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Abstract: This research aims to improve traffic flow efficiency, reduce congestion, and enhance the overall performance 

of the transportation system for different road users, while keeping in mind the ease of implementation of the 

provided approach. That is achieved by optimizing the stage length parameter in the VAP files for VISSIM 

using ParMOO, a powerful optimization tool. The VAP files contain crucial information about traffic signal 

control logic, including signal timings, stage durations, and cycle lengths. The maximum stage length 

parameter within VAP files represents the maximum allowable time for a particular traffic signal stage before 

transitioning to the next stage. Optimizing this parameter can significantly impact traffic performance by 

reducing delays and improving overall traffic flow efficiency. Average delays for passenger cars and 

pedestrians are chosen as objective functions to be minimized. Sensitivity analysis is employed to validate 

the optimized solutions. Comparing the traffic performance measures using the optimized VAP files with the 

base case, we found that the optimized solutions consistently outperformed the observed performance. The 

research contributes by utilizing the ParMOO algorithm and integrating it within VISSIM software, enabling 

researchers to readily apply the methodology and advance the field of traffic signal control with practical and 

industry-relevant solutions. 

1 INTRODUCTION 

The increasing demand for urban mobility 

underscores the necessity of improving transportation 

networks. However, congestion in urban areas 

impedes efficiency, causing delays, increased fuel 

consumption, and pollution. Construction of new 

roads in densely populated urban areas is challenging 

due to space constraints and environmental concerns. 

Moreover, improving roads may exacerbate traffic by 

attracting more vehicles. Innovative solutions 

focusing on current infrastructure and efficient 

transportation policies are essential to tackle these 

challenges. Expanding road infrastructure is 

impractical due to limited land resources and 

socioeconomic factors. Research efforts now 

prioritize effective traffic management, 

transportation facility enhancements, and meeting 

escalating traffic demands. Developing efficient 

traffic management solutions offers a cost-effective 

approach to alleviate congestion and address 
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optimization challenges in cities by enhancing 

network performance. 

Upgrading transportation systems to enhance 

intelligence is a significant focus in transportation 

research. The Intelligent Transportation System (ITS) 

integrates technology into infrastructure to enhance 

performance, efficiency, and safety. ITS targets 

transportation issues such as safety, congestion, 

efficiency, and environmental protection through 

smarter highways and innovative technologies. 

Traffic signal control systems play a crucial role in 

urban traffic management and are a key area of study 

in ITS. They regulate traffic at intersections, ensuring 

the safety of all road users. Efficient operation of 

these systems is vital for network performance and is 

integral to ITS. 

Two main strategies for optimizing traffic signal 

timing exist: mathematical programming and 

simulation-based methods. Mathematical 

programming utilizes mathematical models to 

optimize traffic management goals. However, these 
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models often entail complex computations, limiting 

their real-time usability and accuracy in depicting 

detailed traffic dynamics. Simulation-based methods 

strive to accurately model interactions among various 

traffic characteristics. Recent studies favor 

simulation-based techniques, employing microscopic 

traffic simulators to illustrate complex traffic patterns 

in cities. Nevertheless, scarcity of simulation 

resources presents a challenge for addressing large-

scale urban traffic management problems. Advanced 

simulation models require further development to 

tackle high-dimensional optimization challenges in 

large metropolitan networks (Chen & Chang, 2014; 

P. T. M. Nguyen, 2020; Papatzikou & Stathopoulos, 

2015; Poole & Kotsialos, 2016). 

Improvements in traffic signal management 

systems have targeted multiple goals, including 

reducing queue lengths, delays, travel time, 

enhancing traffic flow, and minimizing traffic 

exhaust emissions. Optimizing traffic signals can 

achieve these goals simultaneously, leading to 

reduced travel times and improved traffic flow. 

However, optimization for different road users and 

environmental goals may conflict with other priorities 

and receive limited consideration. Transportation 

management studies often focus on single-goal 

issues, despite real-world situations involving 

multiple objectives (Chen & Chang, 2014; P. T. M. 

Nguyen, 2020; Papatzikou & Stathopoulos, 2015; 

Poole & Kotsialos, 2016). 

