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Abstract:  Injuries of the lower limb, particularly the knee, usually require several months of rehabilitation. Exoskeletons 
are great tools supporting the rehabilitation process; their research and suitable practical use are at the center 
of interest of researchers and physiotherapists. This paper focuses on designing a brain-computer-interface 
(BCI)-controlled exoskeleton for knee rehabilitation. It includes reviewing and selecting 
electroencephalography (EEG) acquisition methods, BCI paradigms, current acquisition devices, signal 
classification methods and techniques, and the target group of people for whom the exoskeleton will be 
suitable. Finally, the preliminary proposal of the exoskeleton is provided.   

1 INTRODUCTION 

The number of people with lower limb movement 
disorders due to aging and paralysis is increasing. 
Exoskeletons can be a promising solution and a 
useful, practical medical device in these cases; 
Recently, exoskeletons have become a powerful tool 
for the clinical rehabilitation of people with impaired 
lower-limb function.  

However, the proper design of exoskeletons is not 
easy; exoskeletons should be lightweight, enabling 
movements during rehabilitation on the one hand and 
preventing health-hazardous movements on the other. 
Another step in their improvements is introducing 
active exoskeletons, i.e., exoskeletons that can be 
controlled directly by impaired people and supported 
with pneumatic control. This direct control should be 
carried out remotely by using, for example, speech 
commands or the human brain itself.  

To design and implement such controllers, 
researchers have recently used various biological 
signals to control exoskeletons and other 
neuroprosthetic devices. As one of the results, Brain-
Computer Interface (BCI) controllers based on 
electroencephalographic (EEG) signals can 
potentially (among others) bridge users’ need for 
control and related rehabilitation devices 
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(exoskeletons), especially when the user needs to 
rehabilitate the motor functions and the brain parts 
responsible for movements in parallel. 
 BCIs are designed to decode intent by extracting it 
from the human brain and its neural activity (Lin & 
Lin, 2023). The main applications of BCIs have been 
in communication with people in locked-in states and 
just in rehabilitation, control of prosthetics, and 
neurofeedback. 

Specific protocols and paradigms need to be 
chosen to implement an EEG-based BCI system for a 
particular application. First, the user performs a 
particular task (e.g., movement imagery or visual 
task) (to learn) to modulate their brain activity while 
EEG signals are recorded from the scalp. A neural 
decoder for the paradigm is designed using the 
recorded EEG as underlying (training) data. 
Afterward, the user performs the task again, and the 
neural decoder is used for BCI control (Orban et al., 
2022).  

There are various experimental methods, 
paradigms, and protocols for EEG data acquisition, 
such as motor imagery (MI), active movement, 
movement intention-active movements, assisted 
movements, and electrical lower limb stimulation 
(others are described later) to get suitable EEG data 
for the control of exoskeleton. For example, MI 
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allows users to control systems by imagining the 
movements of their limbs, and the related EEG signal 
is collected when the person imagines the movement. 
The recorded EEG signal needs to be processed and 
classified before it is used to actuate the exoskeleton, 
i.e., the methods for lower limb movement detection 
and classification need to be proposed, applied, and 
validated. 

This study investigates the experience and best 
practices used to design and operate a successful 
exoskeleton controlled by the human brain and to 
look for BCI-based exoskeleton systems for lower-
limb and knee rehabilitation. Finally, the custom 
proposal for such a system is shortly presented.  

The paper is organized as follows. Section 2 
reviews scientific papers on EEG-based control to 
detect movement intention using various 
experimental approaches, BCI paradigms, and EEG 
signal classification methods. Also, current 
companies' products are shortly presented. Section 3 
presents our design proposal for this purpose. The 
final section concludes the findings. 

2 STATE-OF-THE-ART  

We perform a search of articles in the field of BCI-
based exoskeleton system for knee rehabilitation. In 
our search we used the general keywords such as 
“knee”, “lower limb”, “EEG”, “exoskeleton”, “motor 
imagery”, “transfer learning”, “deep learning”. Brain-
computer interface (BCI) is an emerging research 
field that creates a real-time bidirectional connection 
between the human brain and a computer/output 
device. It is a communication tool for patients with 
neuromotor disorders, spinal cord injuries, or 
amputations (Tariq et al., 2018) (Lebedev & 
Nicolelis, 2017). Among its various applications, the 
most popular one is neurorehabilitation, which 
involves sensory feedback and the use of brain-
controlled biomedical devices, e.g. exoskeletons. 
Neurorehabilitation, a critical component of the 
recovery process for those with neurological 
impairments, is being revolutionized by integrating 
exoskeletons. These wearable robotic devices have 
shown significant potential in enhancing mobility, 
functional independence, and overall quality of life 
for people suffering, e.g., from spinal cord injury, 
stroke, and multiple sclerosis. Moreover, the lower 
limb exoskeletons are also effective tools for 
clinically rehabilitating people with impaired lower 
limb function due to injury.  

