
A Methodology for Web Cache Deception Vulnerability Discovery

Filippo Berto a, Francesco Minetti b, Claudio A. Ardagna c and Marco Anisetti d

Department of Computer Science, University of Milan, Milan, Italy

Keywords: Web Cache Deception, Web Cache, Web Security.

Abstract: In recent years, the use of caching techniques in web applications has increased significantly, in line with their
expanding user base. The logic of web caches is closely tied to the application logic, and misconfigurations
can lead to security risks, including the unauthorized access of private information and session hijacking. In
this study, we examine Web Cache Deception as a technique for attacking web applications. We develop a
solution for discovering vulnerabilities that expands upon and encompasses prior research in the field. We
conducted an experimental evaluation of the attack’s efficacy against real-world targets, and present a new
attack vector via web-client-based email services.

1 INTRODUCTION

Content distribution is a common problem in mod-
ern web applications, as there are rapidly increasing
numbers of users who access the same resources. In
the recent years, many software products have inte-
grated web caching technologies and services to en-
hance the performance of their infrastructure. The in-
creasing popularity of these techniques has prompted
researchers to investigate the associated security as-
pects, leading to the identification of a new type of
attack: Web Cache Deception (WCD) (Gil, 2017;
Mirheidari et al., 2022; Mirheidari et al., 2020;
Nguyen et al., 2019a)1. These attacks exploit vul-
nerabilities in caching services to exfiltrate informa-
tion, bypassing access control features and obtaining
stored data intended for other users (Mirheidari et al.,
2022). Researchers have identified several alternative
attacks, revealing a variety of vulnerabilities in enter-
prise content distribution systems (Mirheidari et al.,
2020). Although some solutions have been developed
to automatically scan for WCD vulnerabilities, they
do not consider all the possible attack vectors. Our
contribution with this paper is threefold: i) a novel
solution for detecting WCD vulnerabilities capable of
covering a wide range of important novel cases af-

a https://orcid.org/0000-0002-2720-608X
b https://orcid.org/0009-0007-1272-956X
c https://orcid.org/0000-0001-7426-4795
d https://orcid.org/0000-0002-5438-9467
1Practical Web Cache Attacks: https://portswigger.net/

research/practical-web-cache-poisoning

fecting modern applications; ii) a new attack vector
using web mail client, iii) experimentally evaluate the
effectiveness of our solution in real scenarios..

1.1 Motivation and Goals

Existing tools, including the one proposed in (Mirhei-
dari et al., 2022), do not cover a number of relevant
cases and are not automated. In most of the cases they
do not cover scenarios where there are no caching-
related HTTP headers or where there are responses
with different content for the same cached resource,
such as cases where the vulnerable application uses
the Cloudflare email obfuscation. In addition, they
do not cover specific cases of certain software prod-
uct versions, such as the case having advisory CVE–
2020–151512. Also rare cases in which the web ap-
plication caches all the resources that have an HTTP
200 response code are not covered as well as cases in
which the classic payloads cannot be used but a sim-
ple unique query string must be used. Our solution
aims to cover all the above cases providing certain de-
gree of automation. In addition, we propose a novel
attack vector for WCD vulnerabilities exploiting web
mail clients automatically loading web contents. To
the best of our knowledge, this approach has never
been discussed before in literature or in public domain
resources.

2https://nvd.nist.gov/vuln/detail/CVE-2020-15151

Berto, F., Minetti, F., Ardagna, C. and Anisetti, M.
A Methodology for Web Cache Deception Vulnerability Discovery.
DOI: 10.5220/0012692000003711
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 14th International Conference on Cloud Computing and Services Science (CLOSER 2024), pages 231-238
ISBN: 978-989-758-701-6; ISSN: 2184-5042
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

231

1.2 Paper Structure

The rest of the paper is organized as follows: Sec-
tion 2 analyses the literature related to web cache vul-
nerabilities and exploitation techniques, later focus-
ing on WCDs. Section 3 describes the background
of WCD, explaining how web caches work and how
their misconfiguration can be exploited, and the mo-
tivation of this paper. Section 4 shows our proposed
methodology, describing how our solution works and
the new edge cases being covered. Section 5 describes
the cases covered by our solution and introduces a
novel attack vector. Section 6 contains our experi-
mental validation of the developed solutions against
real web services. Finally, in Section 7 we discuss the
results obtained and report our conclusions.

