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Abstract: Classifying software changes, i.e., commits into maintenance activities enables improved decision-making in
software maintenance, thereby decreasing maintenance costs. Commonly, researchers have tried commit clas-
sification using keyword-based analysis of commit messages. Source code changes and density data have also
been used for this purpose. Recent works have leveraged contextual semantic analysis of commit messages
using pre-trained language models. But these approaches mostly depend on training data, making their ability
to generalize a matter of concern. In this study, we explore the possibility of using in-context learning capa-
bilities of large language models in commit classification. In-context learning does not require training data,
making our approach less prone to data overfitting and more generalized. Experimental results using GPT-3
achieves a highest accuracy of 75.7% and kappa of 61.7%. It is similar to performances of other baseline
models except one, highlighting the applicability of in-context learning in commit classification.

1 INTRODUCTION

Software maintenance constitutes a significant por-
tion of the overall costs in software development.
To increase cost-effectiveness, it is imperative to un-
derstand the different maintenance activities involved
with software development (Swanson, 1976). Cat-
egorization of these maintenance activities enables
decision-making on resource allocation, choice of
technology, and management of technical debt (Ghad-
hab et al., 2021), making it easier to manage costs.
To realize this benefit, many researchers have tried to
profile software projects in terms of maintenance ac-
tivities (Swanson, 1976) (Mockus and Votta, 2000)
(Levin and Yehudai, 2016). The very first task in
maintenance activity profiling is commit classifica-
tion. As commits keep track of technical changes in a
software, classifying them into maintenance activities
helps better understand and manage software mainte-
nance, thereby improving cost-effectiveness.

Different approaches have been proposed for com-
mit classification. The most common approach is an-
alyzing commit messages. Multiple studies have em-
ployed keyword-based analysis of commit messages
(Hindle et al., 2009) (Levin and Yehudai, 2017) (Mar-
iano et al., 2021). Aside from commit messages, stud-

ies also considered other data sources, such as source
code changes (Levin and Yehudai, 2017) (Meqdadi
et al., 2019) and code density (Hönel et al., 2020).
Other studies have tried contextual semantic analysis
of commit messages by fine-tuning pre-trained lan-
guage models (Ghadhab et al., 2021) (Zafar et al.,
2019). However, such approaches mostly depend
on training machine learning classifiers with commit
data, thus making them dependent on the quality of
training data.

In this study, we propose the use of in-
context learning capabilities of large language models
(LLMs) in the context of commit classification. As in-
context learning does not require training data, it can
be an excellent way to generalize commit classifica-
tion across commit data from different sources. We
previously achieved encouraging results in detecting
and classifying user interface (UI) dark pattern texts
using in-context learning (Sazid et al., 2023). We use
the same approach in this study to apply in-context
learning in the context of commit message classifica-
tion. In this approach, we first synthesize definitions
of maintenance activity categories from the existing
literature. These category definitions are then used to
engineer prompts for the large language model, along
with zero, one, or two examples per category.
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Experimental results using GPT-3 present encour-
aging signs about the applicability of in-context learn-
ing in the context of commit classification. We
achieve a highest accuracy of 75.7% and kappa of
61.7%, which is similar to other baseline approaches
except one. Most importantly, our approach requires
no training data. It only uses semantics of category
definitions to classify commit message texts. Thus, it
is less prone to data overfitting and offers increased
generalization over other approaches.

2 RELATED WORK

Commit classification is not a new field of research,
but recent years have seen a growing number of stud-
ies on this topic (Heričko and Šumak, 2023). As
the necessity to understand and organize software
changes keeps rising, researchers have tried to au-
tomate the commit classification process using rule-
based models (Amit and Feitelson, 2021) (Hassan,
2008) (Mauczka et al., 2012), supervised (Ghadhab
et al., 2021) (Hindle et al., 2009) (Levin and Yehu-
dai, 2017) (Hönel et al., 2020) (Zafar et al., 2019) and
semi-supervised (Fu et al., 2015) (Gharbi et al., 2019)
machine learning.