In the BCI community, many BCI systems have 
utilized the classification of imaginary upper limb 

movements, e.g. (Paredes-Acuna et al., 2024) (Liao et 
al., 2014) to generate different commands for 
controlling devices, including robots (Jeon et al., 
2024). Only a few studies addressed the MI problem 
of the lower limb, and these studies were all focused 
on the imagination of brisk foot movement (ankle 
dorsiflexion) (Xu et al., 2014). The main reason is 
that the left and right foot representation areas in the 
sensorimotor cortex are very close to each other and 
located deeply within the interhemispheric fissure. 

The following parts review papers based on 
various experimental methodologies for data 
acquisition, BCI paradigms, products of BCI 
companies, and classification methods. Their 
interesting characteristics and results (such as used 
protocols, tasks, EEG channels, preprocessing and 
feature extraction methods, and accuracies) are 
summarized in Table 1 (EEG-based control for lower 
limb movements). The summary of investigations 
utilizing transfer learning is given in Table 2 
(Summary of transfer learning for MI Classification 
using EEG signal). 

2.1 Experimental Methodologies 

We can classify all experimental methodologies used 
to record EEG signals for lower limbs into the 
following types: 

In most cases, alpha power (8-13 Hz) is 
suppressed, while beta power (13-30 Hz) increases, 
when an individual is executing tasks that require 
concentration which is highly related to motor 
imagery. 

Active movement-based (AcM) BCIs can work 
well for individuals with sufficient residual control 
over their knee joints. By using brain signals related 
to particular movements, AcM BCI allows users to 
manipulate external devices in real time. Tortora et al. 
(Tortora et al., 2023) recorded EEG and 
electromyographic (EMG) activity from ten healthy 
volunteers walking with an exoskeleton. Choi et al. 
(Choi et al., 2020) recorded EEG signals from 10 
healthy volunteers. All volunteers were right-handed 
males with no history of neurological disorders. The 
volunteers had to sit and walk while making energetic 
movements. The patients were given visual cues 
when it was time to do the movement. Ten healthy 
subjects participated in the offline and online 
sessions, and the average classification accuracy was 
more than 80% for both sessions.  

Motor imagery (MI) is viable if the user can 
imagine movements. It's a non-invasive approach that 
doesn't require physical movement, making it suitable 
for users with various mobility levels. Hsu et al. (Hsu 

Design of BCI-Based Exoskeleton System for Knee Rehabilitation

213



et al., 2017) recorded EEG signals from eight healthy 
volunteers. The volunteers' tasks included both left 
and right stepping. Because a screen was used for 
visual stimulation, electrooculography (EOG) was 
employed as an extra sensor.  

Event-related desynchronization (ERD) reflects a 
decrease in oscillatory activity related to internally or 
externally paced events. The increase in rhythmic 
activity is called event-related synchronization 
(ERS). Event-Related Desynchronization and Event-
Related Synchronization (ERD/ERS) EEG signals 
were recorded from 14 healthy participants by Tariq 
et al. (Tariq et al., 2019). During the experiment, 
participants completed MI tasks while seated. 
     Jeong et al. (Jeong et al., 2022) recorded two 
lower-limb MIs (gait and sit-down) and resting EEG 
data from five healthy subjects. The subjects were 
asked to stand comfortably in front of the monitor and 
start the MI task when ready through a mouse click. 
Then, the subjects performed two MI tasks related to 
the lower limb and rested for five seconds according 
to the monitor's visual cues. Roy and Bhaumik (Roy 
& Bhaumik, 2022) recorded EEG signals from three 
participants. The protocol consisted of four MI-
related tasks: the imagination of left hand (L), right 
hand (R), foot (F), and tongue (T) movement. 