2 RELATED WORK

The security of web caches is a well known problem
without comprehensive solution yet. It is grounded on
the difficulties of finding the correct middle ground
between caching every content and none, it is strictly
linked to the application logic and securing it is gen-
erally a hard task. Initial works on the security of
web caches date back to the end of the last century,
when the rapid growth in popularity of Internet re-
quired systems that could handle large scale distribu-
tion of contents (Chankhunthod et al., 1996; Smith
et al., 1999).

The configuration of web caching services varies
according to the requirements of the target web ap-
plication, as it manages the caching logic for its con-
tent. Correctly configuring web caches is error-prone:
several considerations must be taken into account de-
pending on the application, such as the type of content
returned by the web application, the resource path,
and the HTTP code returned. Attacks against web
caches usually fall into two classes:
1. Cache poisoning, where the attacker sends a

crafted request to a vulnerable web cache, forc-
ing it to store a particular version of the server’s
response. Eventually, a user who sends a request
that matches the attacker’s caching keys will re-
ceive the cached content. This type of attack can
be used as a form of Denial of Service (DOS), pre-
venting the user from retrieving the correct con-
tent, or even as misinformation, providing the user
with outdated information (Ghaznavi et al., 2021;
Nguyen et al., 2019b; Nguyen et al., 2019a).

2. Cache deception, covered in this paper, which
occurs when web caches are incorrectly config-
ured, allowing an attacker to deceive users into

storing private content within the cache. The at-
tacker can then retrieve the data using a matching
caching key.

In both cases, the misconfiguration of the web cache
allows the attacker to generate false positive matches
with other users’ caching keys.

WCD’s literature is still in its infancy, with only
few available related publications. Omer Gil was the
first describing the attack, showing how misconfig-
ured web caches and Content Distribution Networks
(CDNs) may incorrectly store users responses’ data,
mistaking them for static files such as stylesheets
and scripts (Gil, 2017). In this scenario the attacker
can then send a key-matching request, retrieving the
cached response, possibly containing sensitive infor-
mation or session data. Mirheidari et al. introduced
a WCD search methodology focusing on markers in
HTTP responses (Mirheidari et al., 2020). Further-
more, in this article the authors have proposed inno-
vative WCD payloads, characterized by the posses-
sion of special characters that block the parsing of
the path by the origin application servers, while they
are entirely parsed by the intermediary nodes. These
payloads have broadened the spectrum of possible
WCD scenarios. These techniques have been given
the name of path confusion as they confuse the origin
application server into believing that the requested re-
source is the correct one, while letting the intermedi-
ary nodes carry out the complete parsing of the path,
letting them believe that a static resource has been
requested, and therefore that it can be saved locally.
Mirheidari et al. also implemented a WCD detec-
tion tool whose computation is based on the presence
and semantics of the HTTP caching headers. They
also conducted the largest large-scale experiment in
WCD detection. To do so they developed an automa-
tion tool that does not require a manual registration
phase on the website to be tested. The tool relies
on the fact that if a web application mistakenly saves
non-authenticated resources in the web cache, it will
probably do the same with authenticated resources.
This gave them a solution that is well suited to large-
scale experiments (Mirheidari et al., 2022). Nguyen et
al. conducted a large-scale exploration of commonly
used cache systems’ security and identified many vul-
nerabilities that can be attributed to misconfiguration,
misinterpretation of standards, and bypassing of secu-
rity features (Nguyen et al., 2019a).

Several solutions for the security of web caches
and CDNs have been adopted in literature. In (Jabiyev
et al., 2021), Jabiyev et al. have proposed a fuzzing-
based approach to caches vulnerability discovery.
Anomaly detection techniques have been proposed to
counteract crafted requests (Yang et al., 2022; Ghaz-

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

232

p p p
HTTP/1.1
Host: www.domain.com
...

1 2

4 3

HTTP/1.1 200 OK
Content-type: text/html
...