Hindle et al. used machine learning to classify
large changes into five maintenance categories - cor-
rective, adaptive, perfective, feature addition, and
non-functional changes (Hindle et al., 2009). They
used the commit message, author, and modified mod-
ules data in their work. This trend of analyzing com-
mit messages can be seen in other works as well. Fu
et al. and Yan et al. used topic modelling on com-
mit messages (Fu et al., 2015) (Yan et al., 2016).
But the most common technique in analyzing commit
messages is word frequency-based analysis (Heričko
and Šumak, 2023). Levin et al. used such an ap-
proach to extract keywords from commit messages
(Levin and Yehudai, 2017). They used the presence of
keywords and source code changes (number of state-
ments, methods, files changed etc.) to distinguish be-
tween commits belonging to three maintenance activ-
ities - corrective, adaptive, and perfective. Hönel et
al. extended the work of Levin et al. by incorpo-
rating source code density with keywords and code
changes to improve the classification accuracy (Hönel
et al., 2020) (Levin and Yehudai, 2017). However,
keyword-based techniques do not recognize the con-
textual relationship between words. As a result, it is
necessary to train a context-aware model for commit
classification.

Multiple studies used pre-trained language models
for contextual analysis of commit messages. Ghad-

hab et al. used fine-grained code changes with a
pre-trained language model, BERT (Bidirectional En-
coder Representations from Transformers), to aug-
ment commit classification (Ghadhab et al., 2021).
Sarwar et al. and Trautsch et al. also used contextual
semantic analysis of commit messages (Sarwar et al.,
2020) (Trautsch et al., 2023). Zafar et al. presented a
set of rules for semantic analysis of commit messages
and trained a context-aware deep learning model by
fine-tuning BERT for bug-fix commit message clas-
sification (Zafar et al., 2019). These applications of
pre-trained language models generally focus on fine-
tuning models with commit message data. As a result,
they are only as generalized as the source of training
data.

Using the semantics of category definitions of
maintenance activities can provide better generaliza-
tion capabilities for language models. Large Lan-
guage Models (LLMs) like GPT (Generative Pre-
trained Transformer) have in-context learning capa-
bilities that can be useful in this regard. This capabil-
ity enables LLMs to perform tasks by conditioning on
only a few examples (Min et al., 2022). What sepa-
rates our work from existing works is that we leverage
this capability of LLMs for commit classification in-
stead of fine-tuning the pre-trained models with com-
mit message data.

3 BACKGROUND

We start this section with an overview of maintenance
activity categories considered in this work. Then, we
introduce in-context learning and GPT, a large lan-
guage model that has been illustrating revolutionary
capabilities in different natural language processing
(NLP) tasks, especially text classification. Finally, we
explain statistical methods used in this study to eval-
uate classification performance.

3.1 Maintenance Activity Categories

Swanson proposed three maintenance activity cat-
egories - ‘Corrective’, ‘Perfective’, and ‘Adaptive’
(Swanson, 1976). These categories are briefly ex-
plained in this subsection.

3.1.1 Corrective

Corrective maintenance involves identifying and fix-
ing issues like bugs and faults in software to ensure
it behaves as intended. It addresses problems in pro-
cessing or performance, caused by errors in the appli-
cation software, hardware, or system software. It is
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carried out in response to failures and includes tasks
like bug fixing, resolving processing issues, address-
ing performance problems, and correcting implemen-
tation failures.

3.1.2 Perfective

Perfective maintenance involves improving a soft-
ware, even if it is already built and documented well,
without any implementation problems. The goal is to
make the software easier to modify during corrective
or adaptive maintenance, not necessarily to reduce
program failures or handle environmental changes
better. This type of maintenance focuses on getting
rid of inefficiencies, enhancing performance, and im-
proving maintainability, ultimately striving for a more
perfect design.

3.1.3 Adaptive

Adaptive maintenance involves adjusting software in
response to changes in the data and processing en-
vironments. For instance, changes in data might in-
volve modifying classification codes or restructuring
a database, while changes in processing could result
from new hardware or operating system installations,
requiring updates to existing programs. It’s crucial to
anticipate these changes for timely and effective adap-
tive maintenance.

3.2 In-Context Learning

In-context learning is a prompt engineering strategy
for large language models that do not require tradi-
tional sense of training in machine learning. Instead
of training or fine-tuning models with large datasets,
only a few examples are provided within the prompt.
As a result, models can learn tasks using inference
only, without updating underlying parameters (Min
et al., 2021).

