tj into blocks Qj,i. 

This paper puts forward a distinct approach, 
emphasizing the partitioning of source tables Tj into 
logical blocks of records, followed by the selection of 
those blocks where records meet the filtering 
conditions. These blocks, represented as Qj,i, 
correspond to the i-th block of the j-th table, where j 
ranges from 1 to m, ⋃ 𝑄௝,௜௜ ⊆ 𝑇௝; ∀𝑖ଵ, 𝑖ଶ(𝑄௝,௜భ ∩𝑄௝,௜మ = ∅|𝑖ଵ ≠ 𝑖ଶ) (Figure 1b demonstrates one block 
for each table). Subsequently, the cardinality estimate 
is expressed as: 𝑐(𝑄) = ∑ 𝑐(𝑄ଵ,௜భ, … ,௜భ,...,௜೘ 𝑄௠,௜೘) =∑ 𝑐௚௚ୀ(௜భ,…,௜೘) .  (2)

In expression (2), the function c(x) adheres to the 
definition provided in (1). The summation spans 
across all feasible combinations of blocks (𝑄ଵ,௜భ, . . . , 𝑄௠,௜೘) ∈ 𝑅ଵ × 𝑅ଶ. . .× 𝑅௠ , where 𝑅௝ ={𝑄௝,௜}௜, set of blocks, Q j,i, whose records conform to 
the filtering conditions. 

However, it is important to acknowledge that the 
number of combinations (𝑄ଵ,௜భ, . . . , 𝑄௠,௜೘)  in 
expression (2) can become exceedingly large. To 
mitigate the computational burden, we harness the 
principles of approximate aggregate calculation 
theory (Zhang et al., 2016; Grigorev et al., 2021; 
Grigorev et al., 2022) for the summation in expression 
(2). 

With some probability πg , we select a 
combination of blocks g = (i1, ..., im) and build for 
them FOJ௚ = FOJ(𝑄ଵ,௜భ, . . . , 𝑄௠,௜೘) . For this FOJg , 
we calculate the cardinality 𝑐௚ = 𝑐(𝑄ଵ,௜భ, . . . , 𝑄௠,௜೘) 
using the formula (1). We repeat samples g n times. 
Next, we estimate the cardinality using the formula: 𝑐(𝑄, 𝑛) = ଵ௡ ∑ (௖೒గ೒)௚ . (3)

 As established in prior research (Grigorev et al., 
2022), 𝑐(𝑄, 𝑛)  ௡→∞ ሱ⎯⎯⎯⎯ሮ 𝑐(𝑄)  and ∀𝑛(𝐸(𝑐(𝑄, 𝑛)) =𝑐(𝑄)) , where E is the sign of the mathematical 
expectation. The estimate (3) is unbiased for any n. 
Interestingly, these properties are valid for any 
probability distribution {πg} satisfying the conditions ∑ 𝜋௚ = 1 ௚ and 𝑐௚ > 0 → 𝜋௚ > 0. 

For the purpose of establishing confidence 
intervals around the estimate expressed in formula 
(3), we draw upon the Student's t-distribution with (n 
- 1) degrees of freedom: 𝛥 = |௖(ொ)ି௖(ொ,௡)|௖(ொ) ≤ 𝑡௡ିଵ,ఈට ஽(௡)௖మ(ொ) ⋅ ଵ(௡ିଵ), (4)𝐷(𝑛) = (∑ (௖೒గ೒ − 𝑐(𝑄, 𝑛))ଶ௚ )/𝑛. (5)

Here, c(Q) = E(c(Q,n)) represents the mathematical 
expectation of c(Q,n), in essence, the true cardinality 
value. The coefficient tn-1,α is almost independent of n 
for n>121, and can be standardized to values 1.645, 
1.960, or 2.576 when α assumes values of 0.9, 0.95, 
or 0.99, respectively. 

It is imperative to acknowledge that the accuracy 
of the estimate c(Q,n) is significantly influenced by 
the probability distribution {πg} (Grigorev et al., 
2022). 

