CacheFlow: Enhancing Data Flow Efficiency in Serverless Computing by

Keywords:

Abstract:

Local Caching

Yi-Syuan Ke*, Zhan-Wei Wu*, Chih-Tai Tsai*, Sao-Hsuan Lin* and Jerry Chou’

Department of Computing Science, National Tsing Hua University, Hsinchu, Taiwan

Cloud Computing, Function as a Service, Serverless Computing, Caching.

In Serverless workflows, it is common for various functions to share duplicate files or for the output of one
function to be the input for the following function. Currently, storing these files in remote storage is common,
and transferring a large amount of data over the network can be inefficient and time-consuming. However,
the state of the art has not yet optimized this aspect, resulting in time wastage. In this paper, we present
an improved data transfer solution that reduced data transfer time by up to 82.55% in our experiment. This
improvement is achieved by replacing the time spent on remote network access with local disk access time. To
reduce the data transfer route, we implement per-node caching, utilizing disk storage as a local cache space.

1 INTRODUCTION

Serverless computing has become increasingly popu-
lar in cloud computing. It empowers developers to ex-
ecute specific functions or code snippets in response
to events without the burden of managing servers or
infrastructure. This approach offers users the advan-
tage of liberating themselves from the complexities
of infrastructure management. They can simply de-
ploy their functions to the cloud platform of their
choice. Serverless events are triggered by HTTP re-
quests, data changes, or scheduled tasks. Also, the
auto-scaling mechanism will automatically scale up
or down resources as needed.

<

Remote [*

Worker Node

B Upload path
Bl Download path

Figure 1: Original Data transfer route.

*Contributed equally to this work.
Tcorresponding author.

224

Ke, Y., Wu, Z., Tsai, C., Lin, S. and Chou, J.

CacheFlow: Enhancing Data Flow Efficiency in Serverless Computing by Local Caching.
DOI: 10.5220/0012688600003711

Paper published under CC license (CC BY-NC-ND 4.0)

FaaS, short for Function-as-a-Service, focuses on
the event-driven computing paradigm. Users only
need to focus on the function code they deploy onto
the cloud platform. Several established FaaS plat-
forms, such as AWS Lambda (Amazon, 2014), Azure
Functions (Microsoft, 2010), and Google Cloud
Functions (Google, 2011), offer users the advantage
of a Pay-as-You-Go model. With FaaS, users are only
charged for the actual compute time consumed by
your functions. There are no upfront expenses or on-
going costs associated with maintaining servers that
sit idle when their functions are not actively running.

In the FaaS paradigm, functions typically follow
a stateless approach, meaning they do not retain data
between executions. As a result, any necessary state
or data management tasks are typically offloaded to

Remote
Storage

Local
=
== Storage

B Upload path
Bl Download path

Figure 2: Optimized Data transfer route.

In Proceedings of the 14th International Conference on Cloud Computing and Services Science (CLOSER 2024), pages 224-230

ISBN: 978-989-758-701-6; ISSN: 2184-5042

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

CacheFlow: Enhancing Data Flow Efficiency in Serverless Computing by Local Caching

external services, such as databases or storage sys-
tems. Consequently, for workflows that generate in-
termediate state or data, the common practice is to uti-
lize remote storage solutions like AWS S3 (Amazon,
2006) or MinlO (MINIO, 2016) to store this interme-
diate data (Ana Klimovic, 2018).

We show the above behavior in Figure 1. We
define the data download route, the route of down-
loading data to runtime from remote storage, and
the data upload route, the route of uploading data
to remote storage from runtime. The data down-
load/upload time represents the execution time of the
defined routes.

However, this approach can lead to several chal-
lenges. Firstly, it incurs a notable amount of time
dedicated to data transfer in both data downloading
and uploading operations since it uses the network as
the transmission method. Additionally, this approach
consumes storage space, in cloud computing usually
cloud storage for maintaining the intermediate data,
which may grow significantly over time, the cost of
renting a cloud storage is inescapable.

