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Abstract: The present study belongs to the new research direction that aims to improve software defect prediction by
using additional knowledge such as source code comments. The fusion of programming language features
learned from the code and natural language features extracted from the code comments is the proposed se-
mantic representation of a source code. Two types of language models are applied to learn the semantic
features: (1) the pre-trained models CodeBERT and RoBERTa for code embedding and textual embedding;
(2) doc2vec model used for both, code embedding and comments embedding. These two semantic represen-
tations, in two combinations (only code features and code features fused with comment features), are used
separately with the XGBoost classifier in the experiments conducted on the Calcite dataset. The results show
that the addition of the natural language features from the comments increases the software defect prediction
performance.

1 INTRODUCTION

Software defect prediction (SDP) is an important area
in software engineering research and practice, as it
can improve the software development process by
providing automated, early detection of software de-
fects in the system. Besides its importance in mea-
suring a software project evolution, software defect
prediction assists the process management (Clark and
Zubrow, 2001), is useful in predicting software relia-
bility (Zheng, 2009) and in guiding testing and code
review (hua Chang et al., 2011). Through all these
activities, SDP contributes to a significant decrease
of the costs required by the software products’ de-
velopment and maintenance (Hryszko and Madeyski,
2018).

The approaches from the SDP literature are cat-
egorized in two types: within-project and cross-
project software defect prediction. Within-project ap-
proaches use data from a software project both for
training and testing the defect predictor (Zhu et al.,

a https://orcid.org/0000-0001-6681-7281
b https://orcid.org/0000-0002-2117-2018
c https://orcid.org/0000-0001-7852-681X
d https://orcid.org/0000-0003-0076-584X

2020), while the cross-project SDP approaches train
the SDP model on a set of software systems and
then test its performance on different software sys-
tems (Jin, 2021).

The importance of employing semantic features
from the source code besides software metrics for
SDP has been highlighted by (Wang et al., 2016).
(Yang et al., 2015) and (Wang et al., 2016) considered
Deep Belief Neural Network (DBNN) and source
code analysis for predicting software defects. Long
Short Term Memory (LSTM) networks were pro-
posed by (Dam et al., 2018) to learn semantic features
from the abstract syntax tree (AST) of the code. A Lo-
gistic Regression (LR) and a Random Forest classifier
were then trained on these semantic features for pre-
dicting software defects. (Li et al., 2017) employed
a Convolutional Neural Network (CNN) trained on
the semantic features learned from the abstract syntax
tree combined with the software metrics. A LR classi-
fier applied on the automatically learned features out-
performed the DBNN approach introduced by (Wang
et al., 2016). (Zhao et al., 2019) applied Siamese par-
allel fully connected networks to generate new fea-
tures out of the software metric values, without using
the source code.

One of the main difficulties in SDP is the severe
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imbalance of the data, as the number of software de-
fects in the training data is significantly outweighed
by the number of non-defects. Due to this imbalance,
the supervised classifiers are often biased to predict
the majority class (non-defects). (Zhao et al., 2019)
showed that even the deep learning (DL) models are
impacted by the imbalance of the defect datasets.
Most of the existing SDP approaches based on source
code are analysing its AST. Two main limitations of
DL models applied on the AST of the source code are
that AST tokens do not exploit comments and iden-
tifiers which are also relevant in expressing semantic
relations (Marcus et al., 2008) and the feature gener-
ation process is dependent on the programming lan-
guage. (hua Chang et al., 2011) highlighted the im-
portance of using quality data for training the defect
predictors and the importance of the features used for
characterizing the software entities.

From our perspective, a major challenge in the
SDP task lies in the selection of features, given the
numerous aspects of the source code that a represen-
tation must capture to effectively discern between de-
fects and non-defects. Therefore, we emphasize the
significance of investigating potentially relevant fea-
tures that may improve upon existing representations.
Code comments and names in the source code may
contain relevant information regarding the domain of
the problem and may also highlight relations between
parts of the code that can not be easily discovered
by just analyzing traditional code dependencies (as-
sociations, aggregations, inheritance). Many of the
defects discovered in a software system are related
to non-technical aspects of the system such as: mis-
understandings related to the requirements or speci-
fication of functions, defects caused by problems in
interoperability between different components of the
system, mismatches between the semantic meaning
of certain variables. These semantic aspects of the
system are more likely captured by comments, vari-
able/function/class names in the system than software
metrics, AST or other data collected and used by the
majority of SDP approaches in the literature.

The present study belongs to the new research
in the field of SDP that uses additional knowledge,
such as comments, with the aim of obtaining a bet-
ter semantic representation of the source code. To
evaluate the relevance of the new natural language
(NL) - based features in improving software defect
prediction, two SDP approaches are proposed. The
first approach combines programming language (PL)
features extracted from the code using BERT-based
models pre-trained on code corpora with NL features
learned by RoBERTa (a pre-trained natural language
model) from textual information. In the second ap-

proach doc2vec is first trained on the codes (of the
dataset) to extract a distributed semantic representa-
tion of a code from the PL token sequence and then
an NL-based representation of the textual information
of a source code is generated by a doc2vec model
trained on the comments. In the experiments per-
formed using both approaches, in a within-project
setting, on the Apache Calcite (Begoli et al., 2018)
dataset, we aim to investigate if the code comments
bring meaningful information besides the code itself.
Another goal of the study is the comparison of the per-
formance of an SDP predictor using the proposed fea-
tures with approaches based on traditional software
metrics-based features. To the best of our knowledge,
a study similar to ours has not been conducted in the
SDP literature. The research questions targeted in our
work are as follows:

RQ1. Does the fusion of the natural language fea-
tures (from code comments) and the program-
ming language features (from code), learned
using NL models (doc2vec, BERT-based), im-
prove the performance in the SDP task?