Independent random sampling of blocks from 𝑅௝ = {𝑄௝,௜}௜, j = 1... m . For ∀ g we have: 𝜋௚ = ∏ (1/ห𝑅௝ห)௠௝ୀଵ . (6)

Let us use the results of (Grigorev et al., 2022, 
formula (10)), and for a sufficiently large n rewrite (4): 𝛥 ≤ 𝑡௡ିଵ,ఈට( ே

сమ(ொ) ∑ 𝑐௚ଶ௚ − 1) ⋅ ଵ(௡ିଵ) , 𝑁 = 1/𝜋௚. 
(7)
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To simplify the analysis of the formula (7), 
assume that the cardinality value c (Q) is uniformly 
distributed over K combinations (chains) g =(i1 , ..., 
im). That is, with сg = c(Q)/K , |{g}|=K . Then we get: 𝛥 ≤ 𝑡௡ିଵ,ఈට(ே௄ − 1) ⋅ ଵ(௡ିଵ). (8)

It follows that the larger K, that is, the number of 
combinations g with non-empty block joins, the 
smaller the relative error Δ. 

3 ANALYZING METHOD FOR 
CARDINALITY ESTIMATION 
IN JOIN OPERATIONS: 
COMPARATIVE INSIGHTS 
AND TRADE-OFFS 

In this section, we present a cardinality estimation 
algorithm that can be employed to implement the 
Method, which was introduced in the preceding 
section. 

Figure 2a illustrates the conventional scheme for 
constructing a query plan and executing a database 
management system (DBMS) query. During the plan 
construction phase, the methods for retrieving records 
from source tables are determined, and the records 
themselves are accessed during query execution. 

In our Method, during the plan construction 
phase, we identify the methods for reading records 
from the source tables, and we read the records at this 
stage (Figure 2b). This approach enables more 
accurate estimation of the joined tables cardinality 
and leads to a more optimized query plan. The 
cardinality estimation Method implementation is 
detailed in Algorithm 1. 

After executing Algorithm 1, the query optimizer 
accesses each subplan S⊆Q to the card(S) function to 
evaluate cardinality. The card(S) function calculates 
the cardinality using the formula (3), where Q:=S , (1/𝜋௚) = 𝑁 = ∏ 𝑁௝௝:ொೕ∈ௌ , Nj=|Rj|. cg value is 
determined by navigating through the strg structures, 
which are prepared by Algorithm 1. The calculation 
of cg is carried out in accordance with the expression 
(1) for the FOJg . It can be considered that the query 
graph is cyclic (see below). 

 
a) 

 
b) 

Figure 2: Reading records from source tables: a) query 
execution stage, b) plan building stage. 

Algorithm 1: Independent Random Sampling of Blocks. 

Input: ' m ' subqueries (select) of the tables participating 
in the join; number of records in block Lj for the j-th 
subquery, j =1...m. 
Output: filled structures (strg) for cardinality estimation.
1 Opening cursors for all select subqueries. 

2 Defining for each subquery Qj: 1) number of records 
|Qj|,2) number of logical blocks Nj=|Qj|/Lj= |Rj|.

3 Cycle i=1... n // n - number of samples g 

4 Determination of random block numbers  
g=(i1,...,im),ij =Nj⋅random [0,1]. 

5 Reading blocks (Q1,i1,...,Qm,im) at offsets (i1,...,im) 
using cursors. | Qj,i |= L j . 

6

Navigating the query tree and performing a 
complete outer join of blocks Q1,i1, ..., Qm,im in 
accordance with the join condition; saving the 
compressed record numbers of child blocks in 
strg structures (the structures are joined in 
accordance with the query tree, Figure 1b).

7 End of cycle by i
8 Freeing memory allocated for blocks ( Q1,i1,..., Qm,im).

 
Let us note some important advantages of the 

Method. 
1) The blocks Qji are small, so their FOJg is fast. 
2) Algorithm 1 does not access database indexes, 

so their presence is not required. 
3) The condition for joining tables can be 

arbitrary, that is, it is not necessarily equality of keys. 
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Query Execution
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4) The accuracy of cardinality estimation and the 
running time of Algorithm 1 are controlled by the 
number of samples n and the block sizes Lj. It is 
simple to organize parallel sampling and processing 
of blocks. 