Combining both MI and AcMs can provide more 
flexibility. Users can imagine knee movements when 
their physical capabilities are limited or actively 
move when they can. Lins (Lin & Lin, 2023) recorded 
EEG signals from eight healthy subjects for MI tasks 
at rest and during walking. Gordleeva et al. 
(Gordleeva et al., 2020) recorded EEG signals from 
eight healthy volunteers. EEG and EMG signals for a 
leg lift movement were acquired. AcMs and MI were 
the tasks completed. EMG sensors were also 
employed to provide feedback to the exoskeleton 
control system for the lower limb.  Li et al. (Li et al., 
2022) recorded EEG signals and sEMG signals 
controlled by the participants’ brains on the arms of 
two healthy subjects. The task performed was based 
on MI and AcM. 

Another methodology is based on Motor imagery, 
Active movements, and Attempted movements 
(AtMs): Unlike active movement, which depends on 
utilizing brain signals connected to actual physical 
actions for real-time interaction, attempted movement 
focuses on interpreting neural signals related to 
individuals' intentions to move, allowing control of 
external devices without physical execution. 
Jochumsen et al. (Jochumsen et al., 2015) recorded 
EEG signals from twelve healthy subjects and six 
stroke patients with lower limb paresis. The subject 
was seated in a comfortable chair with the right foot 

(or the affected foot) attached to a foot pedal where a 
force transducer was set up. The healthy subjects 
performed the two tasks with Motor Execution (ME) 
and Motor Imagery (MI), while the stroke patients 
were asked to attempt the movements. 

Movement intention - Active movements:  
Movement intention (like attempted movement) 
refers to the mental state in which an individual 
intends to carry out a specific action, even before the 
actual execution. Movement intention-based BCIs 
benefit users who want the exoskeleton to respond to 
their intentions even before visible movements occur. 
Rea et al. (Rea et al., 2014) recorded EEG signals 
from seven right-handed patients with chronic stroke. 
The subjects were seated during the experiment and 
performed movements with a foot pedal. The authors 
employed additional EMG sensors during the tasks. 

Assisted movement benefits users with severe 
mobility impairments; an exoskeleton with BCI-
controlled assisted movements can be the best option. 
This method involves integrating BCI technology to 
improve physical movements, providing people with 
assistance or control over external devices to augment 
their motor functions. Qiu et al. (Qiu et al., 2015) 
recorded Event-Related Desynchronization (ERD) 
EEG signals from 12 healthy volunteers and a stroke 
patient with hemiplegia. The tasks performed were 
right-leg lifts. 

Electrical lower-limb stimulation is suitable if the 
user has complete paralysis but still wants to engage 
in knee movements; electrical lower-limb stimulation 
controlled by a BCI may be the most suitable option. 
Hauck et al. (Hauck et al., 2006) recorded EEG 
signals from six healthy right-handed volunteers. 
Furthermore, Magnetic Resonance Imaging (MRI) 
was obtained from five volunteers for data recording. 
Subjects were lying down, and low-amperage 
electrical stimulation was applied to the peroneal, 
proximal, and distal tibial nerves. Sensors for 
electrooculography (EOG) were also employed. 

2.2 BCI Paradigms 

BCIs can be divided into two main categories: 
invasive and non-invasive (Sitaram et al., 2007). 
Most of the EEG-based BCI systems rely on the 
following paradigms: ERD associated with motor 
imagery (MI), event-related potentials (ERPs) based 
on the P300 or other event-related components, 
steady-state visual evoked potentials (SSVEPs), 
auditory steady-state responses (ASSRs), slow 
cortical potentials (SCPs), sensorimotor rhythm 
(SMR), and various hybrid systems based on more 
than one input signal (Orban et al., 2022). 
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ERD is widely used in MI tasks for motor 
rehabilitation and control of prosthetic limbs, 
allowing users to control devices or perform actions 
by imagining specific movements. ERP BCIs are 
used for communication, cognitive, and clinical 
applications. SSVEP BCIs are often used in 
applications requiring high information transfer rates, 
such as gaming and spelling systems.  

ASSRs are less common than visual-based BCIs 
but can be used for auditory communication and 
spatial tasks. SCPs are primarily used for 
neurofeedback and cognitive regulation, such as 
improving attention and relaxation.  