RQ2. To what extent does the use of the seman-
tic features automatically extracted from the
code and/or code comments enhance the pre-
dictive performance of defect classifiers com-
pared to the traditional software metrics-based
features?

The paper is structured as follows. In Section 2 we
review recent approaches, based on semantic features,
from the SDP literature. Section 3 contains the de-
scription of the methodology employed in the study.
The results of the experiments conducted on the Cal-
cite software are presented and discussed in Section
4 while Section 5 exposes the threats to the validity
of the present study. Conclusions and directions for
future research are presented in the last section.

2 RELATED WORK ON
SEMANTIC FEATURES USED
FOR SDP

Recent works from the SDP literature that use seman-
tic features to improve the software defect prediction
performance are presented.

(Abdu et al., 2022) conducted a comprehensive
study (based on 90 scientific articles) of the SDP ap-
proaches using contextual and semantic features ex-
tracted from the source code. The main aspects pre-
sented in this survey are (1) the source code semantic
representations (ASTs, graph-based representations,
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token embeddings), (2) the deep learning techniques
applied (LSTM, DBN, CNN, BERT-based) and (3)
the datasets (labeled and unlabeled) used in the se-
mantic feature-based SDP models. The domain’s crit-
ical problems and challenges are also described.

(Wang et al., 2016) proposed the first model based
on semantic features using DBN (Deep Belief Net-
work). The features learned from token vectors ex-
tracted from ASTs have been compared with 20 tra-
ditional software metrics-based features in the experi-
ments conducted on ten open-source projects from the
PROMISE dataset (Jureczko and Madeyski, 2010). In
both within-project and cross-project SDP tasks, the
semantic features proved to be more relevant than the
other features. In the SDP model proposed by (Ud-
din et al., 2022) the contextual and semantic features
of the source code are extracted from the tokens’ se-
mantic embeddings learned through a BERT model
(Mohammed and Ali, 2021) and using the BiLSTM
method (Graves et al., 2005) that exploits the contex-
tual information. A data augmentation strategy has
been employed to generate a large set of Java source
codes, used further in fine-tuning the BERT model.
The experiments conducted on the PROMISE dataset
demonstrated that the proposed model outperformed
both traditional SDP models and other DL models.
(Miholca et al., 2022) proved that the features which
capture the semantics of the source code are more
informative than the software metrics-based features
(Hosseini et al., 2019; Malhotra, 2015) in discriminat-
ing between defective and non-defective software en-
tities. Two natural language–based models, doc2vec
and LSI, have been used to extract contextual and se-
mantic features of the class entities of 16 versions of
the Calcite system. The DL-FASTAI model applied to
these semantic features achieved the best results com-
pared to other machine learning models (XGBoost,
SVM, ANN) and other software metrics-based fea-
tures.

Two types of features, internal and external, joined
together with different weights, are used by (Zhou
et al., 2022) to implement an SDP model. The internal
semantic features are learned from each source file,
using a CNN applied to the AST of the source code.
The external features represent the structural informa-
tion between all class files and are extracted from the
software network (Class Dependency Network) using
a GCN (Graph Convolutional Network). A large set
of experiments was performed on the seven projects
of the PROMISE dataset, in three settings: within-
version, cross-version and cross-project. All the per-
formance results expressed by AUC, F1 and accuracy
metrics were satisfactory, but the best results were
obtained for within-version prediction, using Syn-

thetic Minority Oversampling Technique (SMOTE)
and Random Forest (RF) as the classifier.

(Huo et al., 2018) proposed CAP-CNN (Convo-
lutional Neural Network for Comments Augmented
Programs) aiming to obtain a more informative se-
mantic representation of code structure and function-
ality using also the comments. Semantic code fea-
tures extracted by a CNN are concatenated with fea-
tures extracted from code comments using another
CNN and further used in defect prediction. To deal
with cases of missing comments, the embeddings of
tokens in the comments are learned during the training
process. The experiments on the PROMISE dataset
indicated that this model outperforms state-of-the-art
methods and proved that the use of comments is ben-
eficial in improving defect prediction. The semantic
representation of a source code introduced by (Yao
et al., 2023), is based on two types of features ex-
tracted from the code processed as a programming
language entity and as a natural language text, respec-
tively. The code syntax features were learned from
ASTs using a Tree-based CNN method, and the code
text features were extracted using an attention mech-
anism from the code token sequence after removing
comments and function descriptions. The proposed
program semantic feature mining method evaluated
on the PROMISE dataset proved to outperform other
DL-based SDP models in terms of F-measure.

Recently, the PM2-CNN (Pretrained Model-
Based Multi-Channel Convolutional Neural Network)
model was introduced by (Liu et al., 2023). Using
UniXcoder (unified cross-modal pre-trained model
for PL), the semantic PL features of the code and the
NL features of the code description text are extracted
simultaneously and then a multi-channel CNN pro-
cesses both types of features to obtain rich semantic
information, used further in defect prediction. The ef-
fectiveness of the model has been verified on Big-Vul,
a large C/C++ dataset in the field of code vulnerabil-
ities. Compared to four deep learning SDP methods,
which do not use external textual information of the
codes, PM2-CNN achieved better performance results
in terms of precision, recall, and F1-score.

The present approach comes in the context of
trying to improve the software defect prediction us-
ing additional textual information, such as comments.
The novelty of our approach lies in the fusion of pro-
gramming language features (from code) and natural
language features (from code comments), learned us-
ing NL models (doc2vec or BERT-based) to obtain an
enriched semantic representation of a source code.
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3 METHODOLOGY

This section presents the methodology employed in
the present study. We begin by describing the case
study used in the paper, then the theoretical model
for the SDP task is proposed. In Section 3.2 the
feature-based representations used for the source code
of application classes are introduced. In the next sec-
tion the proposed SDP classifier and the experimental
methodology are described.