2 LITERATURE REVIEW 

Traffic simulation models are classified into 

macroscopic, microscopic, and mesoscopic models 

based on their level of detail. Macroscopic models 

represent traffic flow using aggregate measures, 

while microscopic models simulate individual 

vehicles in detail. Mesoscopic models strike a balance 

between detail and efficiency. This study focuses on 

microscopic and mesoscopic simulators like VISSIM 

due to their ability to handle complex traffic 

scenarios. Microscopic simulators offer detailed 

modeling capabilities, while mesoscopic simulators 

compromise between detail and computational 

efficiency. They utilize driver behavior models to 

simulate vehicle interactions based on perception and 

response thresholds. (Qadri et al., 2020). 

Multi-objective optimization problems (MOOPs) 

are prevalent across scientific and engineering 

domains, including product design and model fitting, 

where multiple performance criteria must be 

considered. The main goal of MOOPs is to identify 

solutions that balance conflicting objectives, resulting 

in a range of achievable values for each objective. This 

range of solutions, known as the Pareto front or 

tradeoff curve, illustrates inherent trade-offs within the 

problem. Real-world MOOPs often include additional 

constraints or rules that solutions must adhere to. In 

multi-objective simulation-based optimization, 

objectives are typically derived from costly 

simulations, providing data to evaluate different 

designs or strategies. By optimizing these objectives, a 

set of Pareto-optimal solutions is revealed, offering 

various trade-offs between conflicting objectives. In 

essence, MOOPs provide a framework for decision-

making amid conflicting goals, facilitating the 

exploration of trade-offs and the identification of 

optimal solutions that align with specific requirements 

and priorities (Červeňanská et al., 2020; Chang & 

Wild, 2023; P. T. M. Nguyen, 2020). 

There appears to be a research gap in 

implementing multi-objective simulation-based 

optimization for the traffic signal control problem 

(Qadri et al., 2020). Most transportation management 

optimization studies and implementations focus on 

issues with a single goal; real-world situations, on the 

other hand, frequently entail many goals. 

Optimization for other road users such as transit 

vehicles or pedestrians or optimization for 

environmental goals sometimes clash with other 

priorities, and as a result, they are given little 

consideration. P. H. Nguyen et al. (2016), Hatri and 

Boumhidi (2016), Zheng et al. (2019), and Zhang et 

al. (2022) have been among the few researchers to 

employ a multi-objective simulation-optimization 

approach. Although this approach is relevant, there 

appears to be a research gap when it comes to 

implementing multi-objective Simulation 

Optimization for the traffic signal control problem. 

Nguyen et al. proposed a multi-objective 

simulation-optimization approach for urban traffic 

signal control. Their approach integrated a local 

search algorithm with NSGA-II, outperforming other 

algorithms and achieving good simulation results 

during the optimization process. The study 

demonstrated the effectiveness of the approach in 

balancing multiple objectives and improving traffic 

flow (P. H. Nguyen et al., 2016). Hatri et al. focused 

on bi-objective optimization of traffic signal timings 

using the NSGA-II algorithm with the Enhanced 

Archive Memory (EAM) technique. The goal was to 

find optimal signal timings that strike a balance 

between traffic flow and delay. The results indicate 

that the proposed approach effectively manages the 

trade-off between these two objectives and achieves 

improved performance compared to other methods. 
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By utilizing the EAM technique, the algorithm can 

efficiently handle the optimization process (Hatri & 

Boumhidi, 2016). Another study by Zheng et al. 

presented a bi-objective stochastic simulation-

optimization approach for traffic signal optimization. 

They incorporated surrogate models to capture the 

mapping relationship between decision variables and 

objectives, resulting in improved performance 

compared to other approaches. The use of surrogate 

models also enhanced the efficiency of the 

optimization process (Zheng et al., 2019). Zhang et 

al. utilized a multi-objective evolutionary algorithm 

for the optimization of signal timing at intersections. 

The algorithm addressed the challenge of 

coordinating traffic signals to improve traffic flow 

and reduce congestion. By simultaneously optimizing 

multiple objectives, the algorithm identified a set of 

Pareto-optimal solutions offering different trade-offs 

between objectives. This approach provides decision-

makers with a range of options based on their 

priorities (Zheng et al., 2019).  

The research introduces a significant 

advancement by utilizing ParMOO, an open-source 

algorithm, for multi-objective optimization in traffic 

signal control. This approach ensures accessibility 

and ease of implementation for researchers, industry 

experts, and municipalities involved in traffic 

management. Additionally, the study incorporates 

modifications within the VAP file of VISSIM, a 

widely recognized software in transportation and 

municipal planning. These modifications align the 

proposed methodology with existing practices and 

enable seamless integration into real-world traffic 

management systems. 