3.3 Generative Pre-Trained
Transformer (GPT)

GPT (Generative Pre-trained Transformer) is a se-
ries of large language models developed by OpenAI1.
They are based on a transformer architecture, which
is a type of deep learning model that uses attention
mechanisms to capture relationships between words
in a sentence. GPT excels in a variety of natural lan-
guage processing tasks, such as question answering,
translation, summarizing, classification, and text pars-
ing (Chiu et al., 2021).

1https://openai.com

3.4 Statistical Methods

We evaluate our classification performance using
common statistical measures like accuracy, precision,
recall and kappa. Short descriptions of the statistical
methods required in this study are provided below.

• True Positive (TP) - Number of instances that
were correctly classified as belonging to a class.

• False Positive (FP) - Number of instances that
were incorrectly classified as belonging to a class
when they actually belong to a different class.

• True Negative (TN) - Number of instances that
were correctly classified as not belonging to a
class.

• False Negative (FP) - Number of instances that
were incorrectly classified as not belonging to a
class when they actually belong to that class.

• Precision - Ratio of correctly classified instances
of a class over all instances that were classified as
belonging to that class.

Precision =
T P

T P+FP
(1)

• Recall - Ratio of correctly classified instances of
a class over all instances of that class.

Recall =
T P

T P+FN
(2)

• Accuracy - Ratio of correctly classified instances
over all instances.

Accuracy =
# of correctly classified instances

# of all instances
(3)

• Kappa - Cohen’s kappa is a metric used to account
for uneven distribution of classification categories
or classes. It considers the possibility of the agree-
ment occurring by chance, therefore providing a
more reliable metric than accuracy.

4 METHODOLOGY

Our main objective in this study is to measure the
applicability of in-context learning in the context of
commit classification. Previously, we executed such
an investigation in the context of automated detection
of dark pattern texts (Sazid et al., 2023). We fol-
low the same approach of applying in-context learn-
ing in this new context of commit classification. We
begin by synthesizing comprehensive definitions of
the three maintenance activity categories considered
in this study. This information is then utilized to en-
gineer prompts for large language models. We choose
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Figure 1: Overview of Commit Classification Approach Using In-Context Learning.

GPT-3 as the large language model to be used in
this study because of its encouraging performance in
terms of in-context learning capabilities. Figure 1
depicts an overview of the commit classification ap-
proach used in this study.

4.1 Dataset of Commit Messages

We utilize the commit dataset provided by Levin et
al., which comprises 1,151 commit data from 11 Java
projects (Levin and Yehudai, 2017). Commits in this
dataset are categorized as ‘Adaptive’, ‘Corrective’, or
‘Perfective’. The distribution of commits is as fol-
lows: 22% ‘Adaptive’, 43% ‘Corrective’, and 35%
‘Perfective’. Aside from the commit message, the
dataset also includes source code changes and key-
words for each commit. But we do not use these other
features in our work. 1,145 of the 1,151 commits are
utilized solely to validate GPT-3 classification mod-
els. The remaining 6 commits illustrated in Table 1
are utilized for training or validation based on GPT-3
prompting techniques.

4.2 Category Definition Synthesis

We must first synthesize the definitions of the mainte-
nance activity categories. We want to use this as con-
textual information in our classification process. As a
result, the meaning and phrasing of the category defi-
nitions will have a significant influence on the clas-
sification outcomes. We synthesize relevant phras-
ings and characteristics from the literature (Swanson,
1976) (Mockus and Votta, 2000) (Levin and Yehudai,
2017) (Heričko and Šumak, 2023) to provide a de-
tailed and comprehensive definition for each mainte-
nance activity category. We enumerate the different
phrasings to generate each category definition. The
resulting definitions are listed in Table 1.

4.3 Classification of Commit Messages

Similar to our previous work on in-context learning,
we utilize the ‘GPT for Sheets™ and Docs™’ exten-
sion available in ‘Google Sheets’ to classify all the
commit message texts in the dataset. We employ
the ‘GPT()’ function provided by this extension. It
sends a prompt to GPT and returns the result. We
select the ‘gpt-3.5-turbo’ model for this study. As
commit message classification necessitates precise re-
sults, we configure the ‘temperature’ parameter of the
model to 0 so that it prioritizes accuracy over cre-
ative results. After configuration, We send engineered
prompts to the model appending a single piece of
commit message text to classify that text. We call
the ‘GPT()’ function for all the commit message texts
in the dataset following this approach. The ’GPT()’
function call operates in a completely new session
each time, ensuring that GPT’s memory of the pre-
vious context does not influence the outcomes.