HTTP/1.1 200 OK
Content-type: text/html
X-Cache: miss
...

Figure 1: Web caching mechanism.

navi et al., 2021; Zolfaghari et al., 2020). Others have
proposed automated techniques for identifying cache
poisoning vulnerabilities (Hildebrand, 2021) or sub-
stituted standard HTTP-based caches with ones based
on custom network protocols (Lin et al., 2022).

Different network stacks have implemented vari-
ous approaches to the security of CDNs. For instance,
networks based on the Information Centric Network-
ing (ICN) paradigm require producers to sign all con-
tent, which mitigates the risk of cache poisoning. Ad-
ditionally, automated verification solutions have been
implemented to verify non-functional properties, such
as security and performance (Anisetti et al., 2021;
Anisetti et al., 2022). Similar solutions could be ap-
plied transparently to traditional web cache services,
reducing the risk of misconfiguration.

3 BACKGROUND

In this section we summarize the main concepts of
web caching and web cache deception vulnerabilities.

3.1 Web Caching

Web caching refers to the process through which
HTTP responses are saved by intermediary nodes of
a multi-level web infrastructure and then served by
them if needed. This process ensures optimization of
HTTP traffic, reducing latency and network usage and
improving performance. Figure 1 represents the be-
havior of a generic web caching mechanism.

In steps 1 and 2 a client requests a resource from
a server using an HTTP GET request. The request
travels from the client to the originating application
server, passing through an intermediary node that
is providing the caching service. Subsequently, the
origin application server replies with an HTTP 200
response, which will travel up to the intermediary
node. The intermediary node will now save a copy
of the response locally and forward the response to
the client. At a later time, if a client requests the same
resource, it will be returned directly by the interme-
diary node, thus eliminating useless traffic between
the intermediary node and the originating application

j
HTTP/1.1
Host: www.vulnerable.com
Cookie: <SESSION
COOKIES>
...

2

3

HTTP/1.1 200 OK
Content-type: text/html
...
<SENSITIVE CONTENT>

1

https://www.vulnerable.com/non-existent.js

HTTP/1.1 200 OK
Content-type: text/html
X-Cache: miss
...
<SENSITIVE CONTENT>

HTTP/1.1 200 OK
Content-type: text/html
X-Cache: hit
...
<SENSITIVE CONTENT>

4

GET /non-existent.js
HTTP/1.1
Host: www.vulnerable.com
...

Figure 2: Web cache deception mechanism.

server. In a real environment, the intermediary is an
edge server of a CDN or a reverse proxy at the edge of
a Demilitarized zone (DMZ). HTTP response codes
and headers may differ from the standard ones shown
in Figure 1. Resources saved in web caches are identi-
fied through configuration variables called cache keys
which value is generated using various parts of HTTP
requests and responses related to a given resource.
Depending on the deployment configuration this duty
of continuously managing the keys handling mecha-
nism is accomplished either by the organization’s or
the CDN provider’s system administrators, as com-
plete automation often leads to false positives.

3.2 Web Cache Deception

Web cache deceptions are vulnerabilities that arise
from an incorrect configuration of the web caching
mechanisms. Figure 2 shows a diagram of the WCD
attack mechanism.

In step 1 the attacker tricks the victim user into
sending a request to a crafted URL. This can be
achieved through Cross Site Scripting (XSS) (Cui
et al., 2020; Liu et al., 2019) or phishing (Barron
et al., 2021; Gupta et al., 2016) or other common at-
tack vectors. The URL consists of a first part, indi-
cated in green in Figure 2, which points to a resource
that exists on the application server, concatenated to a
second part, the WCD payload indicated in red, which
points to a non-existent static resource on the server.
In step 2, the victim, authenticated on the vulnera-
ble site, opens the malicious link and sends an HTTP
GET request with session cookies to the origin appli-
cation server. In step 3, after the server has received
the HTTP request, it will reply with an HTTP 200 re-
sponse containing the victim user’s private informa-
tion. The response will travel up to the intermediate
node, which will save the response locally, detecting
the end of the URL path as a static file due to its mis-
configuration. Finally, the content is forward it to the
client. As last step, the attacker, requests the same re-
source with the same cache keys, fetching Personally