3 METHODOLOGY 

This research utilizes VISSIM, a popular microscopic 

traffic simulation software, and the ParMOO 

algorithm for multi-objective optimization to tackle 

the challenge of optimizing traffic signal timings. 

VISSIM provides a realistic platform for modelling 

and simulating complex traffic scenarios, allowing 

researchers and practitioners to assess various traffic 

management strategies' performance. Meanwhile, 

ParMOO offers a comprehensive framework for 

multi-objective optimization, facilitating 

simultaneous optimization of conflicting objectives. 

In the following section, we delve into the 

functionalities and methodologies of VISSIM and 

ParMOO, highlighting how their capabilities are 

leveraged to enhance traffic flow and alleviate 

congestion through signal timing optimization. 

3.1 Traffic Simulation and VISSIM 

VISSIM, developed by Company PTV AG, is the 

chosen traffic modelling tool for this paper. Widely 

used by traffic engineers and researchers, VISSIM 

offers an intuitive graphical user interface (GUI) for 

designing road networks and running simulations. 

Additionally, the VISSIM-COM interface allows 

programmers to control simulator functions and 

parameters through various programming languages 

like Matlab and Python. (PTV Vissim VisVAP User 

Manual, 2021; VISSIM: Microscopic Multi-modal 

Traffic Flow Simulation, 2021; Tettamanti & 

Horváth, 2020; Yan et al., 2013). 

The Vissig module of VISSIM determines signal 

data, including stage and interstage definitions. 

Control logic, governing traffic signal operations, is 

defined using VAP (Vehicle Actuated Programming), 

with VisVAP serving as a GUI to create flowchart-

based control logic stored in a .vap file. Static signal 

base data can be defined in VISSIG, stored in a .pua 

file, serving as main inputs for the VISSIM 

simulation environment. (Figure 1). 

Parameterizing maximum stage durations in VAP 

files and simulating signal control schemes lets you 

evaluate their effects. This iterative method explores 

and optimizes traffic signal layouts to improve system 

performance, lowering delays, boosting traffic flow 

efficiency, and improving road user experiences. 

3.2 Multi-Objective Optimization with 
ParMOO 

ParMOO, a strong multi-objective optimization 

toolkit, is used in this section. Multi-objective 

optimization is crucial to traffic signal timing 

optimization, and ParMOO's features and capabilities 

help (Chang & Wild, 2023). ParMOO is designed for 

simulation-based multiobjective optimization. The 

difference between simulations and objectives is 

crucial to ParMOO. Simulations with ParMOO 

require a lot of processing power and time. ParMOO 

uses response surface methodology to solve this. This 

method fits computationally simpler surrogate 

models to simulation outputs. ParMOO optimizes 

problem scalarizations using surrogate models 

instead of expensive simulations. This method 

efficiently explores and optimises the multiobjective 

problem space while lowering computational costs 

and execution time (Chang & Wild, 2023; ParMOO 

Documentation, 2022). Main components of 

ParMOO (Parallel Multi-Objective Optimization) 

(ParMOO Documentation, 2022): 
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Figure 1: Framework of ParMOO and VISSIM Integration (Parmoo Documentation, 2022; VISSIM: Microscopic Multi-modal 

Traffic Flow Simulation, 2021). 

A MOOP object is a data structure that contains 

essential information for a multi-objective 

optimization problem. The problem is solved using a 

multi-objective optimization technique. 

Objective Functions. With ParMOO, define one or 

more functions to represent the performance 

measures to optimize. These functions measure 

optimization aims. Traffic signal optimization 

objectives may include decreasing delays, 

maximizing throughput, reducing emissions, or 

minimizing user class conflicts.  

Decision Variables. Adjustable parameters or 

variables that can be optimized to meet desired 

outcomes. ParMOO can optimize traffic signal 

decision variables like maximum stage length. 

Pareto Front. ParMOO uses the concept of the Pareto 

front, which represents the set of non-dominated 

solutions in the multi-objective optimization 

problem. The Pareto front consists of solutions that 

cannot be improved in one objective without 

worsening another objective.  

Surrogate Functions. Incorporating a simulation 

dictionary links each simulation in the MOOP object 

to a surrogate model. This relationship uses solution 

data to approximate the simulation's response surface. 

