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Abstract: Regression testing becomes expensive in terms of time when changes are often made. In order to simplify
testing, supervised/unsupervised binary classification Software Defect Prediction (SDP) techniques may rule
out non-defective components or highlight those components that are most prone to defects. In this paper,
outlier detection methods for SDP are investigated. The novelty of this approach is that it was not previously
used for this particular task. Two approaches are implemented, namely, simple use of the local outlier factor
based on connectivity (Connectivity-based Outlier Factor, COF), respectively, improving it by the Pareto rule
(which means that we consider samples with the 20% highest outlier score resulting from the algorithm as
outliers), COF + Pareto. The solutions were evaluated in 12 projects from NASA and PROMISE datasets.
The results obtained are comparable to state-of-the-art solutions, for some projects, the results range from
acceptable to good, compared to the results of other studies.

1 INTRODUCTION

Software testing is a highly integrated and equally im-
portant step in software development as the building
itself (Khan and Khan, 2014). Because the costs of
testing are both financially and time-consuming, any
tool that may autonomously rule out from testing a
majority of components that are highly unlikely to
contain defects or point out the few that are highly
prone to defects is useful in reducing both invested
time and the price of testing.

There are a few approaches for determining bugs
in software systems, one of which is manual testing,
which includes acceptance testing, integration testing,
and regression testing (Myers et al., 2011). However,
these processes require testers that perform explicit
instructions at given times, for example, acceptance
testing involves testing the whole software system af-
ter a major release.

In order to simplify this activity, automatic testing
is used to automatically run test cases, but exploratory
testing, that is, testers explore the application from
different perspectives to identify corner cases, is still
not replaceable by automation software. Another case
in which automatic testing is not useful is in early
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stage testing, as the application is still in the early
stages.

Software defect prediction may not only simplify
exploratory and early-stage testing by telling testers
which components are most prone to defects but also
automatic testing by identifying those parts of the ap-
plication that require more attention. There are mul-
tiple approaches to the problem: supervised (Afric
et al., 2020), unsupervised or semi-supervised meth-
ods (Wang et al., 2016). After investigating exist-
ing research that proposes to correlate defective mod-
ules with outliers with promising results for unsu-
pervised techniques such as Isolation Forest (Ding,
2021) (Ding and Xing, 2020) or SVMs (Moussa et al.,
2022), we have decided to investigate similar ap-
proaches.

Thus, various reasons motivate the current study.
The primary motivation and the initial idea was to
identify an Outlier Detection (OD) that has not yet
been used for the SDP task. Studying the current liter-
ature regarding the problem (e.g., (Afric et al., 2020),
(Dimitrov and Zhou, 2009), etc.), it has become ob-
vious that the anomaly detection approach is suitable
for it; however, we have discovered that most studies
focus on a limited number of methods, leaving a few
others with undocumented results.

The initial approach was to collect as many OD
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methods as possible, filter out those that had already
been documented by other studies, then perform tests
on the remaining ones, in the hope of obtaining simi-
lar results to those that have already been successfully
used for the task, namely Isolation Forest (Ding et al.,
2019), (Ding and Xing, 2020), SVM (Moussa et al.,
2022).

One of the objectives of the paper is to identify the
existing OD techniques for SDP. After gathering all
the OD methods that have not yet been experimented
with for the SDP (Software Defect Prediction) task,
the intuition is that some of them may possess a few
qualities, such as working well with sparse datasets
but also being scalable, simple to implement, gener-
alizable or even particularly great for our problem.

The second aim of the paper is to investigate the
discovered OD in the context of SDP. Afterward, we
want to identify the best performing ones and doc-
ument the results, examine different data processing
techniques, and experiment with possible enhance-
ments to the methods.

The contributions in this paper are composed of
performing a Systematic Literature Review in the
context of Software Defect Prediction using Outlier
Detection, implementing the model for Connectivity-
based Outlier Factor following the algorithm from the
original paper presenting it (Tang et al., 2002), apply-
ing it to Software Defect Prediction datasets, enhanc-
ing the method with an additional approach follow-
ing the Pareto Rule, and presenting some results and
conclusions regarding the previous steps. Most im-
portantly, the results of this particular solution, that
is, connectivity-based outlier detection (Tang et al.,
2002) have never been discussed before in the context
of Software Defect Prediction.