SMR requires people to use mental strategies or 
MI to enable motor execution (ME). For subjects with 
motor disabilities, the thought of movement can 
suppress EEG rhythm, leading to desynchronization, 
resulting in movement initiation. By harnessing 
neuroplasticity, MI can enhance motor learning 
(Müller-Putz et al., 2005). With both MI and ME 
derived from sensorimotor areas such as the primary 
motor area, supplementary motor area, and premotor 
cortex, SMR can be manipulated to help disabled 
people towards rehabilitation. The SMR paradigm 
has been one of the most promising paradigms used 
by people with tetraplegia, spinal cord injury, and 
amyotrophic lateral sclerosis (ALS) (Kawala-
Sterniuk et al., 2021). 

Hybrid BCIs combine multiple input signals, such 
as EEG, ECoG, EMG, other physiological measure-
ments, and various paradigms to enhance overall BCI 
performance and functionality. They are used in 
applications where high accuracy, versatility, and 
adaptability are needed, such as advanced prosthetic 
control and complex communication systems. 

The primary EEG-based BCI paradigms for lower 
limb rehabilitation are ERD associated with MI, 
SMR, and Hybrid BCIs (combining EEG with other 
modalities).  

2.3 BCI Products 

EEG acquisition systems and related BCI systems 
have also become popular during the last few years; 
many companies were founded to produce simpler 
and cheaper BCI systems for ordinary users, but 
qualitatively compared to those intended for 
fundamental research on the brain's functioning.  

The most frequently used EEG (BCI) headsets are 
delivered by the following companies: Emotiv Inc. 
(San Francisco, CA, USA), Ant Neuro (Hengelo, 
Netherlands), Cognionics (San Diego, CA, USA), 
Neurosky Inc. (San Jose, CA, USA), OpenBCI 
(Brooklyn, NY, USA), InteraXon (Toronto, Canada), 

g.tec (Schiedlberg, Austria), and CREmedical 
(Kingston, RI, USA). The products continuously 
improve signal acquisition quality, wearing comfort, 
raw EEG signal preprocessing, or accompanying 
software tools. The critical feature for further EEG 
signal processing is the accessibility of raw EEG data. 
In comparison, g.tec provided a stronger and cleaner 
signal than Emotiv Inc. The biggest advantage of 
Neurosky Inc. products is a low, competitive price 
and ease of use. The OpenBCI provided extremely 
similar EEG results to those obtained with the g.tec 
device, and the medical-grade equipment performed 
marginally better than the consumer-grade one and 
OpenBCI gave very close EEG readings to those 
obtained with the g.tec device (Kawala-Sterniuk et 
al., 2021). Most of the clinical-quality EEG data for 
the BCI applications are gathered using the following 
clinical-grade amplifiers which are popular mostly 
due to their price, availability, and the high quality-
signals they provide: g.tec amplifiers, Porti7 (TMSI), 
Nuamp amplifier, BrainAmp128DC, and 
BioNomadix amplifier (Biopac).  

Clinical-level (medical devices) EEG equipment 
is also popular in numerous BCI-related applications. 
In many cases, the g.tec (Kuś et al., 2013) amplifiers 
are used, e.g., BCI systems dedicated to controlling a 
neuroprosthesis (Tung et al., 2013). Another popular 
clinical-level device is Porti7 from the TMSI 
company, which was applied for an SSVEP-BCI 
system, where the authors tried to find the most 
appropriate SSVEP frequencies (Onose et al., 2012). 
The neuroscan device Nuamp was applied for BCI-
based post-stroke patients’ rehabilitation (Fazli et al., 
2009). BrainAmp128DC was used in studies (Katona 
& Kovari, 2018) (Fazli et al., 2009) to gather EEG-
based robotic arm control data. In (Katona & Kovari, 
2018), the authors compared the inexpensive 
Neurosky’s Mindwave device with Biopac’s 
BioNomadix amplifier, and the obtained results 
proved the similar quality of the recorded data. Based 
on a new research, market leaders for medical 
exoskeletons included Ekso Bionics Holdings, 
Rewalk Robotics, Cyberdyne, Bionik Laboratories, 
Bioness Inc. (Exoskeleton Market - Size, Growth & 
Trends, n.d.). 

     In the next section devices related to the BCI 
companies and parameters for choosing suitable 
devices are discussed. 