In this scenario, both remote database 1/O
and network condition become potential bottlenecks
(Eric Jonas, 2017; SINGHVI A, 2017). This results
in prolonged data transfer times and an overall in-
crease in latency. Furthermore, as the number of pods
or functions increases, the demand on the network
infrastructure also escalates, leading to a substantial
surge in network requirements.

The primary focus of our research is to optimize
data transfer efficiency through the implementation of
data caching mechanisms. To achieve this, we lever-
age the local disk storage available on each node to
establish a local storage. We incorporate the Least
Recently Used (LRU) caching algorithm to effec-
tively cache intermediate data generated throughout
the workflow processes in the distributed system.

In Figure 2, we illustrate the new data transfer
route after our optimization. This route is not only
significantly quicker than the previous one but also
involves the replacement of a portion of the time
spent on remote network access with local disk ac-
cess. Note that this route is in the case that desired
data is cached in the same node. For data cached
in other nodes, we have components to realize the
caching mechanism as well, we will introduce it in
the latter chapters.

Our experimental result demonstrates a remark-
able reduction in transfer times, with a substantial
at most decrease of 82.55% in our experiment. We
also show that the data transfer speedup is positively
correlated with the disk/network speed ratio, which
means the optimization will be better as the disk per-

Transcode

Image Scale

Transcode Transcode

Figure 3: Data transfer route for current workflows.

formance is enhanced or the network is congested.

2 SERVERLESS WORKFLOW
BACKGROUND

One of the behaviors of serverless computing is using
remote storage as centralized storage. We have found
that for workflows requiring remote storage, exist-
ing serverless platforms spend a significant amount of
time on data transfer, which is the total time of down-
loading and uploading data. In this kind of workflow,
both database I/0O and network become bottlenecks,
resulting in extended data transfer times and overall
increased latency.

We benchmark two real-world data-driven work-
flows, image-processing and video-processing. These
workflows are common in serverless benchmarks.
They share a common characteristic in serverless
workflow: intermediate data is only used between
functions, and only the initial and final data need to
be in remote storage. Figure 3 shows their workflow
in DAGs.

2.1 Image Processing

This workflow is a classic image recognition work-
flow. It first downloads data from the remote storage,
scales it to a specific size, uses a pre-trained model to
get the result, and uploads it back to the remote stor-
age.

2.2 Video Processing

This use case comes from Alibaba Cloud. It first splits
video data into small clips, transcodes them parallelly,
and merges them together. The initial data and results
are downloaded/uploaded from/to the remote storage
(Alibaba, 2021).

225

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

Node

Local
Storage | 3

Wrapper

Wrapper

Remote
Storage
Function

Figure 4: Cache architecture when data exist in local stor-
age.

Local Local
Wrapper 2 storage Wrapper E2 g9
orage
Function Data Function Data
g <7 serve <7 Serve
@ ETCD
[d Cleanev} [I: Mcni(or} [d C\eaner] [[_—r| Monllor]

Figure 5: Cache architecture when data exist in other nodes.

3 ARCHITECTURE

In this section, we introduce our innovative two-
speedup path architecture designed to optimize data
retrieval efficiency in a serverless environment.

Figure 4 depicts the initial acceleration pathway,
activated when essential data resides in local storage.
Path 1 optimizes the data retrieval process by seam-
lessly copying it from local storage, subsequently
storing the cached metadata in ETCD through path
2. Ultimately, users can leverage our cache mecha-
nism via path 3 to avoid the associated overhead of
transferring data to remote storage. This function fa-
cilitates direct access to data in local storage, elimi-
nating the necessity for remote downloads.

In cases where the data function required resides
on a different node within the cluster, an alternative
flow is initiated, as depicted in Figure 5. When lo-
cal storage fails to yield the required data in path
1, the system queries ETCD via path 2, which we
use to store the information of the data and its posi-
tion(node IP) to ascertain the node storing the data.
Subsequently, a data retrieval request is dispatched to
the identified node by the Data Server(path 3 and 4),
ensuring efficient data access across distributed envi-
ronments.

The success of our architecture hinges on the
seamless collaboration of multiple components, en-
suring optimized data retrieval and storage resource
utilization.