The open-source framework for data manage-
ment, Apache Calcite (Begoli et al., 2018), is the soft-
ware system used in our study. Apache Calcite is an
active open-source project, written in Java, with 330
contributors. The release cadence of the project on
Maven Central is averaging 4 releases per year (be-
tween the years 2014 and 2023). Even if the project is
continuously evolving, in this paper we are consider-
ing the first 16 Calcite releases, as presented by (Her-
bold et al., 2022). During releases 1.0.0-1.15.0, a total
number of 1644 application classes were developed
and maintained. For all application classes from each
release from 1.0.0 to 1.15.0 of the Calcite software the
ground truth label (“+” or “-” ) is available, as intro-
duced by (Herbold et al., 2022). The label indicates
the defective (“+”) or non-defective (“-“) property of
an application class in that particular release. A severe
data imbalance is observed in the dataset, the defec-
tive rate decreasing from 0.166 in the first release (178
defects and 897 non-defects) to 0.033 (45 defects and
1307 non-defects) in release 1.15.0. This dataset was
also used by (Miholca et al., 2022), (Ciubotariu et al.,
2023), (Briciu et al., 2023).

3.1 Theoretical Model

The SDP task is modeled as a binary classification
problem, with two output classes: the positive class
(denoted by “+”) containing the software defects and
the negative class (denoted by “-”) containing non-
defects.

The dataset, an object-oriented software system,
is represented by S = {(ac1, l1) , . . . ,(acn, ln)}, con-
sisting of all the software application classes and the
corresponding ground truth labels (“+” or “-”). In
the present approach we consider two types of fea-
tures: PL features learned from the code of the ap-
plication class, FP L = { f pl1, . . . , f plm} and NL fea-
tures extracted from the comments attached to the ap-
plication class, FN L = { f nl1, . . . , f nlp}. Two sets of
features FP L and FP L ∪FN L are extracted and used
separately to represent the application classes as high-
dimensional vectors.

The SDP classifier is built from a labeled training

dataset, using a feature-based representation of the
application classes and predicts a label (“+” or “-”)
for a tested class.

3.2 Data Representations

For extracting semantic features characterizing the
application classes and thus answering research ques-
tion RQ1 we are considering embeddings obtained
separately for both: (1) the code itself and (2) the
code comments, concatenating the resulting represen-
tations to be used as input (referred in the following
as code+comments). We hypothesise that the com-
ments (represented by NL-based features), besides the
code itself (represented by PL-based features), bring
additional semantic information which would help in-
crease the performance in the SDP task.

To achieve this, the code is separated from the
comments using the pyparsing1 module, and differ-
ent processing pipelines are defined for each, depend-
ing on the embedding model. We note that the com-
ments considered in our work are both implementa-
tion comments (delimited in the code by /* . . . */ and
//) and documentation comments which are Java-only,
and are delimited by /**. . .*/.

Two types of embedding models are considered
for the representation of the application classes, for
both the code and the comments attached. First,
we consider the semantic representations provided by
a doc2vec model trained on the considered dataset
(either on the PL or the NL content). The rel-
evance of these features in an SDP task is com-
pared to that of representations obtained using pre-
trained BERT-based models, specifically CodeBERT-
and RoBERTa-based ones. The decision to select
these models was based on prior research demonstrat-
ing their suitability for the SDP task (Miholca et al.,
2022), (Briciu et al., 2023), with the current work
aiming to expand upon previous investigations by ad-
ditionally examining the role of comments in differ-
entiating between defect and non-defect classes.

In terms of data pre-processing, in order to ob-
tain the doc2vec representations, a code tokenizer2

is used to obtain the code tokens, while for the com-
ments written in natural language, we used the nltk
library3 for tokenization. As far as code is concerned,
the tokenizer identified whitespace and end-of-file as
separate tokens, but these were eliminated as we con-
sidered that given the strategy employed by doc2vec
in learning, including them may hinder the model’s
ability to learn meaningful document representations.

1https://pypi.org/project/pyparsing/
2https://github.com/Ikuyadeu/CodeTokenizer
3https://www.nltk.org/
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For comments, no additional pre-processing was em-
ployed.

As for the BERT-based representations, the de-
fault model tokenizer, based on a Byte-Pair-Encoding
algorithm, was used. The maximum length of a se-
quence is set to 512, which represents the upper limit
of the model, to include as much information as pos-
sible from the input files, and truncation and padding
are applied to the input code or comment instances to
account for their varying lengths.

3.2.1 doc2vec-Based Representations

The Paragraph Vector model, or doc2vec, is an un-
supervised learning algorithm that learns continuous,
distributed fixed-length representations, called em-
beddings, for texts of varying lengths, such as sen-
tences, paragraphs, or documents (Le and Mikolov,
2014). These representations are obtained by extend-
ing the neural network-based framework defined for
the word2vec model to include a paragraph vector. In
the Distributed Memory Model of Paragraph Vector
(PV-DM), the paragraph vector and the word vectors
are combined by either concatenation or averaging
and asked to contribute to the task of predicting the
next word in a text window. It is important to note that
the PV-DM model takes into account word order and
preserves the semantic relationships between words in
the vector space. In contrast, the Distributed Bag-of-
Words version of Paragraph Vector (PV-DBOW) only
uses the paragraph vector to predict randomly sam-
pled words from a text window within that paragraph.

Doc2vec has been successfully used in the task
of SDP (Miholca et al., 2022; Aladics et al., 2021),
either on its own or in conjunction with other repre-
sentations. In our experiments, we separately trained
doc2vec models on both the PL and NL content, re-
spectively, within the application class, using the gen-
sim4 library. For the training step, we varied the
Paragraph Vector model used (PV-DM or PV-DBOW)
and the size of the resulting vector representation (50,
100, 150 or 300). The training of the doc2vec model
is done only on the training set, and the vector repre-
sentations (embeddings) for the instances in the val-
idation and test sets (as defined in Section 3.3) are
obtained through inference.