The work is organized as follows: in Section 2 we
present background concepts on the subject of Soft-
ware Defect Prediction and Outlier Detection and re-
view the current state of the art in the context of SDP,
Section 3 briefly describes our proposed approach,
presenting the COF and COR+Pareto approach along
with the dataset used, while Section 4 reports the ex-
periments carried out on our models together with an
analysis of the results. Section 5 outlines the threats
to validity, while Section 6 states the conclusions and
future work.

2 BACKGROUND AND RELATED
WORK

In this section, we present the concepts used in this
paper, namely software defect prediction and outlier
detection, along with research studies on OD for SDP.

2.1 Software Defect Prediction

Software defect prediction is the solution to the task
of identifying potential issues in modules, classes, or
methods before their occurrence. With the help of
datasets that store attributes that define the complex-
ity, size, or number of collaborators of the code, the
aim is to determine whether an instance is potentially
faulty.

A typical approach to SDP implies the following
steps: data collection - documenting historical infor-
mation regarding bugs or changes, feature selection
- filtering the most relevant attributes, model training
- creating statistical or machine learning methods to
build a predictive tool for the task, and model assess-
ment - cross-validation or comparison of results with
correctly labeled instances.

2.2 Outlier Detection

Outlier Detection (OD), also referred to as Anomaly
Detection, is a technique to identify samples from a
crowd that deviate from the average, to compare and
take noisy data from statistics. Data points known as
outliers deviate considerably from other observations
in a dataset and may hint at anomalous behavior, mis-
takes, or intriguing patterns.

There are various methods to find outliers (Han
et al., 2022), including Statistical Methods, Distance-
Based Methods, Density-Based Methods, Clustering-
Based Methods, and Machine Learning-Based Meth-
ods.

Most of the research on software fault prediction
employs supervised classification techniques (Wa-
hono, 2015), which can be time consuming due to
training and the collection of large amounts of labeled
training data. To reduce the need for labeled data,
unsupervised defect prediction models often employ
clustering techniques; nevertheless, identifying clus-
ters as defective is a difficult task (Moshtari et al.,
2020).

2.3 Related Work on SDP and OD

A rigorous and thorough strategy for locating, as-
sessing, and synthesizing current research related to
a particular research question or topic is a System-
atic Literature Review presented by Kitchenham et
al. in (Kitchenham and Charters, 2007). It involves
doing a thorough search for pertinent databases and
other sources, followed by a methodical evaluation
and analysis of the studies that have been found.

The steps of the conducted SLR are respected and
exemplified in the Master’s Thesis (Moldovan, 2023).
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In this paper, only the synthesis is presented due to
page limitation and because the aim of the paper is to
investigate on outlier detection for SDP.

We compile and evaluate previous work on source
code defect prediction utilizing anomaly detection
approaches for our research article by conducting a
comprehensive literature review. In what follows,
we outline the findings regarding outlier detection for
predicting software defects, categorizing the research
studies into 4 major groups. The assumption that
software problems should be considered anomalies is
supported by a number of research studies, more of
which are released every year. Most of these stud-
ies compare the results of the technique with those
of other common classifiers. As a topic in the field
of Software Engineering, Software Defect Prediction
has been granted significant interest, and with con-
siderable research came the Anomaly Detection ap-
proach that can be done by using either machine
learning or statistical methods.

2.4 Machine Learning Approach to
Anomaly Detection for SDP

The use of machine learning techniques is one of
the key strategies for the detection of anomalies for
the prediction of software faults. Numerous re-
search studies have investigated the use of various
machine learning techniques, such as k-nearest neigh-
bors (Moshtari et al., 2020). These algorithms are
trained on historical data to discover patterns of soft-
ware flaws and spot unusual behavior that could point
to the possibility of errors in the future.

The authors in the research paper (Ding et al.,
2019) propose a new approach to SDP using isola-
tion forest, an unsupervised machine learning algo-
rithm for anomaly detection. The proposed method
involves first extracting features from software met-
rics and then using an isolation forest to identify po-
tentially anomalous instances in the feature space.
The performance of the method is evaluated on sev-
eral datasets and compared with other state-of-the-art
methods such as support vector machines and deci-
sion trees (Agrawal and Menzies, 2018).