2.4 EEG-Related Devices 

Several important parameters should be considered 
when choosing EEG devices for MI in rehabilitation 
to ensure that the chosen device fits the unique 
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requirements and objectives of the rehabilitation 
program. Some crucial selection standards involve 
wireless connectivity; devices with wireless 
capabilities increase the mobility and flexibility of 
users during rehabilitation exercises. The placement 
and number of electrodes ensure the device captures 
relevant brain activity associated with MI and 
accurate monitoring. Researchers frequently place 
electrodes over the sensorimotor cortex (C3 and C4) 
in the context of motor imagery BCIs because these 
regions are directly involved in the mental simulation 
of movement. There are equivalent changes in brain 
activity in the sensorimotor cortex when an individual 
performs motor imagery, such as imagining moving 
their left hand. These electrical potential changes 
corresponding to motor imagery can be recorded by 
EEG electrodes located at C3, C4 and Cz.  
Higher sampling rate and data resolution help to 
provide more precise and thorough brain activity 
tracking if necessary. Lightweight and portable 
devices are ideal for rehabilitation environments 
where people must move freely. Long battery life is 
essential for continuous monitoring sessions without 
frequent interruptions for recharging. The overall cost 
of the EEG device, including any additional 
accessories, software licenses, or maintenance fees, 
should be balanced with the available budget for the 
rehabilitation program. 

Emotiv company offers solutions for BCI 
applications, including MI tasks. It is well-known for 
its Emotiv EPOC+ and Emotiv Insight EEG headsets. 
The Emotiv EPOC headset is straightforward to use 
and does not require any particular scalp preparation.  
NeuroSky provides a small wireless MindWave 
Mobile EEG headset, which can be used for BCI and 
neurofeedback applications. The biggest advantage of 
NeuroSky products is a low, competitive price. g.tec 
is known for its excellent data resolution and 
adaptable features. One of the most popular 
clinically-approved professional EEG systems is 
g.USBAMP from the g.tec company. It is a cheap 
device (ca. 25 USD), providing excellent data quality. 
OpenBCI is renowned for offering configurable and 
open-source EEG platforms. OpenBCI Cyton and 
Ganglion are two of their popular offerings among 
developers and researchers. 

2.5 Deep Learning-Based Approaches 
Applied in MI Classification  

Several lower limb movement classification models 
have recently emerged, utilizing machine learning 
(ML) and deep learning (DL) techniques for EEG 
data processing. Hsu et al. (Hsu et al., 2017) 

employed a Fuzzy SVM (FSVM) approach to classify 
imagined lower-limb stepping movements and create 
a resilient MI classifier. They utilized data from nine 
EEG channels and electrooculography (EOG) 
signals. The highest performance, with a high average 
classification accuracy across eight subjects (86.25% 
in single-trial analysis), was attained using a filter 
bank common spatial pattern (FBCSP) and FSVMb 
combination.  

Gordleeva et al. (Gordleeva et al., 2020) proposed 
a multimodal human-machine interface (mHMI) that 
integrates EEG and EMG modalities for real-time 
control of a lower-limb exoskeleton. The 
classification and control system based on linear 
discriminant analysis (LDA) achieved successful 
movement prediction and differentiation (81.5% ± 
14.9%) using the combined EEG and EMG signals.  

In another study by Roy et al. (Roy et al., 2022), 
LDA was utilized to classify the walking MI task, 
achieving an accuracy of 98.67%. This investigation 
involved data from a dataset comprising 32 EEG 
channels collected from five healthy subjects.  

Similarly, Roy & Bhaumik (Roy & Bhaumik, 
2022) employed LDA to classify four MI tasks, 
including left hand (L), right hand (R), foot (F), and 
tongue (T) movements, using data from 3 EEG 
channels (C3, Cz, C4). Their study demonstrated a 
classification accuracy of 88.89%.  

Tortora et al. (Tortora et al., 2023) employed a 
Convolutional Neural Network-Long Short-Term 
Memory (CNN-LSTM) hybrid model to classify the 
walking MI task. They utilized data from 38 EEG 
channels in conjunction with EMG and inertial 
measurement unit (IMU) information gathered from 
10 healthy subjects. Their approach achieved a 
classification accuracy of 89.32% ± 4.65%. Table 1 
shows EEG-based control for lower limb movements 
with MI and Active Movement using ML and DL for 
classification. 

Deep Neural Networks (DNNs) have emerged as 
game changers in ML and DL, capable of tackling 
complex tasks with remarkable accuracy. However, 
training DNNs from scratch can be computationally 
intensive and data-hungry, limiting their practical 
utility. This is where transfer learning (TL), especially 
using pre-trained networks, comes into play. 