3.2.2 BERT-Based Representations

In the case of BERT-based semantic representations,
we consider three pre-trained models to extract rep-
resentations for code: CodeBERT-base-MLM (Feng

4https://radimrehurek.com/gensim/models/doc2vec.
html

et al., 2020), CodeBERTa5 and CodeBERT-Java
(Zhou et al., 2023). The first of these, CodeBERT-
base-MLM, is initialized from a RoBERTa-base
model and further trained on the CodeSearchNet code
corpus with a MLM (Masked Language Modeling)
objective. CodeBERTa, specifically CodeBERTa-
small-v1, is another RoBERTa-like model, but with
the architecture of DistilBERT. This model is also
trained on the full CodeSearchNet corpus. Lastly,
CodeBERT-Java builds upon the CodeBERT-base-
MLM model, being additionally trained on Java code
from the CodeParrot Github dataset on a MLM task.
The choice of the models was driven by a compari-
son between the relevance of features obtained using
CodeBERT-base-MLM, a model that has been used
in a similar setting, and a model based on a differ-
ent transformer architecture (CodeBERTa-small-v1)
and one which was additionally trained on Java code
(CodeBERT-Java).

To obtain semantic representations of natural lan-
guage comments, we employed RoBERTa-base (Liu
et al., 2019), a model that improves upon the original
BERT model by using a dynamic masked language
modeling training strategy and larger volumes of text.

The procedure for extracting the semantic rep-
resentations (embeddings) using these BERT-based
models does not depend on the type of input (i.e. code
or natural language text in the form of specifications
and comments). After completing the pre-processing
steps outlined in Section 3.2, the tokenized program-
ming language code or natural language text serves
as input for a pre-trained model. A 768-dimensional
representation corresponding to the entire input doc-
ument is derived by applying a mean pooling tech-
nique to the 512 embeddings (for the tokens in the in-
put) obtained from the last hidden state of the model.
By opting for feature extraction instead of fine-tuning
with BERT models, we can directly assess and com-
pare the discriminatory power of the two types of rep-
resentations, as they will both serve as input for the
same SDP classifier.

3.3 SDP Classifier

The machine learning model we decided to use for
the SDP task is the eXtreme gradient boosting (XGB)
classifier, as it provides good performance in a wide
range of tasks (Chen and Guestrin, 2016). The XG-
Boost classifier will be trained on the semantic rep-
resentations of the application classes from the train-
ing data. In order to evaluate the practical capabil-
ities of the SDP classifier, we use the application

5https://huggingface.co/huggingface/
CodeBERTa-small-v1
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classes (code or code+comments) from versions 0..14
for training the SDP classifier, followed by testing on
version 15. In addition, the data from versions 0..14 is
divided randomly in 80% for training the model and
the remaining 20% for validation, a subset which is
used for hyper-parameter optimization.

For assessing the performance of XGB on Calcite
version 1.15.0, we are calculating several evaluation
metrics used in forecasting (Mazzarella et al., 2017)
and SDP literature (Fawcett, 2006), (Boughorbel
et al., 2017): probability of detection (POD), speci-
ficity (Spec or true negative rate), false alarm ratio
(FAR), critical success index (CSI), Area under the
ROC curve (AUC), Matthews Correlation Coefficient
(MCC) and F-score for the positive class (F1). The
classification results expressed by the following
values: T P - number of true positives (the defects
correctly classified), FP - number of false positives
(the non-defects incorrectly predicted as defects), T N
- number of true negatives (the non-defects classified
correctly), FN - number of false negatives (the defects
incorrectly classified as non-defects) are computed on
the testing set. Then, the metrics values are calculated
using the formulas: POD = T P

T P+FN , Spec = T N
T N+FP ,

FAR = FP
T P+FP , CSI = T P

T P+FN+FP , AUC = POD+Spec
2 ,

MCC = T P·T N−FP·FN√
(T P+FP)·(T P+FN)·(T N+FP)·(T N+FN)

, and

F1 = 2·T P
2·T P+FP+FN . The MCC metric ranges in [-1, 1]

while the other measures take values in [0, 1]. Lower
values for FAR indicate better predictors, while for
the other metrics higher values are better. We note
that AUC is considered in the SDP literature one of
the best metrics for evaluating the performance of the
defect classifiers (Fawcett, 2006).

4 RESULTS AND DISCUSSION

This section presents the results of our experiments
aimed to answer the research questions RQ1 and
RQ2.

4.1 Results

As previously discussed, our experiments consist of
training the XGB classifier (described in Section 3.3)
on the Calcite versions from 1.0.0 to 1.14.0 and after-
wards evaluating its performance on release 1.15.0.
Through the proposed evaluation we aim to simulate
a real life scenario where an existing project is fur-
ther developed and all the existing historical data in
the project is used to improve the next release of the
software through the use of SDP tools.

Multiple experiments were performed using both

doc2vec and BERT-based semantic representations,
varying the representation size and PV model
(doc2vec) and the side from which the input is trun-
cated when it is longer than the maximum length
of the sequence (BERT-based representations). The
best results obtained throughout these experiments,
using the representations detailed in Section 3.2
and applied on the two possible inputs (code and
code+comments) are illustrated in Tables 1 and 2.
For each experiment conducted, the obtained classi-
fication results are presented, together with the values
for the performance metrics used for evaluation. The
best value is highlighted for each specific model and
each performance metric.