Another anomaly detection method that was found
to be suitable for the SDP task is (Moussa et al.,
2022) which uses a support vector machine (SVM).
The study focuses on comparing the performance of
OCSVM with traditional classification models such
as decision trees and logistic regression and inves-
tigates the impact of different hyperparameters on
the performance of OCSVM. The results suggest that
OCSVM does not outperform the Two-class SVM,
which remains highly successful for the task.

2.5 Statistical Machine Learning
Methods Approach to Anomaly
Detection for SDP

Using statistical approaches is another way to ad-
dress the same task. These techniques look at the
distribution of software metrics for abnormalities that
could point to flaws. Regression analysis (Neela et al.,
2017) is one popular statistical technique for finding
anomalies, just as correlation analysis (Zhang et al.,
2022), and hypothesis testing (Dimitrov and Zhou,
2009).

The use of ensemble approaches for anomaly de-
tection in software defect prediction has also been ex-
amined in a number of research studies (Zhang et al.,
2022), (Ding and Xing, 2020). To increase the preci-
sion and resilience of the anomaly detection process,
ensemble approaches mix a variety of machine learn-
ing algorithms or statistical techniques.

In (Afric et al., 2020) a novel statistical approach
is proposed to predict software defects by treating the
problem as an anomaly detection task in which indi-
vidual and collective outliers are considered. The au-
thors argue that existing defect prediction techniques
suffer from various limitations, such as the need for
labeled data and the inability to handle complex code
patterns. To address these issues, they present a
new method that uses unsupervised anomaly detec-
tion techniques to identify code files that deviate sig-
nificantly from normal patterns and are likely to con-
tain defects.

The method suggested by Neela et al. (Neela
et al., 2017) involves finding possibly anomalous in-
stances in the feature space using unsupervised ma-
chine learning methods such as principal component
analysis and isolation forest. It is compared to other
cutting-edge software defect prediction techniques
like (Menzies et al., 2006), the average balance be-
ing around 63% for the univariate model and 69% for
the multivariate model, respectively, compared to the
average accepted norm that is set at about 60% ac-
cording to (Menzies et al., 2006).

In (Ding and Xing, 2020), they propose an im-
proved ensemble approach for SDP using pruned
histogram-based isolation forest (PHIF), a variant of
the isolation forest algorithm that uses histograms to
accelerate the tree-building process. The proposed
approach involves using PHIF to identify potentially
anomalous instances in the feature space and then us-
ing a decision tree to classify the instances as defec-
tive or non-defective. The performance of the ap-
proach is evaluated on several datasets and compared
to another state-of-the-art method used for debugging
that is based on failure-inducing (Gupta et al., 2005).
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3 OUR RESEARCH PROPOSAL
ON SDP USING OD

This section aims to define and present the method-
ologies and aggregation tools that have been used in
the process of creating this study together with its ap-
plication.

3.1 From LOF to Connectivity-Based
LOF

We describe the Connectivity-based Outlier Factor
(COF) (Tang et al., 2002) by starting with the orig-
inal algorithm, the Local Outlier Factor (LOF). We
introduce the LOF, display and explain the involved
formulas, then define the enhancements brought to it
to create the COF. Information about the implemented
approaches is provided at this figshare link (Moldovan
and Vescan, 2023).

To understand the algorithm, we must first under-
stand how LOF works: Let k, p and o ∈ D, where
D ⊂ N, then the distance between o and its k-th near-
est neighbor can be written as k− distance (p). Let
us also define the Nk−distance(p) , which contains a col-
lection of distances from a data point to its k-nearest
neighbors.

Another term that needs to be introduced is the
reachability distance between p (as observation point)
and k:

reach−diskk(p,o) = max{k-distance (o),dist(p,o)}.

Furthermore, we may introduce the local reach-
ability for the distance /empthk (as in (Tang et al.,
2002) ), having p as the center of observation is de-
fined as follows:

lrdk(p) =

(
∑o∈Nk−distance(p)

(p) reach dist k(p,o)

|Nk−distance(p)(p)|

)−1

.

In other words, we may define the local reacha-
bility distance (lrd) as an inverted avg. distance be-
tween the observation point p p and instances stand-
ing in its k-neighborhood, making the local density
another term for the lrd. Finally, we get the LOF for-
mula which is:

LOFk(p) =
∑o∈Nk−distance(p)

(p)
lrdk(o)
lrdk(p)

|Nk−distance(p)(p)| .