A Methodology for Web Cache Deception Vulnerability Discovery

233

Identifiable Information (PII) of the victim user.
WCD vulnerabilities have the following charac-

teristics:

• require a simple HTTP GET request with session
cookies. Other web application vulnerabilities
usually have stricter requirements, e.g. Reflected
XSS vulnerabilities described in (Cui et al., 2020;
Shrivastava et al., 2016) where the response must
also be interpreted by the browser;

• are widespread, as many web infrastructures to-
day use one or more web caching mechanisms in-
ternally;

• have impact that varies according to the type of
content mistakenly saved in web caches;

• have a finite attack surface, given by the combina-
tion of the set of resources returned by the appli-
cation server that contain private user information
with the set of WCD payloads.

Given the above characteristics, the process of search-
ing for these vulnerabilities can be partially auto-
mated.

4 METHODOLOGY

In this section we describe our scanning methodology,
which is subdivided into 3 phases.

Registration. In the first phase, we register a new
user on the target application. Normally this step
requires manual intervention by the researcher, in-
putting specific markers in the registration that will
later be searched by the program. Then the re-
searcher logs onto the target website and copies the
session cookies to the scanning tool using the pro-
vided browser extension.

Crawling. During the second phase, our solution
will perform an authenticated recursive crawling of
the domain using the provided cookies and a headless
browser. We found this to provide the most effective
results even with single page applications. The tool
will save all the links it finds within anchor elements
and forms, creating a representation of the application
attack surface. Algorithm 1 describes the steps of the
crawling phase.

Detection. The third and final phase, focuses on de-
tection of WCD vulnerabilities using the collected
URLs. For each collected link and for each WCD
payload, the tool performs the following actions:

def getPageLinks(url, depth: int = 0)
if isInLinkList(url) and

isAmplitudeAllowed(url) then
save(url);
if depth < MAX DEPTH and
totalLinks < MAX LINKS then

hrefs← getAllAnchorHref();
actions← getAllFormAction();
foreach href ∈ hrefs do

getPageLinks(link, depth+1);
end
foreach action ∈ actions do

getPageLinks(action,
depth+1);

end

Algorithm 1: Crawling phase algorithm.

• send an HTTP GET request with session cookies
to the given link concatenated with the WCD pay-
load;

• send the same previous request, but without the
session cookies;

• finally, check if there are cookies, markers or
Cross Site Request Forgery (CSRF) tokens of the
victim user in the response to the unauthenticated
request and, if so, it will warn the user that it has
found a possible WCD.

Algorithm 2 describes the steps of the detection
phase.

def detection(payloadList)
foreach p ∈ payloadList do

authResponse←
sendAuthRequest(p);

unauthResponse←
sendUnauthRequest(p);

if isAuthContent(unauthResponse)
then

possible WCD found
end

Algorithm 2: Detection phase algorithm.

We note that, although not implemented in our so-
lution, the first phase could also be fully automated
by programmatically recognizing sign up and sign in
forms and inserting the appropriate tokens and cre-
dentials. We also note that some sites require two-
factor authentication or obstruct robots and scrap-
ers with detection and prevention techniques, such as
captchas, often placed precisely in conjunction with
the sign-in and sign-up forms. It has recently been
demonstrated how it is possible to bypass these anti-
bot puzzles in an automated way with the help of neu-

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

234

ral networks (Mirheidari et al., 2022; Ma et al., 2020).

5 COVERED CASES

Our solution covers the classic cases with and with-
out HTTP headers related to caching, including path
confusion techniques. Furthermore, it covers cases in
which it receives responses where the body differs for
the same resource saved in the web cache, e.g. in web
applications that use Cloudflare email obfuscation.