To answer the research question RQ1 we intro-
duce an evaluation measure, denoted by score. The
score is computed for each of the two represen-
tations r employed in the experiments: the repre-
sentation learned using doc2vec-based models (r =
doc2vec) and the representation learned using BERT-
based models (r = BERT). For such a representa-
tion r, considering all the performed experiments (de-
picted in Table 1 for r = doc2vec and in Table 2
for r = BERT), we define score(r) = n(r)

21 . In the
previous formula, 21 is the total number of cases
(i.e., seven performance metrics for each of the three
performed experiments) and n(r) is the number of
performance metrics whose values are better for the
code+comments input than for the code input. Thus,
score(r) represents the percentage of the cases that
show an improvement of the SDP performance when
fusing the semantic features extracted from code with
those extracted from code comments, compared to the
semantic features extracted solely from the code.

Table 3 presents the values of score for both the
doc2vec and BERT-based representations. The pos-
itive values obtained for the score highlight that the
addition of the comments embedding to the code em-
bedding is beneficial in SDP.

For a wider perspective, we can consider all the
performed experiments, which involved, for BERT,
experimenting with a left-side truncation besides the
default right-side one, and for doc2vec, examining
various combinations of models and representation
sizes (as detailed in Section 3.2.1). Table 4 shows the
values obtained for each evaluation metric when aver-
aged over all performed experiments together with the
95% confidence interval of the mean values. As can
be observed, the inclusion of information found in NL
comments alongside the code encoding yields bene-
fits, enhancing the overall performance of the models.
Among the 14 comparisons made, the configuration
that incorporates both code and comments as input
wins in 11 instances, constituting 79% of the cases.
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Table 1: Experimental results obtained using doc2vec-based models for generating code and comments embeddings. The
classification results calculated on Calcite 1.15.0 and the performance metrics values are presented.

Experiment Model Input Embedding TP FP TN FN POD (↑) Spec (↑) FAR (↓) CSI (↑) AUC (↑) MCC (↑) F1 (↑)
length

1 PV-DBOW code 50 35 24 1283 10 0.778 0.982 0.407 0.507 0.880 0.667 0.673
code+comments 50+50 33 30 1277 12 0.733 0.977 0.476 0.440 0.855 0.605 0.611

2 PV-DM code 150 34 41 1266 11 0.756 0.969 0.547 0.395 0.862 0.568 0.567
code+comments 150+100 34 31 1276 11 0.756 0.976 0.477 0.447 0.866 0.614 0.618

3 PV-DM code 300 32 35 1272 13 0.711 0.973 0.522 0.400 0.842 0.566 0.571
code+comments 300+100 34 30 1277 11 0.756 0.977 0.469 0.453 0.866 0.619 0.624

Table 2: Experimental results obtained using BERT-based models for learning code and comments embeddings. The classifi-
cation results calculated on Calcite 1.15.0 and the performance metrics values are presented.

Experiment Model Input TP FP TN FN POD (↑) Spec (↑) FAR (↓) CSI (↑) AUC (↑) MCC (↑) F1 (↑)
1 CodeBERT-MLM code 35 26 1281 10 0.778 0.980 0.426 0.493 0.879 0.655 0.660

CodeBERT-MLM + RoBERTa code+comments 35 33 1274 10 0.778 0.975 0.485 0.449 0.876 0.618 0.619
2 CodeBERT-Java code 34 27 1280 11 0.756 0.979 0.443 0.472 0.867 0.635 0.642

CodeBERT-Java + RoBERTa code+comments 37 28 1279 8 0.822 0.979 0.431 0.507 0.900 0.671 0.673
3 CodeBERTa-small code 36 21 1286 9 0.800 0.984 0.368 0.545 0.892 0.700 0.706

CodeBERTa-small + RoBERTa code+comments 36 21 1286 9 0.800 0.984 0.368 0.545 0.892 0.700 0.706

Table 3: Values obtained for the score measure and the
doc2vec and BERT-based representations employed.

Representation score
doc2vec-based 0.62

BERT-based 0.29

Thus, overall, the values of the performance metrics
are better for PL+NL feature representation than us-
ing only PL features.

In terms of a comparison between the two types
of embeddings, the BERT-based representations yield
consistently better results than the doc2vec embed-
dings, despite the fact that in the tokenization process,
these models reduce all input sequences to a length
of 512. This result underlines the importance of the
information encoded in the pre-training step of the
BERT-based models using large source code datasets.

For doc2vec, the best results are obtained when
considering only the code as input, with a represen-
tation of size 50 obtained using the PV-DBOW archi-
tecture. Since the PV-DBOW model does not account
for word order, using only the paragraph vector to
predict words in a text window, it captures document-
level semantics more than it does local context, which
proves useful in separating defects and non-defects.
However, in our experiments, we observed that as
the size of the representation obtained with the PV-
DBOW model increases, its ability to identify de-
fects decreases (for size of 100 or 150, for instance,
a POD value of 0.622 is obtained, while for size 300,
the POD value decreases further, to 0.600). In con-
trast, the Speci f icity steadily increases with repre-
sentation size. An explanation for this could refer
to the substantial imbalance in the number of non-
defective instances relative to defective ones: the in-
creased size of representation allows for more com-
prehensive coverage of diverse document-level pat-

terns indicative of a non-defect. For PV-DM, which
also encodes word-order information, a size of 150
provides the best results in terms of the POD met-
ric (0.756), but similarly to the PV-DBOW model, in-
creasing the size of the representation aids in the iden-
tification of non-defects, as shown by the increased
value for Speci f icity for a representation size of 300.

Concatenating the representations obtained for
code and those obtained for the comments included in
the files alongside it leads to better results if the code
representation does not manage to capture sufficient
relevant information to discriminate between defects
and non-defects on its own, as highlighted by the re-
sults in Tables 1 and 2. For comments, the results in-
dicate that a representation size of 100 is best, manag-
ing to improve upon different source code representa-
tions in multiple testing configurations, especially as
far as the identification of non-defects is concerned.