5) There are no problems with assessing the 
selectivity of the source tables since the records are 
joined after the subqueries are executed (Figure 2b). 

6) The strg structures are created once for the 
original query and then used to estimate the 
cardinality of all subplans S⊆Q without additional 
samples. 

But there are also disadvantages of the Method. 
The sample size n is limited, since the cardinality 

assessment time should be short. From (8) follows 
that if there are many sequences of blocks (i1, ..., im ) 
give an empty join (K is small) and the product of the 
number of blocks Nj is large (N is large), then the error 
in cardinality estimation Δ can be large. 

This disadvantage can be compensated by 
increasing the sample size n and parallel computation 
(3). 

Let us highlight two important advantages of the 
proposed Method. 

1) The cardinality of each subplan is estimated 
from the sample for the original query Q, meaning no 
additional overhead is required. 

Algorithm 1 builds a tree of structures strg, where 
the numbers of records of child blocks are stored in a 
compressed form after constructing the FOJg. Any 
subplan S is a subtree of the original query tree Q. 
Therefore, any subplan corresponds to a subtree in the 
tree of joined blocks and structures with record 
numbers (Figure 3). 

 
Figure 3: Tree of blocks and structures. 

The entire query is built, and then its subtrees are 
used to evaluate the cardinality of any subplan (see 
Algorithm 1). Therefore, evaluation of subplans is 
performed quickly. 

2) The join graph of query tables may contain 
loops. 

Existing methods allow one to estimate the 
cardinality of joins for an acyclic query graph 
(Figure 1a). But in practice, queries with cyclic graph 
are used. Let us look at an example of such a request: 

 
select * from A,B where A.a1=B.b1 
and A.a2> 
(select avg(C.c3) from C where 
B.b2=C.c1 and C.c2=A.a3); 

(9) 

 
It can be noted that the join conditions 

(A.a1=B.b1) - (B.b2=C.c1) - (C.c2=A.a3) form a 
cyclic graph A-B-C-A. In addition, attribute a2 is 
compared with the result of another select query 
based on the inequality condition. 

The main block includes join attributes: table 
block A - attribute a1, table block B - attributes b1 
and b2, table block C - attribute c1 (not shown in 
Figure 4). Together with the main blocks, we read the 
attributes a2, a3 (for A) and c2, c31 (for C), which 
form additional blocks of tables A and C (Figure 4). 
The values c31 are obtained by grouping the records 
of block C by c1, c2. 

As already mentioned, cardinality cg in the 
formula (3) is evaluated with expression (1). An 
additional condition can be imposed on 1Qj,i =1. Let 
there be a join of records (iA, iB, iC) of tables A, B, C. 
If for rows iA and iC of additional blocks of tables A 
and C an additional filtering condition is met (Figure 
4), then only in this case we set 1Qj,i = 1 and add 1 to 
the cardinality of the query. 

 
Figure 4: Scheme of additional filtering of record joins for 
example (9). 

4 EXPERIMENTAL 
EVALUATION 

In this chapter, we delve into the experimental results 
obtained from the implementation of the Method for 
estimating the cardinality of query subplans, ,which 
we refer to as EVACAR. The experiments were 
conducted on a virtual machine (VM) with Ubuntu 
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18.04.5 OS, powered by Intel Core i5 CPU, 4GB of 
RAM, and a 20GB disk. The EVACAR program was 
developed using the C language and compiled with 
the GCC compiler, resulting in a program size of 40 
KB. 

The primary dataset used for testing the Method 
was the STATS dataset (Han et al., 2021), specifically 
designed for evaluating Cardinality Estimation 
(CardEst) methods. This dataset exhibits intricate 
characteristics, including a high number of attributes, 
substantial distributed skewness, strong attribute 
correlation, and complex table join structures. 
Notably, some table key values can be linked to zero 
or one record in one table, while hundreds of records 
are associated with another table. We deployed the 
STATS database within the PostgreSQL 15 Database 
Management System (DBMS) and employed the 
libpq library to interface with the EVACAR prototype 
(Matthew et al., 2005). 