Our solution also covers a specific case of certain
versions of the Content Management System (CMS)
OpenMage LTS, based on Magento, with advisory
CVE–2020–15151. For certain versions of this CMS,
the default installation includes a WCD-vulnerable
web cache local to the application server. Specifically,
with the default configuration, all 404 responses re-
lated to a request with the path ending with a static
extension are saved in the cache. The problem is that
these 404 responses contain the CSRF token of the
victim user who requested it. As a result, an attacker
could steal the victim’s CSRF token and, if the same-
site attributes of the cookies allow it, it could perpe-
trate a CSRF attack. These versions of the CMS re-
quire a cookie called X-Magento-Vary3 with a pre-
cise value (and the same for all users) to access the
web cache. Our tool detects whether the X-Magento-
Vary cookie is present in the session cookies, saves its
value and subsequently for each HTTP request made,
the cookie in question will be included in the requests
cookies. This case, like the others mentioned previ-
ously, could not have been identified using current
tools.

5.1 Novel Attack Vector: Web Mail
Client

We identified web mail clients as possible vectors for
WCD-type attacks. The hypothesis is that web mail
clients can, under certain conditions, send HTTP GET
requests with session cookies while loading email
contents. At the time of writing, we are unaware of
any previous discussion in literature or public domain
resources on the topic.

The attack is summarized in Figure 3. In step 1,
an attacker sends an email with two images in the
body to the victim’s email address. The first image
will have the src attribute with a URL dedicated to
the WCD attack, while the second image will point

3Magento’s default caching policies:
https://devdocs.magento.com/guides/v2.4/extension-dev-
guide/cache/page-caching/public-content.html

Vulnerable domain

3

Attacker domain

SMTP

<!DOCTYPE html>
<html><body>

...
</body></html>

42

Figure 3: Web mail client as attack vector.

to a server owned by the attacker. When the victim
user opens the malicious mail in a web mail client
that does not filter third-party content in the body of
the mail, two HTTP GET requests are sent. The first
request will initiate the WCD attack, and second re-
quest will notify the attacker’s server that the WCD
attack has started and with what payload value it was
performed. At this point the attacker’s server will be
able to request the resource erroneously stored in the
cache and steal the victim’s private information. It
should be noted that throughout this process the in-
teraction of the victim user is almost non-existent, as
they will only have to view an email, without click-
ing any link. We have experimentally demonstrated
that in order to perpetrate the attack just described, 3
conditions must be valid:

• the site vulnerable to WCD must have session
cookies with the same-site attribute set to none
and the secure flag set to true;

• the web mail client must not filter in the body of
the emails content that could generate GET re-
quests to third-party sites;

• the victim user must be using the Chrome
browser, which as of this writing has not yet im-
plemented state partitioning.

Moreover, we have demonstrated how before the
insertion of the same-site attribute of cookies in
browsers (before mid-2020) it was possible to per-
petrate the attack with any site vulnerable to WCD
and with any browser. This was demonstrated by test-
ing the attack with a mid-2020 standalone release of
the Firefox browser and a popular web mail client
that does not filter third-party content in the body of
emails. Furthermore, flaws in the filtering of content
in the body of emails that can generate HTTP GET

A Methodology for Web Cache Deception Vulnerability Discovery

235

requests can be exploited by an attacker to use web
mail clients that normally could not be used as an at-
tack vector. This experiment has shown how with the
advent of new types of vulnerabilities a privacy prob-
lem, such as filtering third-party content in the body
of emails, can also become a security problem.

6 EXPERIMENTS

This section describes the experiments carried out to
validate the efficacy of the methodology, focusing on
detection of WCD vulnerabilities, their classification
and exploitation of the vulnerable target. Follow-
ing, additional experiments on the exploitation of web
mail clients as vectors for WCD attacks.

6.1 Detecting WCD

The developed tool has been tested on 100 domains,
chosen from organizations that explicitly allow secu-
rity testing, e.g. by providing bug bounty programs.
Furthermore, these domains have been selected in
such a way that they all have private content re-
turned directly in HTML by the application server. Of
these 100 domains, 13 were affected by WCD. Fig-
ures 4a, 4b and 4c show pie charts plots representing
respectively the consequences of the WCDs vulnera-
bility, the web caching technologies found to be mis-
configured and the HTTP response codes of the re-
sources erroneously saved in the web caches.