TL is a technique that leverages the knowledge 
gained from one task and applies it to a different, 
often related task. TL is a promising approach to 
address these challenges by transferring knowledge 
from related tasks to improve learning ability. TL can 
help improve the performance of decoding models 
across subjects/sessions and reduce the calibration 
time of BCI systems. 
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Table 1: EEG-based control for lower limb movements. 

Study Subjects Protocol Task EEG channel Pre 
Processing 

Feature 
extraction Method Accuracy 

(%) 

(Hsu et al., 
2017) 

8 healthy 
subjects 

MI - Active 
Movement 

Left/Right 
stepping 

9 channels (FC3, 
FC4, FCz, C3, 
C4, Cz, CP3, 

CP4, and CPz)

Filter-bank common spatial 
Pattern (FB-CSP) 

Fuzzy SVM 
(FSVM) 86.25 

(Tariq et al., 
2019) 

5 healthy 
subjects 

Kinaesthetic Motor 
Imagery (KMI) 

left/right knee 
extension 19 channels FB-CSP Logistic Regression 

(Logreg) 70.0 ± 2.85

(Gordleeva et 
al., 2020) 

8 healthy 
subjects 

MI - Active 
Movement Leg lift 

7 channels (C5, 
C3, C1, Cz, C2, 

C4, C6)
Bandpass filters CSP LDA 81.5 ± 14.9

(Roy et al., 
2022) 

5 healthy 
subjects MI Walk 32 

channels Band pass filter

Cross-
correlation and 

Spectral 
entropy

LDA 98.67 

(Jeong et al., 
2022) 

5 healthy 
subjects MI gait and 

sit-down 
31 

channels Band pass filter Dual-domain 
CNN 

Dual-domain CNN 
based subject-

transfer approach 
66.57 ± 7.33

(Roy & 
Bhaumik, 

2022) 
3 subjects MI 

left hand (L), 
right 

hand (R), foot 
(F) and tongue 
(T) movement

3 channels (C3, 
Cz, C4) Band pass filter

Cross-
correlation and 

Wavelet 
Energy 

LDA 88.89 

(Tortora et 
al., 2023) 

10 healthy 
subjects Active Movement Walk 38 

channels 

High-pass, 
notch and low-

pass filtered
PSD CNN-LSTM 89.32 ± 4.65

(Lin & Lin, 
2023) 

8 healthy 
subjects 

MI-ME (motor 
execution) Walk & Stand 

8 
Channels (FP1, 

FP2, C3, Cz, C4, 
CP3, CPz, CP4)

Band pass filter CSP, PSD, 
DWT+AR SVM 83.09 

(Li et al., 
2022) 

2 healthy 
subjects Active Movement Walk & Stand 32 Channels of 

EEG 

Fifth-order 
Butterworth 

filter and   
Notch filter

CSP ICA 99.0 

Table 2: Summary of transfer learning for MI Classification using EEG signal. 

Study Subjects Protocol Task EEG channel Pre 
Processing 

Feature 
extraction Method Accuracy 

(%) 

(Zheng et al. 
2020) 

10 healthy 
subjects MI Left/right hand  

8 channels (Cz, 
C3, C4, CP1, CP2, 

Pz, P3, and P4) 
- CSP, 

PSD 
classical transfer 

learning algorithm 91.6 ± 2.8 

(Liang., & 
Ma, Y. 
(2020). 

12 subjects MI 
right 

hand and both 
feet 

13 channels band-pass filtered 
balanced 

distribution 
adaptation (BDA)

multi-source 
fusion transfer 

learning (MFTL) 
71.89 

(Kant et al., 
2020) 

a healthy 
female MI left/right hand 

movement 
3 channels (C3, Cz 

and C4) band-pass filtered 
Continuous 

Wavelet 
Transform (CWT)

VGG19 95.71 

(Zhang et al., 
2021) 

9 healthy 
subjects MI 

left hand, right 
hand, feet, and 

tongue 
22 channels OVR-FBCSP HDNN-TL 81 

(Zhang et al., 
2021) 

54 healthy 
subjects MI grasping with 

the hand 62 channels Chebyshev type-I 
filter - Deep CNN 84.19 ± 9.98

(Mattioli et 
al., 2021) 

109 
participants MI 

4 tasks and 14 
experimental 

runs 
64 channels - - 1D CNN 99.46 

(Cai et al., 
2022) 