The surrogate model estimates simulation behavior 

and outcomes more efficiently and cheaply than the 

actual simulation.  

Search Techniques. Each simulation in the MOOP 

object has a unique search technique assigned upon 

inclusion. This method generates simulation data 

before ParMOO's first iteration to fit initial surrogate 

models.  

Figure 1 demonstrates the ParMOO algorithm and 

its components. More information on ParMOO can be 

found at (Chang & Wild, 2023; ParMOO 

Documentation, 2022). 

3.3 Methodology for Traffic Signal 
Timing Optimization 

This section outlines the methodology for traffic 

signal timing optimization. It provides a detailed step-

by-step explanation of how VISSIM and ParMOO are 

integrated and employed to optimize traffic signal 

timings. The methodology employed in this study 

follows a scientific approach to optimize the 

maximum stage length parameter using ParMOO and 

subsequently incorporating the optimized values into 

the VISSIM simulation environment. Figure 1 shows 

how VISSIM and ParMOO interact. 

The methodology begins by defining the design 

variables that represent the maximum lengths of 

different stages in the traffic signal cycle. These 

design variables are carefully selected to capture the 

key parameters that influence traffic flow and 

congestion. The lower and upper limits are chosen as 

5 and 40 seconds, respectively, for a three-stage 

signal plan. To begin, the code implemented three 

design variables representing the lengths of different 

stages in the traffic signal cycle. These variables are 

set within predefined ranges, allowing for flexibility 

in optimizing signal timings while keeping the 

allowable minimum and maximum stage lengths. 
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A simulation function is developed to simulate the 

traffic scenario using VISSIM. This function takes 

the design variables as input and modifies the VAP 

file accordingly to update the maximum stage 

lengths. The simulation function then runs the 

VISSIM simulation and calculates the average delay 

for passenger cars and pedestrians. 

 

 

Figure 2: Different Budget Configurations with 

Corresponding Weighted Average Delay Values. 

The ParMOO algorithm is employed to search the 

design space and identify Pareto-front solutions. The 

algorithm iteratively explores different combinations 

of the design variables to find optimal signal timings 

that balance the conflicting objectives. A range of 

budgets were tested, and ultimately, a budget 

configuration of 20, 1, and 20 was selected (Figure 2). 

This configuration represents the search budget, 

number of acquisition functions, and maximum 

iterations, respectively. By combining these values, 

the final budget totalled 40 (Equation 1). The 

surrogate model used is gaussian RBF, and the 

acquisition function type is uniform weights. The 

execution time of the algorithm ranges between 400 

and 700 seconds using a PC with an 11th Gen Intel 

(R) Core (TM) i7-1165G7 @ 2.80 GHz. These results 

suggest that for practical applications and larger-scale 

optimization problems, cloud computing or more 

powerful processors may be necessary to achieve 

acceptable processing times. 

BudgetTotal   
=  BudgetSearch +  NAquistion Functions  x NIterations     (1) 

As mentioned before, ParMOO provides multiple 

optimal solutions, known as the Pareto front, it presents 

decision-makers with a range of alternatives to choose 

from (Figure 3). Ultimately, the choice of the optimal 

solution depends on a careful balance of technical 

analysis, stakeholder input, and informed decision-

making. By considering multiple factors, objectives, 

and perspectives, the solution that best aligns with 

predefined goals and maximizes the desired outcomes 

for your transportation system can be selected. In our 

research, a weighted objective approach is chosen as a 

decision criterion. The weight assigned to each 

objective is 0.5. This approach allows you to prioritize 

certain objectives over others and select the solution 

with the minimum weighted sum. The optimized 

maximum stage lengths are then incorporated into the 

VAP files, which contain the traffic signal control logic 

for the VISSIM simulation. The necessary 

modifications are made to ensure that the optimized 

values are used during the simulation runs. 

 

Figure 3: Pareto front for one of the scenarios. 

3.4 Experimental Setup 

To evaluate the proposed methodology's 

effectiveness and robustness, a simple four-legged 

intersection is chosen from VISSIM examples. 

Examples of three-stage fixed-time control and three-

stage vehicle actuated control are provided with the 

VISSIM installation, along with control logic files 

created with VisVAP for reference, incorporating 

pedestrian demands. Each scenario consists of three 

stages (Figure 4), with lane widths ranging from 2.75 

to 3.50 m and a vehicle composition of 5% heavy 

goods vehicles (HGV) and 95% passenger cars, with 

an average speed of 50 km/hr. 