As shown in Figure 4a, the impact of the WCDs
found is variable and ranges from a CSRF attacks,
allowing changes to the personal information of the
victim account, to the theft of the victim account in
the worst case. Figure 4b shows how most of the web
caching software found vulnerable belonged to CDNs
(Cloudflare, Akamai, CloudFront) while a smaller
part to reverse proxies (Nginx, Magento). Finally,
Figure 4c shows that the HTTP response codes of re-
sources erroneously saved in the cache are mainly 200
and 404. In smaller numbers, cases with responses er-
roneously saved in the cache with HTTP 410 response
code were also detected.

A separate analysis was carried out regarding
CVE–2020–15151. First, 15 domains using the vul-
nerable version of OpenMage LTS were identified,
these domains were chosen from a different pool of
domains from those mentioned in the previous exper-
iment. In all 15 domains the default configuration was
active and all were vulnerable to WCD, allowing ex-
filtration of the session token. Of these 15 domains,
5 did not have the same-site session cookie attribute
set, allowing an attacker to perpetrate a CSRF attack.

CSRF (38.36%)

PII theft (23.07%)

Account takeover (23.07%)

Useless (15.4%)

(a) WCD consequences.

Cloudflare (38.46%)

Akamai (38.46%)

CloudFront (7.69%)

Nginx (7.69%)

Magento local cache (7.69%)

(b) Misconfigured technologies.

200 (38.46%)

404 (38.46%)

410 (23.07%)

(c) Cached HTTP response codes.

CSRF (33.33%)

Useless (66.66%)

(d) OpenMage LTS WCD.

Figure 4: WCD detection experimental results.

The other domains had the session cookies’ same-site
attribute set to LAX or STRICT, thus preventing the
attack. Figure 4d contains a pie chart plot represent-
ing the consequences of the WCDs found during this
analysis.

The same domains were also tested manu-
ally in order to verify the effectiveness of the
tool. We identified false negative cases, where the
tool could not detect the vulnerability as it was
blocked by anti-bot software checking the JavaScript
navigator.webdriver property, thus identifying the
Selenium driver and halting the crawling phase. We
also noticed false positives cases in which cookies
with unimportant values, such as the domain name
or domain URLs, were returned by the application
server, misleading the tool into detecting a possible
WCD with cookie exfiltration. The issue has been
corrected by filtering the returned cookies keeping
only the ones with more than 16 characters and which
differ in the initial part from a variant of the domain
name (such as domain.com, http://domain.com,
https://domain.com).

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

236

Following the detection of WCDs vulnerabilities
in authenticated mode, the tool was run on a list of
750 domains in unauthenticated mode. In this execu-
tion mode, the tool only checked for the presence of
CSRF tokens that were erroneously stored in the web
cache. This experiment is based on the hypothesis
that if the tool detects the presence of CSRF tokens
mistakenly stored in the web cache for a particular
anonymous session, it will most likely do the same
for authenticated users. Of these 750 domains, only
3 were found to be vulnerable. This lower number
of positive cases is mainly due to the fact that the re-
search targeted a specific subset of possible WCDs
cases. In addition, the tool uses simple regular ex-
pressions to match against CSRF tokens, therefore it
is likely that some were missed. We have found that
for large-scale analysis of the unauthenticated type, it
is less computationally expensive and more effective
to use an approach based on the analysis of the HTTP
caching headers. We note that all the experiments
conducted in this study solely targeted web applica-
tions of organizations that granted explicit permission
for security testing. Additionally, the tool developed
generated minimal network overhead in comparison
to a normal browser, preventing accidental flooding
of the target, and is available on our GitHub reposi-
tory under the Creative Common license4.

6.1.1 Global Scale Attacks

Various researchers have tackled the issue of exploit-
ing WCDs in a CDN-like environment in a globally
scalable way. The limit they encountered, from the
attacker’s point of view, was that of being able to re-
trieve the resources that were initially saved in a pre-
cise edge server in the globe, without knowing in ad-
vance in which geographical region the victim is lo-
cated. We found that the attacker can easily overcome
the issue by inducing the user in connecting to one of
their servers using attacks similar to the ones used for
WCD (e.g. XSS or phishing). When the victim user
connects to the attacker’s server, their IP is collected
and the victim is redirect to the URL of the WCD
attack. The attacker can then identify the victim lo-
cation using IP-to-Location services. Alternatively,
an attacker could simultaneously send several HTTP
requests to each CDN edge server in the victim sup-
posed region.