One of the most challenging queries in the STATS 
dataset is Query Q57 (Han et al., 2021), involving six 
table joins and several filtering conditions (we will 
call them subqueries). The query, represented below, 
served as a focal point for our assessments. 
SELECT COUNT(*) // Q57 
FROM posts as p, postLinks as pl, 
postHistory as ph, votes as v, 
badges as b, users as u 
WHERE p.Id = pl. RelatedPostId AND 
u.Id = p. OwnerUserId AND u.Id = b. 
UserId AND u.Id = ph. UserId AND 
u.Id = v.UserId 
AND p.CommentCount>=0 AND 
p.CommentCount<=13 
AND ph.PostHistoryTypeId=5 AND 
ph.CreationDate<='2014-08-13 
09:20:10'::timestamp 
AND v.CreationDate>='2010-07-19 
00:00:00'::timestamp 
AND b.Date<='2014-09-09 
10:24:35'::timestamp 
AND u.Views>=0 AND u.DownVotes>=0 
AND u.CreationDate>='2010-08-04 
16:59:53'::timestamp AND 
u.CreationDate<='2014-07-22 15:15 
:22'::timestamp; 

(10) 

Running Query Q57 on the virtual machine within 
the PostgreSQL environment took approximately 17 
minutes (measured considering interruptions by the 
host machine). In terms of pure virtual machine time, 
the query execution ran roughly 7 minutes, ultimately 
yielding 17,849,233,970 records. 

Table 1 below presents the characteristics of the 
tables involved in Query Q57.  

In the assessments, the 'users' table (No. 1 in Table 
1) was designated as the root table for evaluating the 
cardinality of query (10) and its subplans using the 
Method, as defined in Algorithm 1 (Section 3). 

Across all experiments, the product of the number of 
blocks was maintained at N = Πj =1...6 Nj = 105  (as 
indicated in Table 1), and the number of samples (g) 
was set at n = 10. The experiments aimed to 
investigate the impact of the number of blocks (1, 2, 
4) in the root subquery on the accuracy and time 
required for cardinality estimation, as denoted by 
options 1, 2, and 3 in Table 1. 

To evaluate accuracy, we employed the q-error 
estimate, as defined in (Leis et al., 2015): 𝑞 − 𝑒𝑟𝑟𝑜𝑟

= ൞𝑐௘௦௧௜௠௔௧௘𝑐௧௥௨௘ , 𝐼𝐹𝑐௘௦௧௜௠௔௧௘ ≥ 𝑐௧௥௨௘,− 𝑐௧௥௨௘𝑐௘௦௧௜௠௔௧௘ , 𝐼𝐹𝑐௧௥௨௘ > 𝑐௘௦௧௜௠௔௧௘, (11) 

where ctrue  represents the true cardinality value, and 
cestimate  signifies the estimated cardinality value. 
 Table 2 outlines the results of the experiments and 
presents confidence intervals for the q-errors of the 
EVACAR method. In Table 2, the second column 
signifies the subplan tables, each denoted by their 
respective numbers as presented in Table 1. For 
instance, subplan {1,5} represents a join of 
subqueries from the 'users' and 'posts' tables, while 
subplan {1,2,3,4,5,6} comprises all subqueries of the 
original query (10). The third column provides the 
actual cardinality values of these subplans. Columns 
4 to 6 depict the q-errors, representing the 
discrepancies between the true and estimated 
cardinality values when using the BayesCard (Wu et 
al., 2020), DeepDB (Hilprecht et al., 2020), and 
FLAT (Zhu et al., 2021) methods. 
 Columns 7 to 12 present the medians (M) and the 
boundaries of the 95% confidence intervals for q-
errors across the examined options 1, 2, and 3. These 
boundaries are derived from the results of 50 runs of 
Algorithm 1 (see the Method in Section 2) for each 
option. A specific notation system is employed for 
these options, formatted as "n10-uX-vY," where n = 
10 signifies the number of samples g, while X and Y 
represent the number of blocks associated with the 
'users' and 'votes' subquery tables, respectively. 
 An intriguing observation in Table 2 is that the 
lengths of the confidence intervals tend to increase 
with the number of blocks in the root subquery, 
ranging from 1 to 4.  