4.4 Prompt Engineering

Prompt engineering is carried out to apply in-context
learning for the following prompting techniques -
zero-shot, one-shot, and few-shot. Procedures for
prompt engineering followed in this study are ex-
plained in this subsection.

4.4.1 Zero-Shot Prompting

In zero-shot prompting, no example for any of the
classification categories is provided to the GPT-3 clas-
sification model. A template for zero-shot learning
used in our study is given below -
Prompt:
Classify the commit message into ‘adaptive’, ‘perfec-
tive’ or ‘corrective’ maintenance activities.
<Definition of ‘Corrective’ Category>
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Table 1: Definitions and Examples of Classification Categories.

Classification

Category
Definition Examples

Corrective
‘Corrective’ means ‘changes made to fix functional

and non-functional faults, failures, and errors’.

1. Percolator response now always returns the- ‘matches‘ key.–Closes -4881-

2. Wraps DoOnEach in a SafeObserver–This commit leverages the SafeObserver

facility to get the desired-behavior in the face of exceptions. Specifically, if any of

the-operations performed within the doOnEach handler raises an exception,-that

exception will propagate through the observable chain.-

Perfective

‘Perfective’ means ‘changes made to improve software

quality attributes such as processing efficiency,

performance, and maintainability’.

1. Fixed typos in test.-

2. HBASE-6667 TestCatalogJanitor occasionally fails;- PATCH THAT ADDS

DEBUG AROUND FAILING TEST–git-svn-id: https://svn.apache.org/repos/

asf/hbase/trunk@1379682 13f79535-47bb-0310-9956-ffa450edef68-

Adaptive

‘Adaptive’ means ‘adding or introducing new features

into the system’, and ‘changes made to adapt to

changes in the data and processing environment’.

1. plugins: tooltip for plugins with newer version- (IDEA-75998)–

2. Create from usage: Create constructor parameter- by reference in delegation

specifier -KT-6601 Fixed–

<Definition of ‘Perfective’ Category>
<Definition of ‘Adaptive’ Category>
Now I will give you one commit message, and you
will have to say which category it belongs to. You
must reply with only one letter - ‘c’ for ‘corrective’,
‘p’ for ‘perfective’ or ‘a’ for ‘adaptive’.
<Text to be classified>
GPT-3 Response: <Predicted Category>

4.4.2 One-Shot Prompting

In one-shot prompting, one example per category is
provided with the definitions. Each <Definition of
Category X> is followed by <Example 1 of Cate-
gory X>. The first example for each category shown
in Table 1 is used in one-shot prompting. Example
text selection is carried out randomly and they are re-
moved from the validation dataset.

4.4.3 Few-Shot Prompting

We use two examples per category in few-shot
prompting. Each <Definition of Category X>
is followed by <Example 1 of Category X> and
<Example 2 of Category X>. The example texts used
in one-shot are reused in few-shot, while the other
three example texts are randomly selected. All the
example texts used in prompting are shown in Table
1, which are removed from the validation dataset.

5 EVALUATION

We use accuracy, precision, recall and kappa to assess
the performance of our approach for commit clas-
sification. Overall classification performance across
prompting techniques are listed in Table 2.

5.1 Result Analysis

Among the three prompting techniques used in this
study, zero-shot prompting produces the best results
with an overall accuracy of 75.7% and a kappa of
61.7%. It accurately classifies 871 out of 1,151 com-
mit messages. Zero-shot prompting works best for
the ‘Corrective’ category with a precision of 88% and
a recall of 80%. One-shot prompting sees a decrease
in performance with an overall accuracy of 70% and
a kappa of 52.5%. It accurately classifies 804 out
of 1,148 commit messages. Like zero-shot, one-shot
prompting also works best for the ‘Corrective’ cate-
gory with a precision of 86% and a recall of 73%,
even though both see a decrease compared to zero-
shot. Few-shot prompting further decreases the over-
all accuracy to 65.6% and the kappa to 45.6%. 751
out of 1,145 commit messages were accurately classi-
fied using few-shot prompting. The ‘Perfective’ cat-
egory has high recall scores and low precision scores
across all three prompting techniques. The ‘Adaptive’
category illustrates totally opposite results. It has high
precision scores and low recall scores across prompt-
ing techniques.