4Source code of the proposed tool: https://github.com/
SESARLab/WCD prober

6.2 Discussion

In terms of defense against WCD vulnerabilities, the
primary solution relies on a proper configuration of
web caching technologies, preventing the caches from
storing private information. This implies specific con-
siderations on the handling of HTTP requests by the
application server, even for non-existing endpoints. It
is paramount to check both the test and production
environments as the version or configuration of the
application or the caching technology changes.

Considering the web mail clients as vectors for
WCD attacks, a substantial defense level can be
achieved by filtering any content in the body of
the emails that could automatically generate HTTP
GET requests to third-party sites, such as images and
styling files. Current widespread behavior of allow-
ing whitelisting of entire (sub)domains could pose a
threat in the event of changes to the cache technol-
ogy configuration. Finally, some vendors, such as
Cloudflare, have implemented software products that
mitigate WCD vulnerabilities by performing content
type checks on HTTP responses, verifying that the
content-type header matches the one declared in the
path, if any, and thus deeming it suitable for being
stored.

7 CONCLUSION

In this paper we presented a novel methodology for
detecting WCD vulnerabilities, experimentally evalu-
ate its effectiveness covering the largest possible num-
ber of WCD cases. Our detection solution demon-
strated better reliability for authenticated analyses,
compared to the unauthenticated ones. Finally, a
novel attack vector for WCDs using web mail client
has been proposed and experimentally verified. We
also have verified how some privacy-preserving tech-
niques introduced by default in web browsers in mid-
2020 have accidentally reduced part of the attack sur-
face of WCDs.

ACKNOWLEDGEMENTS

The work was partially supported by the projects
i) MUSA – Multilayered Urban Sustainability Ac-
tion – project, funded by the European Union –
NextGenerationEU, under the National Recovery
and Resilience Plan (NRRP) Mission 4 Component
2 Investment Line 1.5: Strengthening of research
structures and creation of R&D “innovation ecosys-
tems”, set up of “territorial leaders in R&D” (CUP

A Methodology for Web Cache Deception Vulnerability Discovery

237

G43C22001370007, Code ECS00000037); ii) SER-
ICS (PE00000014) under the NRRP MUR program
funded by the EU – NextGenerationEU; iii) 1H-HUB
and SOV-EDGE-HUB funded by Università degli
Studi di Milano – PSR 2021/2022 – GSA – Linea 6;
and iv) program “piano sostegno alla ricerca” funded
by Università degli Studi di Milano.

REFERENCES

Anisetti, M., Ardagna, C. A., Berto, F., and Damiani, E.
(2021). Security Certification Scheme for Content-
centric Networks. In 2021 IEEE International Confer-
ence on Services Computing (SCC), pages 203–212,
Chicago, IL, USA. IEEE.

Anisetti, M., Ardagna, C. A., Berto, F., and Damiani,
E. (2022). A Security Certification Scheme for
Information-Centric Networks. IEEE Trans. Netw.
Serv. Manage., 19(3):2397–2408.

Barron, T., So, J., and Nikiforakis, N. (2021). Click This,
Not That: Extending Web Authentication with De-
ception. In Proceedings of the 2021 ACM Asia Con-
ference on Computer and Communications Security,
ASIA CCS ’21, pages 462–474, New York, NY, USA.
Association for Computing Machinery.

Chankhunthod, A., Danzig, P. B., Neerdaels, C., Schwartz,
M. F., and Worrell, K. J. (1996). A Hierarchical Inter-
net Object Cache. In Proceedings of the 1996 annual
conference on USENIX Annual Technical Conference,
volume 164 of ATEC ’96, page 13, USA. USENIX
Association.

Cui, Y., Cui, J., and Hu, J. (2020). A Survey on XSS At-
tack Detection and Prevention in Web Applications.
In Proceedings of the 2020 12th International Confer-
ence on Machine Learning and Computing, ICMLC
’20, pages 443–449, New York, NY, USA. Associa-
tion for Computing Machinery.