This phenomenon can be attributed to the 
substantial distributed skewness within the STATS 
dataset. This is explained by the fact that due to the 
strong distributed asymmetry of the STATS data set, 
the number of combinations g with non-empty block 
joins decreases, the N/K ratio in (8) increases, and the 
error Δ also increases. 
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Table 1: Characteristics of Query Tables. 

No. Table name 
Number of 
records in 

the database 

Number of 
records 

returned by 
subquery 

Block size (number of records) and number of blocks N j in 
experimental variants 

Option 1 Option 2 Option 3 
Size N j Size N j Size N j 

1 users 40,325 36,624 37,000 1 18,400 2 9,200 4 
2 badges 79,851 79,400 8,000 10 8,000 10 8,000 10 
3 postHistory 303,187 66,973 6,700 10 6,700 10 6,700 10 
4 votes 328,064 327,982 3,300 100 6,600 50 13,200 25 
5 posts 91,976 91,489 9,200 10 9,200 10 9,200 10 
6 postLinks 11,102 11,102 11,102 1 11,102 1 11,102 1 

Table 2: Experimental Results and Confidence Intervals for q-errors of the EVACAR Method. 

# Subplan 
queries 

Postgresql  
(ctrue) 

q -errors 
existing methods for 
assessing cardinality

Median (M ) and 95% confidence intervals (n.g. ÷c.g.) q -
errors of the new cardinality estimator ( EVACAR ) 