The proposed methodology is applied to each 

traffic scenario by configuring design variables and 

executing the optimization process using the 

ParMOO algorithm. The objective is to identify 

optimal signal timings minimizing average delay for 

both passenger cars and pedestrians, accounting for 

each scenario's specific characteristics and demands. 

After the optimization process, resulting Pareto 

front solutions are obtained for both traffic scenarios. 

These solutions represent trade-offs between average 

delays for different vehicle types, offering a 

comprehensive view of achievable performance 

improvements in each scenario. To assess the 

methodology's performance, optimized signal 

timings from Pareto front solutions are implemented 

in respective traffic scenarios. Subsequently, VISSIM 
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simulations are conducted using updated signal 

timings to evaluate the optimization process's 

effectiveness.  

 

Figure 4: Traffic Stages. 

4 RESULTS AND ANALYSIS 

This section of the paper contains two components: 

validation and sensitivity analysis. These analytical 

approaches are employed to evaluate and validate the 

optimized solutions obtained through the 

optimization process.  

4.1 Validation Analysis  

In the validation analysis, the optimization algorithm 

is tested by varying parameters to be optimized, 

ensuring it can identify values leading to reduced 

delays. Systematically varying these parameters, we 

compare resulting objective values with optimized 

solutions to evaluate effectiveness and robustness.  

Table 1 presents the validation results of scenario 

2 (actuated). The table provides the average delay 

values (in seconds) for passenger cars and pedestrians 

under different cases.  For the fixed control scenario, 

the optimization algorithm was highly effective in 

finding the most optimized values for the three 

parameters, specifically the maximum stage length, 

which resulted in substantial reductions in delays. 

This success in optimizing the parameters indicates 

the algorithm's ability to efficiently balance the trade-

offs and find signal timings that significantly enhance 

traffic performance in the fixed control setting (the 

validation results for scenario 1(fixed) is not 

presented because of space limitation). 

On the other hand, in the vehicle actuated control 

scenario, the optimization process also led to 

reductions in delays. However, the validation analysis 

revealed that only the maximum gap parameter 

exhibited a strong response to optimization efforts. 

This means that optimizing the maximum gap had a 

substantial impact on reducing average delays in the 

vehicle actuated control scenario. 

These findings suggest that the vehicle actuated 

control system already exhibits a higher level of 

adaptability and responsiveness to changing traffic 

conditions, making the optimization process less 

influential for other parameters. Nevertheless, the 

optimization of the maximum gap parameter 

showcased the algorithm's capability to identify 

critical adjustments that improve traffic performance 

in this scenario. 

Overall, the validation analysis provides valuable 

insights into the performance of the optimization 

algorithm in both control scenarios. It demonstrates 

the algorithm's success in finding optimized 

parameter values that effectively reduce delays in the 

fixed control scenario. In the vehicle actuated control 

scenario, the analysis highlights the significance of 

the maximum gap parameter and its sensitivity to 

optimization efforts, further solidifying the 

algorithm's capability to fine-tune signal timings for 

improved traffic flow.  

Table 1: Validation Results of Traffic Scenario 2 (Vehicle 

Actuated Control). 

  

  

Max stage length 

(sec.) Max 

Gap 

Average Delay (sec.) 

St. 1 St. 2 St.3 
Passenger 

Cars 
Pedestrians 

Base Values  20 5 10 3 16.75 19.90 

Optimal 

values 
11 7 10 1 15.50 17.26 

R
an

d
o
m

 V
al

u
es

 

5 5 5 1 17.15 17.56 

7 5 5 1 15.95 17.47 

7 5 5 2 16.15 19.14 

20 20 20 1 15.96 17.62 

20 20 20 1 17.14 20.15 

11 10 7 1 15.47 17.79 

19 20 11 1 15.44 17.34 

19 20 11 2 16.67 19.69 

8 8 8 2 16.97 18.71 

8 8 8 1 15.50 17.52 

8 8 8 3 16.84 19.97 

11 7 11 1 15.50 17.31 

12 6 11 1 15.49 17.34 

11 7 10 2 16.63 19.84 

11 8 10 1 15.50 17.26 

10 7 10 1 15.56 17.29 

9 7 10 1 15.57 17.33 

9 7 9 1 15.52 17.40 

Stage 1 Stage 2

Stage 3
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4.2 Sensitivity Analysis 

In the sensitivity analysis, the demands of vehicles 

and pedestrians are systematically varied to evaluate 

the robustness of the optimized solutions obtained 

through traffic signal optimization. By modifying the 

input parameters related to traffic demand, we aim to 

examine the performance of the optimized solutions 

under different scenarios. Several simulations are 

conducted, each representing a specific variation in 

the demand for vehicles (Table 2). Average delays for 

personal cars and pedestrians are collected and 

compared to those of the base case, where no 

optimization was applied. 