Ghaznavi, M., Jalalpour, E., Salahuddin, M. A., Boutaba,
R., Migault, D., and Preda, S. (2021). Content Deliv-
ery Network Security: A Survey. IEEE Communica-
tions Surveys & Tutorials, 23(4):2166–2190. Confer-
ence Name: IEEE Communications Surveys & Tuto-
rials.

Gil, O. (2017). Web Cache Deception Attack. In Proceed-
ings of Black Hat 2017 US.

Gupta, S., Singhal, A., and Kapoor, A. (2016). A liter-
ature survey on social engineering attacks: Phishing
attack. In Proceedings of 2016 International Confer-
ence on Computing, Communication and Automation
(ICCCA), pages 537–540.

Hildebrand, M. (2021). Automated Scanning for Web Cache
Poisoning Vulnerabilities. PhD thesis, Technische
Universität Dortmund.

Jabiyev, B., Sprecher, S., Onarlioglu, K., and Kirda, E.
(2021). T-Reqs: HTTP Request Smuggling with Dif-
ferential Fuzzing. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communica-

tions Security, CCS ’21, pages 1805–1820, New York,
NY, USA. Association for Computing Machinery.

Lin, S., Xin, R., Goel, A., and Yang, X. (2022). Invi-
Cloak: An End-to-End Approach to Privacy and Per-
formance in Web Content Distribution. In Proceed-
ings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’22, pages
1947–1961, New York, NY, USA. Association for
Computing Machinery.

Liu, M., Zhang, B., Chen, W., and Zhang, X. (2019).
A Survey of Exploitation and Detection Methods of
XSS Vulnerabilities. IEEE Access, 7:182004–182016.
Conference Name: IEEE Access.

Ma, Y., Zhong, G., Liu, W., Sun, J., and Huang, K. (2020).
Neural CAPTCHA networks. Applied Soft Comput-
ing, 97:106769.

Mirheidari, S. A., Arshad, S., Onarlioglu, K., Crispo, B.,
Kirda, E., and Robertson, W. (2020). Cached and
Confused: Web Cache Deception in the Wild. In
Proceedings of the 29th USENIX Security Symposium
(USENIX Security 20), pages 665–682.

Mirheidari, S. A., Golinelli, M., Onarlioglu, K., Kirda, E.,
and Crispo, B. (2022). Web Cache Deception Esca-
lates! In Proceedings of the 31st USENIX Security
Symposium (USENIX Security 22), pages 179–196.

Nguyen, H. V., Iacono, L. L., and Federrath, H. (2019a).
Mind the cache: large-scale explorative study of web
caching. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC ’19, pages
2497–2506, New York, NY, USA. Association for
Computing Machinery.

Nguyen, H. V., Iacono, L. L., and Federrath, H. (2019b).
Your Cache Has Fallen: Cache-Poisoned Denial-of-
Service Attack. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’19, pages 1915–1936, New York,
NY, USA. Association for Computing Machinery.

Shrivastava, A., Choudhary, S., and Kumar, A. (2016). XSS
vulnerability assessment and prevention in web appli-
cation. In 2016 2nd International Conference on Next
Generation Computing Technologies (NGCT), pages
850–853.

Smith, J., Calvert, K., Murphy, S., Orman, H., and Pe-
terson, L. (1999). Activating networks: a progress
report. Computer, 32(4):32–41. Conference Name:
Computer.

Yang, L., Moubayed, A., Shami, A., Heidari, P.,
Boukhtouta, A., Larabi, A., Brunner, R., Preda, S.,
and Migault, D. (2022). Multi-Perspective Content
Delivery Networks Security Framework Using Op-
timized Unsupervised Anomaly Detection. IEEE
Transactions on Network and Service Management,
19(1):686–705. Conference Name: IEEE Transac-
tions on Network and Service Management.

Zolfaghari, B., Srivastava, G., Roy, S., Nemati, H. R.,
Afghah, F., Koshiba, T., Razi, A., Bibak, K., Mitra,
P., and Rai, B. K. (2020). Content Delivery Networks:
State of the Art, Trends, and Future Roadmap. ACM
Comput. Surv., 53(2):34:1–34:34.

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

238