The improvement brought by adding information
encoded in the comment embeddings is less evident in
the case of BERT-based representations. This could
be attributed to the operation of truncation to 512 to-
kens of the natural language input sequence applied
by RoBERTa, similar to the truncation of the pro-
gramming language code. In terms of a compari-
son across these models, the CodeBERT-Java model
for code embeddings in conjunction with natural lan-
guage text embeddings obtained using RoBERTa-
base provides the best result for the AUC metric (0.9).

When employing doc2vec, a first challenge lies in
determining the optimal representation size that effec-
tively captures relevant patterns from both code and
natural language comments, respectively. Addition-
ally, identifying the combination that yields the most
favorable results adds further complexity, as the num-
ber of experiments to be performed for an exhaustive
search is quite large. Secondly, the inference step in
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Table 4: Average obtained over all performed experiments for the evaluation metrics for the two types of input and the two
embedding models. 95% confidence intervals are used for the results.

Representation Input POD (↑) Spec (↑) FAR (↓) CSI (↑) AUC (↑) MCC (↑) F1 (↑)

doc2vec code 0.664±0.050 0.980±0.005 0.461±0.045 0.420±0.029 0.822±0.024 0.580±0.033 0.589±0.033
code+comments 0.706±0.022 0.979±0.002 0.459±0.027 0.440±0.019 0.843±0.011 0.602±0.018 0.610±0.018

BERT-based code 0.715±0.063 0.983±0.002 0.407±0.023 0.479±0.035 0.849±0.031 0.637±0.034 0.646±0.032
code+comments 0.733±0.033 0.982±0.002 0.415±0.029 0.482±0.026 0.858±0.016 0.641±0.025 0.649±0.024

the doc2vec model is not inherently deterministic,
yielding similar but not identical representations for
the same input. This may pose a problem in the cur-
rent testing configuration, as the content of some files
across the versions does not change, but their encod-
ing does, even if marginally.

A limitation of the proposed BERT-based repre-
sentations refers to the truncation performed in the
tokenization step of these models, which limits the
number of tokens to 512. Therefore, modifications in
the code may not be taken into consideration across
versions if the modification is in the part of the
code that is truncated. Possible solutions to this is-
sue refer to either the use of other transformer-based
models that are better able to handle long input se-
quences (Beltagy et al., 2020) or the examination of
other types of features in conjunction with the cur-
rent doc2vec and BERT-based representations, strat-
egy which has proved winning in previous works that
address the SDP task (Miholca et al., 2022).

4.2 Discussion

While we acknowledge that limitations in the pro-
posed approach may be one reason for misclassified
instances, this section aims to analyze these instances
to illustrate other potential causes for misclassifica-
tion. We further present some concrete examples
from the analysed project, that are not sufficient in
isolation to conclude that the performance of our pro-
posed method would be higher, but are an indication
that any SDP approach should also consider the re-
ality of the considered software project and details
about the actual source code in order to better under-
stand the larger context of the changes made in the
project. The dataset (Herbold et al., 2022) used for
the case study provides labels for Apache Calcite up
to version 1.1.15 but the project is in a continuous de-
velopment, so we analysed the changes made to the
source code after this release.

For better understanding the misclassifications
provided by our XGB classifier we analyzed both the
source code and the commit messages from Git for
the application classes that were incorrectly classi-
fied. We mention that the analysis was performed
on the best performing model, namely XGB trained
on embeddings for the applications classes automat-

ically learned using CodeBERT-Java from the code
concatenated with the comments embedding gener-
ated through RoBERTa.

We investigated the application classes from Cal-
cite 1.15.0 that were classified as defective but were
labeled non-defective in the original dataset (Herbold
et al., 2022) and we noticed that multiple changes
were performed in the source code after the release
of the version 1.15.0. Commit messages were not
part of the data used for training the models, but we
analyzed them in other to get a better understanding
of the changes performed on the misclassified classes.
While some of the commits are clearly not related
to bug fixes (i.e., the commit message starts with
expressions like: “Refactor:”,“Code style:”,“Update
formatting:” some commit messages clearly indicate
that the commit is related to a code change that is a
fix for a defect. For example, the commit with the
ID ccbacf6 and the commit message “RelDataType
CACHE in RelDataTypeFactoryImpl can’t
be garbage collected” seems to fix a mem-
ory leak issue. Our classifier predicted the class
RelDataTypeFactoryImpl as being defective, even
if the class was labeled as being non-defective. Thus,
it is very likely that the classification is correct, as
the code that is changed in this particular commit
predates version 1.15.0 and this indicates that the
class actually contained a defect but it was undetected
at the time the labels were generated.

Analysing the commit messages for the class
org.apache.calcite.rex.RexSimplify that
was predicted as non-defective by our approach
but labeled as defective in the dataset, we found
contradicting information in the commit messages.
For instance, we found the following three commit
messages: (1) Message in commit 141781b: “Avoid
simplification of x AND NOT(x) to false
for nullable x”; (2) Message in commit c8e91ea:
“RexSimplify: AND(x, y, NOT(y)) ⇒ AND(x,
null, IS NULL(y))”; and (3) Message in commit
90f49be:“RexSimplify should optimize ’(NOT
x) IS NULL’ to ’x IS NULL’ (pengzhiwei).
Previously it optimized ’(NOT x) IS NULL’
to ’x IS NOT NULL’, which is wrong.”. All
three previous commits change only the method
simplifyIs2(SqlKind kind, RexNode a) in
the class RexSimplify and the messages suggest
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that there is not a clear understanding on what
the specification and requirements for this method
should be. Thus, it is unclear if the application
org.apache.calcite.rex.RexSimplify is indeed
a misclassification (i.e., if the defective label assigned
to this class in Calcite 1.15.0 is correct).