As presented by the formula and mentioned by
Breunig et al. (Breunig et al., 2000), p’s density is
inversely proportional to its LOF, meaning that a high
density indicates a lower chance of a point being an
outlier and vice versa. Obviously, there is still room

for interpretation of the threshold value that defines at
exactly what distance a point is or is not labeled as an
outlier, which is best determined by the user depend-
ing on the particular problem.

For understanding, the authors of (Tang et al.,
2002) have shown that there are some cases that can-
not be handled simply by the LOF algorithm because
its flaw lies in not differentiating low density from
isolativity. That being said, it is possible to have out-
liers of a group of entities, but for the outliers not to
be outside of the k-distance for all of the points, and
the proof can be found (Tang et al., 2002). The prob-
lem is that there is a threshold for k, such that it is
set lower; the formula will not be relevant for den-
sity group C2 and they will all be labeled as outliers,
while if setting k is higher, then it will not label o1
as an outlier anymore as the distance between o1 and
density group C1 is lower than the distance from any
actual neighbors of density group C2.

3.2 Connectivity-Based Outlier Factor
(COF)

To solve the problem of separating “isolativity” from
“low density”, Breunig et. al (Breunig et al., 2000)
wanted to reformulate the definition of local density
such that an outlier will not only be labeled so based
on pure distance from its closest neighbor, but also
consider the shape of close neighborhoods to evalu-
ate whether it fits into it. Therefore, isolation points
out a sample with low density, but it is not true the
other way around. In most cases, departing from a
linked pattern produces an isolated outlier, whereas
diverging from a high-density pattern produces a low-
density outlier. Both situations should be taken into
account by an outlier indicator.

The average distance of consecutive points in a
neighborhood of point p, as well as the average of avg
(the distance of consecutive points between point p’s
k-distance neighbors and their own k-distance neigh-
bors), constitute the connectivity-based outlier factor
in p. Displays how much a point departs from a pat-
tern.

The full definition may be found in the original pa-
per, but we will briefly present the equation describing
the formula of the connectivity-based outlier factor of
a point p ∈ D:

COFk(p) =
|Nk(p)|·ac−distNk(p)(p)

∑o∈Nk(p) ac−distNk(o)
(o) ,

where Nk(p) is the set of k-nearest neighbors of p.
The ac-dist denotes the average chained distance (as
provided in (Tang et al., 2002)) and is computed by
the following formula:
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ac−distG (p1) =
1

r−1 ·∑
r−1
i=1

2(r−i)
r ·dist(ei) ,

where s = ⟨p1, p2, . . . , pr⟩ is an SBN-
path. A set-based nearest chain, or SBN-
chain, w.r.t. s is a sequence ⟨e1, . . . ,er−1⟩
s.t. ∀ 1 ≤ i ≤ r − 1,ei = (oi, pi+1) where
oi ∈ {p1, . . . , pi}, and dist(ei) = dist(oi, pi+1) =
dist({p1, . . . , pi} ,{pi+1, . . . , pr}). We call each ei an
edge and the sequence ⟨dist(e1) , . . . ,dist(er−1)⟩ the
cost description of ⟨e1, . . . ,er−1⟩.

3.3 COF Implementation

To implement the algorithm presented in the previous
section, we started from the implementation proposed
by Songqiao (Han et al., 2022) that can be accessed
through the PyOD library in Python. Because there
was room for improvement towards simplicity in their
code, we have rewritten the model in order to use it
outside of their library and still follow the approach
introduced by Tang (Tang et al., 2002).

Han et al. (Han et al., 2022) have identified the
largest possible set of OD methods, documenting re-
sults for all kinds of tasks that could be addressed with
the approaches, but missing out on the problem of
SDP. Therefore, our study comes as an additional im-
provement to their work: we have rewritten the model
in a simple manner and evaluated it on multiple SDP
datasets from two different repositories.

An explanation of the model is available in the
code listed on the figshare link (Moldovan and Ves-
can, 2023). Similarly to the SLR, a full description
of the algorithm may be found in the master’s thesis
(Moldovan, 2023), where we have elaborated on the
steps, methods, and origins of the resources involved
in the application.

3.4 SDP Datasets

For designing, running and evaluating the experi-
ments, different datasets that are commonly used for
software defect prediction were used.