Figure 2 depicts a steady decrease in accuracy and
kappa as the number of examples is increased in the
prompt. This can be explained by the fact that com-
mit message texts are diverse in representation. De-
velopers from different companies, projects, or geo-
graphic locations may write commit messages in dif-
ferent ways. As a result, providing a few examples
makes the classifier more biased rather than general-
ized. Thus, in-context learning for commit classifica-
tion works best when relying only on the semantics of
the category definitions. More accurate and detailed
definitions of categories might further facilitate com-
mit classification using in-context learning.
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Table 2: Experimental Results Using GPT-3.

Category
Zero-Shot One-Shot Few-Shot

Precision Recall Accuracy Kappa Precision Recall Accuracy Kappa Precision Recall Accuracy Kappa

Corrective 88% 80%

75.7% 61.7%

86% 73%

70% 52.5%

91% 62%

65.6% 45.6%Perfective 63% 83% 57% 87% 51% 94%

Adaptive 81% 55% 83% 36% 90% 25%

Zero-Shot One-Shot Few-Shot
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80
 Accuracy
 Kappa

Figure 2: Performance Across Prompting Techniques.

5.2 Result Discussion

Table 3 compares our best performance, achieved us-
ing zero-shot prompting, with some baseline multi-
class commit classification models trained and vali-
dated on the same dataset used in this study. It is eas-
ily visible that our performance is similar to the other
models except the one using the LogitBoost classifier
(Hönel et al., 2020). Even though our approach fails
to beat the model using LogitBoost, it is important to
consider a significant difference between all of these
models and our approach. These models learned from
training data making them prone to data overfitting
whereas we use in-context learning. Our best perfor-
mance is achieved without any training, using only
the semantics of category definitions. As a result, our
approach is less prone to overfitting and more gener-
alized compared to other models.

As zero-shot is our best-performing model, using
more examples can not improve the performance of
our approach. However, there are two feasible di-
rections for improvement. Firstly, more detailed and
accurate category definitions in prompts can poten-
tially enhance performance. Secondly, integrating our
approach with other non-ML methods, such as key-
word analysis, source code change analysis, or topic
modelling, could further improve performance. Such
an amalgamation can leverage the generalization ca-
pabilities of in-context learning while also benefiting
from the classification capabilities of other methods.

Table 3: Performance Comparison With Baseline Models.

Commit Classification Model Year Accuracy Kappa

Multi-class classification based on source code

changes and keywords extracted from commit

messages using LogitBoost (Hönel et al., 2020)

2020 85% 78%

Multi-class classification based on source code

changes and keywords extracted from commit

messages using Random Forest

(Levin and Yehudai, 2017)

2017 73.6% 58.9%

Multi-class classification based on quantitative

metrics and keywords extracted from commit

messages using Random Forest

(Mariano et al., 2021)

2021 75.7% 62.4%

Multi-class classification based on commit

messages using In-Context Learning (proposed)
2023 75.7% 61.7%

6 THREATS TO VALIDITY

Validation with a single dataset poses an external va-
lidity threat. Classification performance may differ
in other commit datasets. However, our approach is
generalized in terms of training data. As we do not
use training data, the approach can be as generalized
as the category definitions used in prompt engineering
for large language models. As a result, we believe this
approach can be useful in classifying commit mes-
sages from other sources as well. Random example
selection for prompt engineering poses a threat to the
internal validity of the study. However, in zero-shot
prompting, no example was used in the prompt. Thus,
the performance of zero-shot prompting, which is the
best-performing model in this study, does not suffer
from this issue.

7 CONCLUSION

In this study, we investigate the applicability of in-
context learning in the context of commit classifica-
tion. Our approach synthesizes definitions of main-
tenance activity categories from the existing litera-
ture, which are used as contextual information for
large language models to classify commit messages.
Experimental results using GPT-3 show encouraging
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performance in zero-shot compared to other baseline
models. In-context learning decreases the risk of data
overfitting as no training data is used. Thus, our com-
mit classification approach is as generalized as the
category definitions used in prompt engineering. In
the future, we plan to combine this approach with
other commit classification approaches to further im-
prove the classification performance.
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