4.3 Comparison to Related Work

To answer the research question RQ2, we are fur-
ther providing a comparison with approaches from
the literature which performed within-project SDP on
the Calcite software using software metrics or/and
semantic features for representing the application
classes.

Three related approaches from the literature will
be further considered. The first related approach is
the one introduced by (Ciubotariu et al., 2023). The
authors adapted the support vector classifier model to
an one-class classification model (OCSVM) to per-
form outlier detection. Experiments were conducted
on Apache Calcite (Begoli et al., 2018), by training
the OCSVM model on both the “+” (defective) and
“-” (non-defective) classes. The performance of the
OCSVM models was compared with the performance
of the binary SVC model. As in our experiments, the
models were trained on all Calcite releases from 1.0.0
to 1.14.0 and tested on the 1.15.0-th release, thus al-
lowing a direct comparison between the results. We
note that we computed the values for the MCC metric
from the confusion matrices provided in (Ciubotariu
et al., 2023). The second related approach is the one
introduced by (Miholca et al., 2022). The relevance of
both semantic features extracted from the code of the
application classes using doc2vec and LSI language
models and software metrics-based features (Herbold
et al., 2022) is comparatively analyzed. The exper-
imental evaluation is conducted on the available re-
leases of the Calcite software. The testing methodol-
ogy slightly differs from ours, as a cross-validation
(CV) is performed on each Calcite release. For a
more precise comparison, we will use the result pro-
vided by (Miholca et al., 2022) after applying a 5-
fold CV on Calcite version 1.15.0. Another related
work considered in our comparison was introduced
by (Briciu et al., 2023). Experiments were conducted
on the Calcite software using the same training and
testing methodology as in the current paper (the first
15 releases were used for training, while testing was
performed on release 1.15.0). The application classes
from the Calcite software represented as embeddings
learned from the source code using the CodeBERT-
base-MLM model were used for training an artificial
neural network (ANN) classifier.

Table 5 comparatively presents the results ob-
tained in our approach and the results achieved by the
previously described approaches. The table depicts
the SDP classifier (ML model) employed, the features
employed for representing the application classes and
the evaluation measures used. Most of the perfor-
mance metrics employed in our paper were employed
in the related approaches as well. We will mark in
the table with “–” the cells corresponding to perfor-
mance metrics for which the values were not reported
in the related work. We note that we are considering
for comparison our best performance (as shown in Ta-
ble 2, the fourth row) provided by the XGB classifier
with embeddings for the application classes automat-
ically learned using CodeBERT-Java from the code
concatenated with the comments embedding gener-
ated through RoBERTa.

A comparative analysis of the results depicted in
Table 5 reveal the following. As a first conclusion, our
proposed semantic representation of the application
classes, obtained from the embedding learned using
CodeBERT-Java from the code combined with com-
ments embedding generated with RoBERTa, leads to
a higher performance than the semantic representa-
tion using doc2vec+LSI proposed by (Miholca et al.,
2022) in terms of all evaluation metrics. The XG-
Boost classifier has a sligthly higher specificity than
our model (0.993 vs. 0.979), but it has a very low
POD (0.166 vs. 0.822). An improvement of more
than 40% is observed in the recall of our classi-
fier (POD) highlighting a better defect detection rate.
In addition, the MCC metric which is considered
in the literature a good evaluation metric for imbal-
anced datasets is also improved with more than 37%.
With respect to the BERT-based representation used
in (Briciu et al., 2023), which encodes only code in-
formation, the fusion of comments and code embed-
dings provides superior results in all metrics with the
exception of POD. This can be explained by the
ANN classifier in the study employing class weights
and thus assigning higher importance to the correct
classification of defective instances, leading to a high
POD, but low MCC, CSI, and F1 values. Our pro-
posed representation, in conjunction with an XGB
classifier, leads to significantly higher scores in terms
of the latter metrics, while still obtaining compara-
ble results with respect to POD. The statistical sig-
nificance of the improvement in terms of the POD,
Spec, FAR, AUC, MCC and F1 metrics was con-
firmed using a one-tailed paired Wilcoxon signed-
rank test (Wilcoxon Signed-Rank Test, 2023).

The second conclusion of the conducted compari-
son to related work is the answer to the research ques-
tion RQ2. We observe that the fusion of PL features
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Table 5: Comparison to related work.
Model Features / Model POD (↑) Spec (↑) FAR (↓) CSI (↑) AUC (↑) MCC(↑) F1 (↑)

OCSVM+(Ciubotariu et al., 2023) Software metrics 0.644 0.523 0.956 0.043 0.584 0.060 0.083
OCSVM− (Ciubotariu et al., 2023) Software metrics 0.711 0.533 0.950 0.049 0.622 0.088 0.093

SVC (Ciubotariu et al., 2023) Software metrics 0.711 0.963 0.600 0.344 0.837 0.514 0.512
DL-FASTAI (Miholca et al., 2022) Software metrics 0.245 0.979 0.613 – 0.612 0.272 0.276

XGBoost (Miholca et al., 2022) Software metrics 0.166 0.993 0.443 – 0.580 0.279 0.242

DL-FASTAI (Miholca et al., 2022) Semantic features /
doc2vec+LSI 0.390 0.961 0.726 – 0.675 0.291 0.308

ANN (Briciu et al., 2023) Semantic features /
CodeBERT-base-MLM 0.899 0.884 0.792 0.203 0.886 0.397 0.338

Proposed XGB classifier Semantic features / 0.822 0.979 0.431 0.507 0.900 0.671 0.673
CodeBERT-Java + RoBERTa

extracted from the code and the NL features from
comments improves the performance of software de-
fect predictors compared to the feature-based repre-
sentation using software metrics. The SDP classifier
considering embeddings learned using CodeBERT-
Java from the code and RoBERTa from the com-
ments (the last line from the table) outperforms the
other classifiers (lines 1-5 from the table) that use
software metrics-based representation of the applica-
tion classes. The binary SVC classifier proposed by
(Ciubotariu et al., 2023) has the closest AUC value
(0.837 vs. 0.900), but has a worse FAR (0.600 vs.
0.431) suggesting a high rate of false positive results.