ba
ye

sc
a

rd
 

de
ep

db
 

 fla
t  

Option 1 
Q57-n10-u1-v100

Option 2 
Q57-n10-u2-v50 

Option 3 
Q57-n10-u4-v25 

M 95% M 95% M 95%
1 2 3 4 5 6 7 8 9 10 11 12
1 {1.5} 79,662 1.0 1.5 -1.0 0.1 -1 .1 ÷1.1 1.0 - 2.0 ÷1.5 -1.1 - 2.2 ÷1.9
2 {1,3} 58,416 -1.0 2.4 -1.1 0.1 -1 .1 ÷1.1 1.2 - 2.0 ÷1.4 0.0 - 2.2 ÷1.8
3 {1,4} 31,148 1.1 1.0 -1.1 0.0 -1.4 ÷1.2 1.0 - 2.0 ÷1.5 0.0 - 2.3 ÷1.7
4 {1,2} 71,547 1.0 -1.8 -1.0 0.0 -1.1 ÷1.1 1.0 - 3.4 ÷1.4 -1.1 - 3.5 ÷2.0
5 {1,5,6} 8,909 3.1 15.3 8.6 -1.1 -1.7 ÷1.4 1.1 - 3.9 ÷1.9 -1.1 - 4.2 ÷2.4
6 {1,5,3} 18,631,047 -1.0 1.0 -1.4 -1.0 -1.8 ÷1.4 1.0 - 3.0 ÷1.6 -1.1 - 4.6 ÷2.0
7 {1,5,4} 2,409,832 -1.2 -1.1 -1.4 0.0 -2.3 ÷1.8 1.1 - 4.1 ÷2.5 -1.1 - 7.2 ÷2.4
8 {1,5,2} 2,954,776 -1.1 1.1 -1.2 -1.0 -1.3 ÷1.4 1.1 - 1.9 ÷2.1 -1.1 - 3.5 ÷2.9
9 {1,3,4} 5,699,168 -1.2 -1.1 -1.6 -1.0 -1.7 ÷1.5 -1.1 - 3.2 ÷2.0 -1.4 - 6.3 ÷3.4
10 {1,3,2} 5,385,663 -1.0 -1.2 -2.2 0.0 -1.4 ÷1.3 1.1 - 4.2 ÷1.8 -1.1 - 6.1 ÷3.2
11 {1,4,2} 858,085 1.0 -2.1 -1.3 -1.1 -2.1 ÷1.5 1.0 - 3.5 ÷1.8 -1.1 - 4.7 ÷2.1
12 {1,5,6,3} 352,054 18.2 19.0 38.9 -1.2 -2.2 ÷1.8 -1.1 - 3.4 ÷3.0 -1.3 - 5.6 ÷2.2
13 {1,5,6,4} 130,192 1.4 22.2 13.2 -1.0 -3.2 ÷2.3 -1.1 - 3.4 ÷4.7 -1.3 - 9.5 ÷2.3
14 {1,5,6,2} 167,260 1.3 31.2 15.3 -1.1 -2.1 ÷2.1 1.1 - 4.1 ÷3.3 -1.5 - 8.0 ÷4.0
15 {1,5,3,4} 5,383,224,109 -1.2 -1.2 -1.8 -1.1 -4.5 ÷2.0 -1.1 - 4.6 ÷3.1 -2.0 - 17.7 ÷4.1
16 {1,5,3,2} 4,664,599,508 -2.2 -2.2 -2.4 -1.1 -2.3 ÷1.7 1.1 - 2.3 ÷2.0 -1.4 - 7.2 ÷3.6
17 {1,5,4,2} 488,657,174 -1.4 -1.4 -8.6 -1.1 -3.1 ÷2.3 -1.2 - 5.6 ÷2.6 -1.1 - 8.4 ÷5.0
18 {1,3,4,2} 1,389,418,172 -1.2 -1.2 -8.2 -1.1 -2.6 ÷1.8 -1.2 - 3.4 ÷2.5 -1.4 - 12.5 ÷4.1
19 {1,5,6,3,4} 67,575,395 23.1 23.1 44.2 -1.2 -6.9 ÷5.1 -1.5 - 8.6 ÷6.0 -2.7 - 28.8 ÷7.7
20 {1,5,6,3,2} 58,582,347 -3.6 -3.6 3.4 -1.2 -4.5 ÷2.3 -1.0 - 6.1 ÷4.1 -1.9 - 8.6 ÷3.3
21 {1,5,6,4,2} 9,726,255 -1.7 -1.9 -1.6 -1.3 -4.8 ÷4.8 -1.1 - 4.8 ÷3.5 -1.5 - 13.4 ÷7.2
22 {1,5,3,4,2} 1,375,709,726,310 -2.8 -2.8 -3.3 -1.1 -5.7 ÷3.4 -1.1 - 7.0 ÷4.8 -2.0 - 19.1 ÷9.0
23 {5,6} 10,959 1.4 2.2 1.0 -1.0 -1.6 ÷1.5 -1.0 - 2.1 ÷1.4 0.0 - 1.8 ÷1.6
24 {1,2,3,4,5,6} 17,849,233,970 -7.2 -7.2 2.4 -1.5 -9.8 ÷4.4 -1.6 - 14.7 ÷9.8 -3.4 -62.6 ÷12.7

 
The work (Han et al., 2021) highlights that data-

driven machine learning methods founded on 
Probabilistic Graphical Models (PGMs) deliver 
improved accuracy and performance in testing 
scenarios. These methods strike an optimal balance 
between the precision of cardinality estimation and 

the assumption of parameter independence. 
Consequently, this study undertook a comparison of 
such methods, specifically BayesCard, DeepDB, and 
FLAT. It is important to note that comparing these 
methods posed a challenge because the source 
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material (Han et al., 2021) only provides random 
cardinality values for subplans. 

To facilitate the comparison, q-errors were 
computed (as depicted in columns 4-6 of Table 2) and 
contrasted with the confidence intervals of q-errors 
pertaining to options 1, 2, and 3. To quantify this 
comparison, a metric was introduced: 𝑑 = 𝑚𝑎𝑥( |LL|,UL) − |𝑒||𝑒| . (12) 

Within this context, LL (Lower Limit) and UL 
(Upper Limit) represent the lower and upper bounds 
of the confidence interval for the q-error during the 
estimation of subplan cardinality, as delineated in 
columns 8, 10, and 12 of Table 2. Meanwhile, 
max(|LL|, UL) signifies the maximum q-error 
observed for the newly developed EVACAR method 
at a confidence level of 0.95, referred to as the 
maximum q-error. Additionally, |e| corresponds to the 
absolute value of the q-error encountered when 
estimating subplan cardinality using any of the 
compared methods. 