We have evaluated the projects on datasets from
the following repositories: NASA MDP, Apache
Log4J and Apache ANT, CAMEL, and IVY. More
precisely, we have successfully obtained notable re-
sults (as provided in the next sections) by running the
model with the following files in .csv format: cm1,
jm1, kc1, pc1, ant-1.3, ant-1.4, ant-1.5, ant-1.6, ant-
1.7, log4j-1.0, log4j-1.1, log4j-1.2, camel-1.0, camel-
1.2, camel-1.4, camel-1.6, ivy-1.1, ivy-1.4, ivy-2.0.
It is worth mentioning that CM1 is a dataset ex-
tracted from the application version 3.2 of the soft-
ware project “CruiseControl”, JM1 is derived from
the application version 3.4 of the software project

“Jedit”, while KC1, and PC1 define the application
versions 2.0 and 3.0 of the software project “KC1”
(Kemerer and Porter) developed at NASA. For the
rest of the datasets, multiple versions have been uti-
lized and are mentioned within the rows of the ta-
ble. More information regarding datasets descrip-
tion can be found in the Master’s Thesis (Moldovan,
2023). While we have indeed amassed validation re-
sults for the application of the algorithm on the ANT
and LOG4j datasets, our objective was to juxtapose
these findings with established metrics found in the
existing literature, which exclusively displays results
assessed on the NASA datasets.

Table 1 contains information about the projects
with columns representing: F (Features), M (Mod-
ules), D (Defects), %D (% Defects), and C (Corpus).

Table 1: List of selected datasets.

Dataset
Name

F M D %D C

CM1 39 344 42 13,91 NASA
KC1 39 2096 325 15.51 NASA
JM1 23 9593 1759 18,34 NASA
PC1 39 759 61 8.04 NASA
Ant-1.3 24 125 20 16.00 PROMISE
Ant-1.4 24 178 40 22.47 PROMISE
Ant-1.5 24 293 32 10.92 PROMISE
Ant-1.6 24 351 92 26.21 PROMISE
Ant-1.7 24 745 166 22.28 PROMISE
Log4j-1.0 24 135 34 25.19 PROMISE
Log4j-1.1 24 109 37 33.95 PROMISE
Log4j-1.2 24 205 189 92.2 PROMISE

3.5 The Pareto Principle Approach

Moshtari et al. (Moshtari et al., 2020) have proposed
a distinctive approach to make use of a binary clas-
sifier, which presented impressive results considering
its simplicity.

The Pareto principle, informally known as the
80/20 rule, claims that 80% of the results are the out-
comes of 20% of the causes, an observation made in
1906 by economist Vilfredo Pareto who noticed that
80% of the land is owned by 20% of the population.

Therefore, applying the rule to our subject, we get
the hypothesis that 20% of the modules contain 80%
of the defects. Combining this with our initial hypoth-
esis, which states that the defective modules have dif-
ferent characteristics compared to the non-defective
ones, hence having higher chances of being outliers,
we may build a new technique for identifying them.

However, before applying an approach that fol-
lows the hypothesis, we must first assess that one is
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true by verifying the proportion of defective instances
from our datasets. Following Table 1 of datasets and
calculating the mean average of all instances from the
column Defects%, we get a value of 24.5, supporting
the hypothesis. Additionally, the approach is proved
to be efficient in the context of SDP by Moshtari et al.
(Moshtari et al., 2020).

Furthermore, we may define the following method
(see Figure 1): tune our classifier so that it supports
the highest possible recall, while only focusing on
performing sanity checks for the other metrics. A
high recall value is desired because programmers can
find most of the flaws (that 20% “vital” issues) with a
simple method based on outlier detection. Afterward,
ascending sort the resulting array from the classifier
and extract exactly the last 20% that we label as “de-
fective”.

Figure 1: Proposed approach leveraging the Pareto princi-
ple.

3.6 Feature Selection, Feature Scaling

Multiple experiments with various numbers of fea-
tures were performed with the aim of determining
which number of features is ideal, as well as how
to scale them for the best results. For this step, the
datasets from NASA i.e., cm1, kc1, jm1, and pc1 were
used. The conclusion is that the algorithm’s effective-
ness is anyhow not affected by the number of selected
features and their scaling nevertheless.