5 THREATS TO VALIDITY

The threats to the validity of our study and biases
that may impact it are further discussed (Runeson and
Höst, 2009). Regarding construct validity, we have
employed relevant performance metrics for evaluating
the performance of the defect classifier. Best practices
in building, testing and evaluating the learning models
were used for reducing the threats to construct valid-
ity: model validation during training, a testing sce-
nario which simulates the software evolution process,
statistical analysis of the obtained results.

Threats to internal validity were minimized
by exploring several models for each of the two
distinct techniques to obtain the embeddings and
examining different sets of parameters for fine-tuning
the classification model. In what concerns the
source code embeddings we observed that, in rare
cases, the source code embeddings employed do
not capture the change made to the source code
which may have a small negative impact on the
accuracy of the proposed approach. We analyzed
the change history for classes whose labels were
changed between releases (e.g., a class that was not
defective in a release and labeled as defective in
a new release or labeled defective in a release and

labeled non-defective in the new release where the
defect was fixed). In some cases (e.g. the class
org.apache.calcite.sql.type.SqlTypeUtil),
the cosine distance between the two embedddings
(the one generated using the source code before
and after the modification) is 0 indicating that no
semantic difference between the two versions was
identified by the models used for generating text
embeddings (BERT, doc2vec). There can be many
reasons for this, and further investigations are needed,
but it’s clear that other truncation and padding mech-
anisms need to be explored when pre-processing the
inputs for the embedding model to guarantee that no
important information is lost at this step.

In terms of external validity we have used as a case
study in our work the open-source software Apache
Calcite that is representative for a well-maintained,
active, open-source project. An analysis of the change
history for every application class in the Calcite re-
leases 1.0.0 - 1.15.0 revealed some special cases that
increased the difficulty of the software defect classi-
fication task, where an application class changed its
label in the dataset (i.e., it was marked as defect in
one version and as non-defect in another version) but
without any change in the source code of the applica-
tion class. Such cases may be due to mislabeling in
the dataset, but most likely are caused by the nature
of the evolution of any software system. For instance,
some defects may not be discovered immediately and
will be reported in future software releases. From a
supervised classification viewpoint, such cases intro-
duce noise during training, since an application class
with exactly the same vectorial representation appears
with two different labels in the dataset and may im-
pact the model’s performance. However, in the cur-
rent work we did not remove these occurrences from
the training dataset.

The dataset used in the experimental evaluation
(Herbold et al., 2022) only covers releases between
1.0.0 and 1.15.0 but the Apache Calcite project con-
tinuously evolved and new releases are available. As
a future work we plan to extend the dataset with labels
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for the releases not covered by the public dataset and
further validate the results obtained by the presented
approach. To facilitate repeatability of the experi-
ments presented in this paper, we provided in Section
3 sufficient details about the models employed and the
experiments performed. Additionally, the text embed-
ding vectors for both doc2vec and BERT-based repre-
sentations are publicly available at (Briciu, A, 2024).

In what concerns the reliability and the testing
methodology we created the experimental validation
taking into account the actual evolution of the ana-
lyzed system. The model was created using the data
available in 15 versions, from 1.0.0 to 1.14.0 and then
was tested on the version 1.15.0. The performance of
the model is assessed using multiple evaluation met-
rics and the statistical significance of the obtained re-
sults was analysed in order to increase confidence in
the obtained results.

6 CONCLUSIONS AND FUTURE
WORK

The aim of the present study was to analyze the rel-
evance of the textual information of a code, such as
comments, in increasing the SDP performance. To
extract the semantic representation of a source code,
two approaches were proposed. In the first approach,
the pre-trained models CodeBERT and RoBERTa
have been used for code embedding and textual em-
bedding of the comments. In the second method a
doc2vec model, trained on the codes, generates the
semantic representation of a programming language
code and then a doc2vec model trained on the com-
ments generates the semantic representation of the
textual information attached to the code. The con-
clusion drawn from the performed experiments, using
both feature extraction methods, is that the addition of
the NL-based features to the PL-based features has a
positive impact in defect prediction. Also, these new
types of semantic features proved to be more informa-
tive than the software metrics-based features.

However, different development methodologies
and principles may impact the amount and quality
of textual information in the source code. Even in
methodologies that favor self-explanatory code in-
stead of the use of comments (i.e., clean code prin-
ciples), semantic textual information is still present
in the code in form of variables, function names and
specifications (usually embedded in the source code
as comments). More work needs to be done in order
to asses the impact of programming methodologies on
the proposed approach, but semantic textual informa-
tion needs to be present in any code base as long as

the code is written to be understandable not only by
the computer but also by other programmers. If not
constantly maintained, code comments and specifica-
tions may become obsolete, misleading, or decoupled
from the actual problem domain. Further experimen-
tation is needed to assess the impact of the quality of
comments and specifications on the performance of
the proposed approach.

The evaluation experiments will be extended to
the new versions of the Calcite system and for the
cross-project setting. A future work direction is to
identify an appropriate weighting scheme for combin-
ing PL-based and NL-based features to obtain a rele-
vant semantic representation that better discriminates
between defective and non-defective codes. The re-
finement of the binary classification in more types of
defects, using unsupervised approaches and different
types of features is another topic of further research.
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