When assessing the new EVACAR method, the 
metric 'd' (12) was employed to discern its 
performance. This metric takes into consideration the 
relationship between the maximum q-error, observed 
with EVACAR, and the absolute q-error when using 
one of the compared methods.  
 Here is the interpretation of the metric 'd' in 
different scenarios: 

1) d≤0 signifies that the new EVACAR method 
surpasses the other methods under 
comparison. This outcome is deduced from 
the maximum q-error being smaller than the 
absolute q-error (|e|). 

2) 0<d≤k, it implies that the maximum q-error 
of EVACAR is comparable to |e| at a 
specified level 'k'. In such cases, the 
deviation from |e| is bounded by k⋅|e|. 

3) d>k, it indicates that the maximum q-error of 
EVACAR is not comparable to |e| at a level 
'k'. In this scenario, the deviation from |e| is 
higher than k⋅|e|. 

 For each of the three options (1, 2, and 3), the 
metric 'd' was calculated for the BayesCard (b), 
DeepDB (d), and FLAT (f) methods, in conjunction 
with the subplans outlined in Table 2. The distribution 
of the number of subplans categorized by their 'd' 
values is visually depicted in Figure 5. Utilizing this 
data, a comparative analysis was performed to 
evaluate the accuracy of cardinality assessment for 
the methods under consideration. This comparison is 
presented in terms of the percentage of subplans, as 
detailed in Table 3. 

 
Figure 5: Subplan number by 'd' value distribution. 

Table 3: Comparison of methods by accuracy (in % of the 
number of subplans in Figure 5). 
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 The analysis of Table 3 reveals that for option 1, 
the EVACAR method consistently outperforms the 
compared methods in terms of precision. Its 
maximum q-error is on par with these methods at a 
confidence level of "1" for a substantial majority of 
the evaluated subplans, ranging between 75% and 
88% (cumulative sum of lines 1 and 2 for Option 1). 
Furthermore, at a confidence level of "2," the 
EVACAR method demonstrates superior accuracy, 
aligning with 96% of the subplans (sum of lines 1, 2, 
and 3 for Option 1). 

4
11 10

3
8 8

1
6 6

14

8 11

8

7 7

3

3 3

5 4 2

5

5 7

4

3
6

1 1 1
8

4 2

16
12 9

0
4
8

12
16
20
24

b d f b d f b d f

Nu
m

be
r o

f s
ub

pl
an

s

Option 1        Option 2       Option 3

Distribution of the number of 
subplans by metric value d 

IoTBDS 2024 - 9th International Conference on Internet of Things, Big Data and Security

242



Table 4 and Table 5 present a detailed analysis of 
the computational and temporal characteristics of the 
established EVACAR method in comparison to the 
existing cardinality estimation techniques as outlined 
in (Han et al., 2021). 

Table 4: Space-time characteristics of compared cardinality 
estimation methods. 

 BayesCard DeepDB Flat
Average cardinality 
estimation time per 
subplan request, ms 

5.8 87 175 

Model size, MB 5.9 162 310
Training time, min 1.8 108 262
Model update time 
when inserting 106 

records into the DB, sec 
12 248 360 

The experiments featured in (Han et al., 2021) were 
executed on two distinct Linux servers, each tailored 
for specific purposes. The first server was equipped 
with 32 Intel(R) Xeon(R) Platinum 8163 processors, 
operating at 2.50 GHz, and boasted a Tesla GPU 
V100 SXM2 alongside 64 GB of RAM, primarily 
designated for model training. In contrast, the second 
server relied on 64 Intel(R) Xeon(R) E5-2682 
processors with the same clock speed, 2.50 GHz, for 
the cardinality estimation tasks related to 
PostgreSQL. It's important to emphasize that the 
experiments involving the EVACAR method were 
conducted on a virtual machine (VM) featuring a 
single Intel CPU Core i5 processor with 4GB of 
RAM. 
 When we focus on option 1, the EVACAR method 
emerges as remarkably time-efficient when compared 
to the Flat method for individual subplan requests. 
Specifically, it takes only 92 ms to process a subplan 
request, whereas the Flat method consumes nearly 