The results of the execution where we have passed
between k=5 and k=10 number of features outlined
that none of these numbers of selected features lead
to notably different results, which similarly has been
the case for the implication of MinMaxScaler from
Sklearn (Kramer and Kramer, 2016).

A theory about the lack of importance in feature
selection and normalization for COF is that the fea-
tures filter and sort themselves in the algorithm, de-
pending on their distances and outlier factors.

4 EXPERIEMENTS AND
RESULTS

This section outlines the design of the experiments
along with the metrics used for the evaluation. In the
second part, the results are provided and discussed.

4.1 Design of Experiments

In order to evaluate the potential real-life use of the
method in the context of SDP, two main approaches
have been considered. First, the basic COF is applied
to the algorithm, and second, the enhancement of the
COF by applying the Pareto principle (Moshtari et al.,
2020), COF+Pareto.

The two views of the experiments are shown in
Figure 2. Two parameters, namely contamination
(i.e., the threshold value for an instance that is consid-
ered an outlier, meaning that if contamination is 3.1,
any value equal to or higher than it will be an out-
lier) and the number of neighbors (i.e., the k value,
as required in the KNN algorithm (Moshtari et al.,
2020)), are optimized for both approaches. Addition-
ally, for the second approach, we focus on an 80%
recall, which means that we aim for this value while
maintaining the ROC AUC under a sanity check, as it
reflects the overall success of the classifier.

Figure 2: Design of experiments.

4.2 Evaluation Approach and Metrics

The steps of experimental evaluation are provided, fo-
cusing on each element of the methodology and the
metrics used.

4.2.1 Cross-Validation

Cross-validation (Berrar, 2019) is a trusted and reli-
able method for assessing machine learning perfor-
mance, providing information on model overfitting,
underfitting, or failing to generalize a pattern. We
evaluated the f-measure using this method and chose
k=5 for the number of folds presented in Figure 3.
While utilization of K-fold cross-validation is preva-
lent within learning-based algorithms, involving the
division of the dataset into k subsets for iterative as-
signment as either training or validation subsets, its
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application extends beyond. We have adapted this
methodological framework to our non-learning algo-
rithm, employing it to gauge its generalization capac-
ity towards new data points.

We may notice from the cross-validation scores 3
that running the experiments on the NASA datasets
(e.g. CM1, KC1, JM1, and PC1) F1 values equal to
1.0 are attained in 3/5 folds, namely 2, 3, and 4. The
rest of the experiments only reach values of up to 0.75
for exclusively a single point. A possible correlation
between the number of samples in a dataset and the
F-mean values may be considered, by observing that
the scores attained for each dataset are directly pro-
portional to the number of instances: cm1 dataset -
488 samples, kc1 dataset - 2109 samples, jm1 dataset
- 521 samples, ant1.7 dataset - 744 samples. In con-
trast to the high values for large datasets, there is a
maximum score of 0.24 for the log4j 1.2 dataset, con-
sisting of only 200 instances.

4.2.2 The Sanity Checks

Sanity checking (Doshi-Velez and Perlis, 2019) is
responsible for assessing the performance of a cer-
tain ML model, ensuring that the results have passed
a threshold normally defined as “random guessing”.
In our evaluation context, the sanity check has the
purpose of maintaining healthy values for a certain
metric, given the priority to increase another metric
by modifying the model’s parameters. For example,
when aiming for a high recall, do not overlook the
precision values.

4.2.3 Receiver Operating Characteristic (ROC):
Area Under the ROC Curve (AUC)

Another great assessment of the binary classification
solution is the ROC and the ROC AUC, respectively.

As discussed previously, the vast majority of SDP
datasets are highly unbalanced, imposing problems in
both the training and testing processes. This particu-
lar metric, namely, ROC, is exceptionally well suited
to unbalanced data sets. The ROC AUC enables the
evaluator to identify and set an optimal threshold be-
tween precision and recall based on the desired bal-
ance between sensitivity and specificity. In addition
to the possibility of plotting the evaluation results, this
evaluation formula has the purpose of eliminating as-
sessment bias.

Figure 4 depicts the ROC AUC values for var-
ious experiments that considered the contamination
parameter as a fixed static value and varied the k pa-
rameter. It may be seen that the ROC AUC values for
each of the datasets are between 0.65 and 0.86, which
are considered acceptable to excellent.