Table 2: Demand Variations for Sensitivity Analysis. 

 North-bound East-bound South-bound 
West-

bound 

Base 140 244 248 500 

Case 1 1000 244 248 500 

Case 2 140 1500 248 500 

Case 3 140 244 248 2000 

Case 4 1000 244 1200 500 

Case 5 140 244 1200 500 

Case 6 140 244 248 500 

 

The results indicated that simulations with 

optimized values significantly reduced the average 

delay for both personal cars and pedestrians 

compared to simulations with base values. These 

outcomes highlight the effectiveness of the optimized 

solutions in adapting to varying traffic demands, 

leading to more efficient traffic flow and reduced 

congestion. This finding underscores the importance 

and benefits of conducting sensitivity analysis to 

evaluate the impact of optimized values on traffic 

flow and overall efficiency. 

Table 3 shows the performance gain for different 

scenarios and cases. The Performance Gain is 

determined by comparing the reduction in average 

delay achieved in the optimized scenario with respect 

to the base case. This reduction is calculated as a 

percentage of the average delay in the base case. The 

table presents the average delay reduction percentage 

for passenger cars and pedestrians in Scenario 1 and 

Scenario 2. Each row represents a specific scenario, 

and the corresponding values indicate the percentage 

reduction in average delay for the given case and 

scenario. 

Furthermore, as a step towards real-world 

applicability, our plan is to implement the approach 

at an actual intersection. By deploying the optimized 

signal timings in a live traffic environment, we can 

assess the effectiveness and feasibility of our 

methodology in a practical setting. This real-world 

implementation will provide valuable insights into 

the challenges and considerations involved in 

translating optimization results into tangible 

improvements in traffic operations. Additionally, it 

will allow us to validate the performance of our 

approach and gather empirical evidence of its impact 

on various road users and the overall traffic system. 

Table 3: Performance Gain. 

Cases 
Scenario 1 (Fixed-Time) 

Scenario 2 (Vehicle-

Actuated) 

Passenger 

Cars 
Pedestrians 

Passenger 

Cars 
Pedestrians 

1 13.78% 34.11% 7.44% 13.02% 

2 14.77% 33.53% 14.89% 10.30% 

3 6.88% 14.60% 5.24% 12.96% 

4 5.41% 11.38% 1.42% 24.19% 

5 3.12% 26.00% 3.06% 9.06% 

6 22.27% 20.69% 28.93% 14.00% 

5 CONCLUSIONS 

Overall, the assessment of the methodology in the two 

selected traffic scenarios (fixed-time control and 

vehicle actuated control) has provided valuable 

insights into its effectiveness in optimizing signal 

timings and improving traffic performance. The 

analysis of the results has allowed us to evaluate the 

methodology's applicability in diverse traffic settings 

and its potential for practical implementation in real-

world traffic management scenarios. ParMOO has 

proven to be a valuable tool, facilitating the 

identification of efficient and effective traffic signal 

plans that enhance overall transportation system 

performance. 

In future work, our aim is to extend the 

optimization approach to include the needs and 

priorities of additional road users, such as cyclists and 

public transit vehicles. We can work toward a more 

comprehensive and all-inclusive approach to traffic 

signal timing optimization by including these modes 

of transportation in our framework. This expansion 

will enable us to develop signal timings that enhance 

the safety, efficiency, and overall travel experience of 

cyclists and public transit users. 

Furthermore, as a step towards real-world 

applicability, our plan is to implement the approach 
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at an actual intersection. By deploying the optimized 

signal timings in a live traffic environment, we can 

assess the effectiveness and feasibility of our 

methodology in a practical setting. This real-world 

implementation will provide valuable insights into 

the challenges and considerations involved in 

translating optimization results into tangible 

improvements in traffic operations. Additionally, it 

will allow us to validate the performance of our 

approach and gather empirical evidence of its impact 

on various road users and the overall traffic system. 
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