3.1 Monitor

The Monitor component tracks changes (creation,
write, removal) in cached data and records these
events within a data structure. When storage space

226

approaches a predefined threshold, it initiates the re-
moval of the least recently used cached data. This
component plays a crucial role in efficiently manag-
ing storage space usage.

3.2 Cleaner

The Cleaner component serves as the secondary cache
eviction mechanism, periodically removing outdated
cached data from the disk. Its purpose is to prevent
outdated data from persisting in local storage, thus
safeguarding node performance.

3.3 Wrapper

The Wrapper provides portability, acting as a bridge
to the MinlO API, allowing users to seamlessly in-
tegrate our caching mechanism with minimal modifi-
cations while ensuring data integrity. In workflows,
each pod will have its designated space for storing
data, preventing multiple pods from accessing the
same data to maintain cache coherence. It will use
the hash value created when the data is cached to ver-
ify the cache consistency. It also tells ETCD the loca-
tion of the data, for functions in other nodes to query
to Data Serve in this node.

3.4 Data Serve

The Data Serve component facilitates data access for
pods residing on other nodes within the cluster. In
scenarios where data is cached in local storage but re-
quired by pods deployed on different nodes, this com-
ponent serves as the intermediary. Pods query ETCD
to discover the IP address of the Data Serve, enabling
them to retrieve data via TCP connections.

4 IMPLEMENTATION

4.1 Data Event Monitoring

The current Linux Inotify subsystem lacks support
for recursive watches within sub-directories. Conse-
quently, we have developed our own file notification
system to monitor newly created directories automat-
ically. Each read, write, and other file-related oper-
ation triggers notifications to our Monitor, allowing
it to efficiently update the least recently used (LRU)
queue with minimal overhead.

CacheFlow: Enhancing Data Flow Efficiency in Serverless Computing by Local Caching

4.2 Shared Storage Space Management

To optimize the caching hit rate, it is essential to de-
vise a mechanism that ensures the retention of fre-
quently used data in our shared storage while remov-
ing items that are less likely to be accessed.

Input: filepath
Result: Update the least recently used queue
if LRUqueue.exist(filepath) then
| LRUqueue.updatePosition(filepath)
else
LRUqueue.addToFront(filepath)
if LRUqueue.size > capacity then
| LRUqueue.removeLeastRecentlyUsed|()
end
end

Algorithm 1: Least Recently Used.

Our primary cache eviction method employs the
Least Recently Used (LRU) algorithm, managed with
a doubly linked list. This approach provides amor-
tized O(1) complexity for push and pop operations,
as well as efficient removal of deleted files in amor-
tized O(1) time by hashing and locating the file’s po-
sition in the linked list. The capacity here is to re-
serve space to prevent a large amount of data from be-
ing synchronously stored in shared storage. For sec-
ondary cache eviction, the Cleaner component runs
periodically, removing outdated data once a day. This
proactive approach ensures that files not tracked by
the Monitor can also be efficiently cleaned, maintain-
ing optimal storage resource utilization.

4.3 Distrubuted Data

There is another challenge when caching data. In or-
der to achieve load balance, Kubernetes will assign
requests to different nodes through its scheduler. So,
if two functions in the same workflow are located on
different nodes, caching data in their local storage can
lead to a file-missing problem. To address this issue,
we have implemented our data server to transfer data
over the network and utilize ETCD to store file loca-
tions on each node. However, given that the data is on
different nodes, we need to ensure its integrity. There-
fore, we use a hash algorithm to assist in verifying the
correctness of the file.

This algorithm verifies the integrity of a file by
comparing its current hash value with the correct hash
value stored in a designated file. The correct hash
value is calculated and recorded when the file is ini-
tially cached in our local storage. If the hash values
do not match during the verification process, we will

rerun to confirm the accuracy of the file.

Input:
correct _hash_file, file_path, hash_value
Output: IsDataCorrupted(Boolean)
calculated _hash <+
CALCULATE _HASH(file_path, hash)
with open (correct_hash_file, "r") as file:
hash_value + file.read()
if hash_value == calculated_hash then
| verifySuccess < True
else
| verifySuccess < False
end
Return: verifySuccess

Algorithm 2: Hash Verification.