- Dataset 1 
 

- Dataset 2a 
MI left hand, right 

hand, foot 
- 59 channels 
- 22 channels band-pass filter 

symmetric 
positive definite 

(SPD) and 
Grassmann  

manifold 
embedded transfer 
learning (METL) 

- 83.14 
 

- 76.00 

(Khademi et 
al., 2022) 

9 healthy 
subjects MI 

left hand, right 
hand, feet, and 

tongue 
22 channels spatial and 

frequency domains CWT Inception-v3 and 
LSTM 92 
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Pre-trained CNN networks, such as VGGNet, 
AlexNet, ResNet, Inception, and GoogleNet, among 
others, represent the cornerstone of transfer learning. 
These networks are initially trained on extensive 
datasets for general tasks and serve as the foundation 
for our research, which focuses on classifying lower-
limb MI using EEG signals. Utilizing pre-trained 
CNN networks, a form of TL based on model 
parameters, for lower limb movement classification 
using EEG signal offers several significant 
advantages and compelling reasons, such as 
complexity of EEG data, data efficiency, 
generalization, model performance, reduction in 
overfitting, knowledge transfer, reduced 
computational resource, and robustness to noise. 
Table 2 provides a comprehensive summary of recent 
research that has successfully harnessed the power of 
TL to achieve high-performance MI classification. 

Kant et al. (Kant et al., 2020) proposed a 
combination of Continuous Wavelet Transform 
(CWT) along with deep learning-based transfer 
learning (pre-trained CNN like VGG19) using three 
EEG channels (C3, Cz, C4) for MI Classification for 
BCI. The results of the method have been compared 
to earlier works on the same dataset, and a promising 
validation accuracy of 95.71% is achieved in their 
investigation.  

Khademi et al. (Khademi et al., 2022) employed a 
transfer learning-based CNN (ResNet-50 and 
Inception-v3) and LSTM hybrid deep learning model 
to classify MI EEG signals. Their model produced 
impressive results, achieving the highest accuracy of 
92% and a Kappa value of 88% for the hybrid neural 
network featuring Inception-v3. 

3 BCI-CONTROLLED 
EXOSKELETON FOR KNEE 
REHABILITATION  

Summarizing the literature, BCI paradigms, EEG 
acquisition methods, current BCI products, 
classification and transfer learning methods, and 
approaches, the general usefulness of the BCI 
exoskeleton and possible target groups, we have 
decided to propose the BCI-controlled exoskeleton 
for knee rehabilitation.  

This exoskeleton emerges as a promising solution 
for post-knee injury rehabilitation, particularly in 
cases without neurological diseases. Its lightweight 
design facilitates permissible movements during 
rehabilitation, and its active functionality, driven by 
both brain-controlled and pneumatic systems, 

positions it as an effective tool, particularly for bed-
based rehabilitation scenarios. The BCI system will 
be based on two paradigms: processing and 
evaluating basic brain frequencies (distinguishing 
between attention and relaxation states) and motor 
imagery. As we move forward, it is crucial for 
individuals to recognize the significance of 
rehabilitation, emphasizing the role of attention and 
motor imagery in optimizing the efficacy of the 
exoskeleton and the overall recovery process.  

The basic EEG acquisition device used will be 
based on Neurosky technology. We also aim to define 
MI tasks with the SMR paradigm for implementing 
experiments on healthy subjects using the OpenBCI 
Cyton device available in our laboratory. Regarding 
the classification method, we intend to use pre-trained 
CNN networks (such as VGG19) to classify lower 
limb movements. This interface leverages pre-trained 
CNN networks to extract shared features from EEG 
signals, thus enhancing the performance of lower 
limb movement classification in the human-
exoskeleton interface. The benefits of transfer 
learning will be also utilized. Currently, the 
microcontroller for running the BCI part (i.e. 
collecting the EEG signal from the EEG acquisition 
device and running the classification methods) is 
designed, created, and tested in the laboratory. 

4 CONCLUSION  

This paper reviewed EEG current literature, 
acquisition methods, BCI paradigms, current EEG 
acquisition devices, and EEG signal classification 
methods and techniques to design and implement a 
BCI-controlled exoskeleton for knee rehabilitation. 
This preliminary design of such a system was 
presented. When the BCI part is ready for lab testing, 
the future work involves mainly building the interface 
for the exoskeleton and performing experiments 
when the BCI system and exoskeleton are integrated.   
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