double the time, clocking in at 175 ms per request. To 
provide a more granular perspective, EVACAR 
dedicates a mere 90 ms to assessing the cardinality of 
24 subplans out of a total 2,200 ms, with the 
remainder of the time predominantly allocated to 
hashing table blocks. 
 Notably, the EVACAR method exhibits a 
substantially lower memory consumption in terms of 
RAM when contrasted with DeepDB and Flat. In the 
context of the first option, EVACAR utilizes a mere 
13.1 MB of memory, significantly less than 
DeepDB's 162 MB and Flat's 310 MB. It is essential 
to acknowledge that, by configuring EVACAR to 
constrain the maximum number of records within a 
block to 65,536 records (unsigned short), the 
allocated memory footprint can be further reduced to 
just 7.1 MB for option 1. 
 An additional distinguishing feature of the 
EVACAR method is its independence from the need 
for model training and updates. Conversely, DeepDB 
and Flat involve substantial time and computational 
resources for these training and model updating 
processes, a distinction highlighted in Table 4. 

5 CONCLUSION 

This research highlights the potential of employing a 
randomized selection of small blocks and conducting 
full outer joins to leverage the theory of approximate 
aggregate calculations (e.g., sum, count) for 
estimating the cardinality of all subplans within the 
original query. To address the limitations and 
shortcomings of existing approaches, we have 
developed a cardinality estimation method and an 
accompanying algorithm. 

Table 5: Space-time characteristics of the developed cardinality estimation method EVACAR. 

Parameter Unit EVACAR Characterisitcs per variant 
1: Q57-n10-u1-

v100
2: Q57-n10-u2- 

v50
3: Q57-n10-u4- 

v25 
1. Total VM time (gprof) ms 2,200 3,000 5,800
2. Time for one subplan request (1/24) ms 2,200/24= 92 3,000/24= 125 5,800/24=242
3. Cardinality calculation per subplan (1/24) of 
VM time 

ms 90 /24=3.8 60/24=2.5 50/24=2.1 

4. Memory capacity (valgrind), n =10 MB 1.1(blocks)+1.2*n=
13.1

0.8+ 0.6*10=6.8 0.8+ 0.3*10=3.8 

5. Memory (valgrind) (max. block size 65,536 rec. 
(ushort)) 

MB 1.1+1.2/2*n =7.1 0.8+ 0.6/2*10=3.8 0.8+ 0.3/2*10=2.3

6. Memory capacity for one request (1/24) and one 
sample from the FOJ (1/n =1/10) 

MB (1.1+1.2)/ 24= 0.1 (0.8+0.6)/ 24= 
0.06

(0.8+0.27)/24= 
0.04

7. Memory for one request (1/24) and one sample 
from the FOJ (1/ n =1/10) (max. block size 65,536 
records) 

MB (1.1+1.2/2)/24=0.07 (0.8+0.6/2)/24= 
0.05 

(0.8+0.3/2)/24= 
0.04 
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The method offers the advantage of block 
selection after the execution of subqueries from the 
original query, eliminating the need for a priori 
analysis of filtering conditions. This method allows 
for arbitrary conditions when joining tables, without 
a strict requirement for attribute equality. 
Consequently, this opens up the possibility of more 
precise cardinality estimation in scenarios involving 
a larger number of table joins. This is particularly 
significant since high-performing data-driven 
machine learning (ML) methods for CardEst tend to 
experience diminishing performance and accuracy as 
the number of joined tables increases. Developed 
method for cardinality estimation also accommodate 
the presence of cycles within the query graph. 
 We implemented an EVACAR method and 
conducted comparative evaluations with modern ML 
methods such as BayesCard, DeepDB, and FLAT 
using STATS test. The experimental results 
unequivocally affirm the efficacy of the EVACAR 
method. Our future work is focused on the estimation 
error (3) reduction by finding a probability 
distribution for choosing a combination of blocks that 
is different from the uniform distribution.  
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