Figure 3: F-means measure results with k-fold cross-
validation (k=5) for COF model. 0X-axis: number of folds,
0Y-axis: F-measure values.

Figure 4: ROC AUC results of our proposed COF.

4.3 Results for the Pareto Principle
Approach

Researchers and software engineers generally make
trade-offs between performance and cost or between
different performance measures or performance met-
rics. Thus, since the real-life application of the out-
lier detection approach helps software engineers fo-
cus on highly prone modules to defects and less on
non-defective ones when exploring for bugs, the focus
is on high recall, namely 80% according to Moshtari
(Moshtari et al., 2020).

In addition, we still need to consider healthy val-
ues for precision. Figure 5 shows the results ob-
tained, indicating that it was not possible to obtain
healthy precision values for every dataset, regardless
of the hyperparameter combinations. Therefore, we
acknowledge that the solution is not suitable for ex-
tremely dense data input without disturbing the orig-
inal desired outcome, because software repository
metrics datasets are difficult to build.

Experiments were also conducted for optimized k
(neighbor value) ranging between 10 and 40, for the
twelve datasets. In Figure 6 it is observed that the
higher the dimension of the input dataset, that is, the
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Figure 5: Evaluation metrics with supplementary Pareto ap-
proach and optimized parameter k. Purple: F1-score; Pink:
Accuracy; Blue: Precision; Orange: recall; the bars de-
scribe the scores on a scale from 0 to 1.0.

Figure 6: ROC AUC for COF with supplementary Pareto
approach and optimized parameter k: 0X-axis defines the
False Positive Rate, 0Y-axis denotes the True Positive Rate

more instances in the provided dataset, the higher the
required value for k.

The recall of 80% that was originally intended is
undoubtedly reached; however, the rest of the met-
rics are not as high, except for projects LOG4J and
ANT1.7. A second particularity of these datasets is
the high number of defects (in Table 1 Log4j clus-
ter has defects of 25% up to 92%, compared to
projects CM1, JM1, KC1, PC1 that have between 8
and 18,34% defects).

4.4 Comparison with Traditional
Methods

This section presents the results obtained along with
the latest results, namely the isolation forest (and the
improved isolation forest (Ding et al., 2019), BiGAN
(Zhang et al., 2022), One-Class SVM (Moussa et al.,
2022). Additionally, we will also provide a com-
parison with other classic approaches such as Gaus-
sian Naive Bayes, Logistic Regression, KNeighbours
Classifier, and Decision Tree Classifier according to
the results documented by Afric et al. (Afric et al.,

2020).
The projects used to compare the results are CM1,

KC1, JM1, and PC1, being an intersection of projects
from previously proposed approaches and the propos-
als in this study.

Table 2 contains the results of our approaches,
namely in column COF and in column COF+Pareto,
and the result of the Univariate Gaussian Distri-
bution(UGD) and Multivariate Gaussian Distribu-
tion(MGD) for the same task. It may be noticed that
our base approach outperforms both UGD and MGD
in terms of accuracy.

Table 2: Accuracy table that compares our base approach
to LOF, LOF enhanced by the Pareto rule, Univariate Gaus-
sian Distribution (with selected attributes), and Multivariate
Gaussian Distribution (with selected attributes) from (Neela
et al., 2017).

Dataset COF COF+Pareto UGD MGD
CM1 0.895 0.61 0.744 0.658
KC1 0.849 0.59 N/A N/A
JM1 0.808 0.60 0.780 0.740
PC1 0.925 0.785 0.756 0.600

Our overall f1-score is rather low for both of the
approaches, compared to most of the existing meth-
ods e.g., results for Bagging, Boosting, Random For-
est, and Isolation Forest (Ding et al., 2019). The com-
parison between our approaches, i.e. columns COF
and COF2 and the others in Table 3 reflects these re-
sults. The weakness of our proposed method is simi-
larly highlighted in Table 4a.