4.4 Uniform API

We hope users can utilize our implementation with-
out modifying their code. Therefore, we have ab-
stracted our implementation into the MinlO library.
This allows users to employ the same function code
to achieve our caching mechanism. Another advan-
tage of using the library is that it helps us avoid high
concurrency issues compared to centrally deciding
whether to cache or not.

In our current implementation, pods indepen-
dently determine whether to cache data based on lo-
cal storage usage. This approach helps us avoid large
synchronous requests to a single node.

S EVALUATION

In the following sections, we will comprehensively
present the performance of our work through real-
world applications, examining its efficacy across both
single-node and multi-node environments. Our pri-
mary objective is to assess its practical effectiveness
in these diverse contexts, providing a thorough analy-
sis of its capabilities and demonstrating its adaptabil-
ity to varied computing scenarios.

We employed two applications, namely image
processing and video processing, to conduct bench-
marking. Our experiments were executed on a Ku-
bernetes cluster using Kubeadm on multiple virtual
machines for the infrastructure, and table 1 shows the
configuration of our virtual machines.

In the image processing application, we integrated
two distinct functions: image scaling (IS) and image
recognition (IR)—within both single-node and multi-
node environments. As illustrated in Figure 6 and Fig-
ure 7, our optimizations resulted in substantial reduc-

227

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

Single-Node Benchmark Results

100 - HEE After Optimized
Original

Execution Time (%)

40 4

o

207 . I I I I I

nme ume ing 10 ume ume wmne ame 10
15 upload 1 i downioad ™ image processing s upload ¥ Jt downtoad t Jtupload © g downioad ® e video processing
10
‘Workflow Operations
Figure 6: Single Node benchmark result.
Multi-Node Benchmark Results
100 - HEE After Optimized
Original
80
g
¢ 60
£
c
2
5
o
£ o
) I
0 .
) d time 4 time ing IO @ time d time d tine d time ing VO
is uplod ir downiod ol IMaGE process! uplo? it downtod yruplod g downio® Lol vide process!

‘Workflow Operations

Figure 7: Multi Node benchmark result.

tions in both the upload time for IS and the down-
load time for IR. Notably, these improvements were
achieved due to the successful implementation of a
cache mechanism.

It is noteworthy that both single-node and multi-
node configurations exhibit great performance, with
single-node slightly faster than multi-node. This su-
periority can be attributed to the absence of inter-node
data transfer and associated mechanisms in the single-
node setup. The overall optimization of data transfer
time across the entire function chain has led to an im-
pressive 82.55% reduction.

Figure 6 and Figure 7 also illustrate the video
processing application, consisting of three key func-
tions: video splitting (VS), video transcoding (VT),
and video merging (VM). As depicted in the figures,
almost all data transfer times exhibited significant re-
ductions, with the most notable optimization reaching
up to 3.84x faster data transfer time. As a result, the
total data transfer time for the entire function chain

228

decreased by 62.64%.

The illustrated Figure 8 presents the correlation
between acceleration effects and the disk/network
speed ratio. However, it is imperative to emphasize
that the acceleration, despite exhibiting an upward
trend, does not follow a linear proportional relation-
ship. This deviation arises due to the diminishing exe-
cution time, leading to a more pronounced proportion
of overhead.

6 CONCLUSION

In this paper, we introduce a data transfer solution
designed to reduce overall data transfer times sig-
nificantly. We achieve this by implementing a data
caching mechanism that effectively transforms net-
work access times into disk access times, thereby
enhancing the efficiency of data transmission. Our

CacheFlow: Enhancing Data Flow Efficiency in Serverless Computing by Local Caching

Table 1: VM Configuration.

VM Configuration

Cores: 16

Hardware | Memory: 16GB

CPU: Intel(R) Xeon(R) CPU E5-2675 v3 @ 1.80GHz

Disk: NFS, size=150 GB, speed=573 MB/s
Internet speed: download: 85MB/s, upload: 75MB/s

Docker version: 20.10.24
kind version: 0.17.0
knative version: v1.8.1
etcd version: 3.4.27

Software

OS: Ubuntu 20.04.3 LTS (GNU/Linux 5.4.0-163-generic x86_64)
MinlO version: RELEASE.2023-04-28T18-11-17Z

container runtime: python:3.10-slim

Different Disk/Network Speed Benchmark Results

20

154

10 4

speed up (in times)

0-— T T T T T T T T
0 50 100 150 200 250 300 350 400
disk/network speed ratio (in times)

Figure 8: Relation between speedup and disk/network ratio.

experiments demonstrate a remarkable reduction in
transfer times, with a substantial at most decrease of
82.55%.

7 RELATED WORK

The concept of caching has been used in vari-
ous aspects and applications in FaaS. FaaSFlow
(Li, 2022) enhances traditional serverless master-side
workflow scheduling by introducing a worker-side en-
gine paired with a per-node local cache. They use
Reddis, an in-memory key-value database, as their lo-
cal storage, while we choose disk as our cache stor-
age. The benefit of using a disk is we will have
larger space to cache more data since our target work-
flows have large data transmission. Plus, the data
we can store on disk is more flexible compared to
key-value pairs. SOCK (Edward Oakes, 2018) ad-
dresses slow Lambda startup by identifying two com-
mon causes: container initialization and package de-
pendencies. It optimizes startup time with a package-

aware caching system to reduce redundant package
imports. FaasCache (Alexander Furest, 2021) con-
sider keep-alive is analogous to caching. By adopt-
ing concepts such as reuse distances and hit-ratio
curves, they present caching-based keep-alive and re-
source provisioning policies to reduce the cold-start
overhead. Faa$T (Francisco Romero, 2021) point
out that recent caching work disregards the widely
different characteristics of FaaS applications. They
present a transparent auto-scaling distributed cache
that scales and pre-warms based on computing de-
mands and data access patterns. Tetris (Jie Li, 2022)
aims to solve extensive memory usage of serverless
inferences through a specified serverless inference
platform. The platform shares tensors between pods
through memory mapping on a shared tensor storage.

REFERENCES

Alexander Furest, P. S. (2021). Faascache: keeping server-
less computing alive with greedy-dual caching. In
ASPLOS ’21 Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems.

Alibaba (2021). Use ffmpeg in function compute to
process audio and video files in function com-
pute. In https://www.alibabacloud.com/help/doc-
detail/146712.htm?spm=a2c63.128256.b99.313.
5¢293c94dPLJV1.

Amazon (2006). Aws s3. In https://aws.amazon.com/tw/s3/.

Amazon (2014). Aws lambda. In
https://aws.amazon.com/tw/lambda/.

Ana Klimovic, e. a. (2018). Understanding ephemeral stor-
age for serverless analytics. In USENIX’18 Annual
Technical Conference.

Edward Oakes, e. a. (2018). Sock: Rapid task provisioning
with serverless-optimized containers. In USENIX’18
Annual Technical Conference.

Eric Jonas, e. a. (2017). Occupy the cloud: distributed com-

229

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

puting for the 99%. In SOCC’17 In Proceedings of the
2017 Symposium on Cloud Computing.

Francisco Romero, e. a. (2021). Faa$t: A transparent auto-
scaling cache for serverless applications. In SoCC "21
Proceedings of the ACM Symposium on Cloud Com-
puting.

Google (2011). Google cloud function. In
https://cloud.google.com/functions.

Jie Li, e. a. (2022). Tetris: Memory-efficient serverless in-
ference through tensor sharing. In 2022 USENIX An-
nual Technical Conference (USENIX ATC 22).

Li, Zijun, e. a. (2022). Faasflow: Enable efficient workflow
execution for function-as-a-service. In ASPLOS ’22
Proceedings of the 27th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems.

Microsoft (2010). Microsoft azure. In
https://azure.microsoft.com/zh-tw.

MINIO (2016). In https://min.io/.

SINGHVI A, e. a. (2017). Granular computing and network
intensive applications: Friends or foes? In In Proc. of
the 16th ACM Workshop on Hot Topics in Networks,
HotNetsXVI.

230