Table 3: F1-score values comparing our results with the
ones from (Ding et al., 2019), i.e. Bagging, Boosting, Ran-
dom Forest, Isolation forest with an ensemble scale of 150,
as it produced the maximum values.
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CM1 0.29 0.33 0.65 0.67 0.68 0.71
KC1 0.38 0.26 0.75 0.74 0.75 0.75
JM1 0.40 0.45 0.70 0.65 0.67 0.72
PC1 0.31 0.42 0.62 0.60 0.65 0.69

Table 5 and Table 4b show the ROC AUC val-
ues, comparing our results with those of (Ding et al.,
2019), respectively, with those of (Zhang et al., 2022).
The results for datasets such as CM1 and KC1 may
be considered acceptable to good, compared to the
results of other studies. It is worth noting that the
values from these NASA datasets (CM1, KC1, JM‘,
PC1) are the lowest values for ROC AUC, contrary
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Table 4: Comparison of our results with the ones from (Zhang et al., 2022), i.e. RFB (RF + Balance), SVMB (SVM +
Balance), RFS (RF + SMOTE), SVMS (SVM + SMOTE), RFU (RF + Undersampling) and their proposed ADGAN.

Set COF COF2 RFB SVMB RFS SVMS RFU ADGAN
CM1 0.29 0.33 0.069 0.287 0.192 0.274 0.296 0.451
KC1 0.38 0.26 N/A N/A N/A N/A N/A N/A
JM1 0.40 0.45 0.257 0.351 0.378 0.347 0.401 0.408
PC1 0.31 0.42 0.181 0.291 0.398 0.302 0.312 0.238

(a) F1-score values

Set COF COF2 RFB SVMB RFS SVMS RFU ADGAN
CM1 0.66 0.57 0.507 0.628 0.536 0.611 0.636 0.700
KC1 0.66 0.59 N/A N/A N/A N/A N/A N/A
JM1 0.81 0.75 0.561 0.594 0.606 0.592 0.610 0.631
PC1 0.62 0.75 0.554 0.699 0.703 0.704 0.740 0.703

(b) AUC values

to the results retrieved by experimenting with Apache
project datasets such as Log4j or Ant.

Table 5: AUC values comparing our results with the ones
from (Ding et al., 2019), i.e. Bagging, Boosting, Random
Forest, Isolation forest with an ensemble scale of 150, as it
produced the maximum values.
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CM1 0.66 0.57 0.72 0.69 0.81 0.87
KC1 0.66 0.59 0.84 0.79 0.83 0.89
JM1 0.81 0.75 0.74 0.85 0.84 0.90
PC1 0.62 0.75 0.87 0.81 0.83 0.88

We can conclude that the COF performs better on
small data, as we observe in Figure 4 and Figure 6,
showing that the fewer points, the higher the curve.

5 THREATS TO VALIDITY

Each experimental analysis can suffer from some va-
lidity threats and biases that can affect the study re-
sults. Several issues are provided that could affect
the results obtained and the actions taken to mitigate
them.

Internal validity may be at risk in our case due
to factors such as parameter settings or implementa-
tion issues. For the second approach, the experiments
from the original study were reproduced using the
same datasets and parameter settings, meaning that
the Pareto Principle only supports setting the thresh-
old, i.e. contamination or connectivity parameter to
20. Thus, our originality is in the implementation de-
sign and the application of the method with the addi-

tional parameter to the SDP problem.
External validity is related to the generalization of

the results obtained. The following key issues are
identified as possible threats to validity: the evalu-
ation measures used and the datasets. The selected
evaluation measures are the same as those in the pa-
pers used for the comparisons. As in these papers, the
same projects from the same repositories (NASA and
PROMISE) were used. However, other repositories
could also be considered in the future.

6 CONCLUSIONS

Software testing is a costly activity, especially
when continuous development or maintenance is per-
formed. Automated testing may cover regression test-
ing, but it is still an explicit step-by-step solution
that becomes more expensive when adapted to large
changes, such as code refactoring. To simplify these
processes, supervised or unsupervised binary classi-
fication software defect prediction (SDP) techniques
can rule out defective components or highlight the
least defective components. In this paper, outlier de-
tection methods for SDP were investigated. The nov-
elty of this approach is that it was not previously used
for this particular task. Two approaches were used:
simple use of the local outlier factor based on con-
nectivity (COF) and then enhancement by the Pareto
rule (which means that we consider samples with the
20% highest outlier score resulting from the algorithm
as outliers), COF + Pareto. Multiple projects from
the NASA and PROMISE datasets were used to val-
idate the proposed approaches. The results obtained
are comparable to state-of-the-art solutions.
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