
UoCAD: An Unsupervised Online Contextual Anomaly Detection
Approach for Multivariate Time Series from Smart Homes

Aafan Ahmad Toor a, Jia-Chun Lin b, Ming-Chang Lee c and Ernst Gunnar Gran
Department of Information Security and Communication Technology,

Norwegian University of Science and Technology, Gjøvik, Norway

Keywords: Internet of Things, Smart Home, Long Short-Term Memory (LSTM), Online Learning, Time Series, Anomaly
Detection, Sliding Window.

Abstract: In the context of time series data, a contextual anomaly is considered an event or action that causes a deviation
in the data values from the norm. This deviation may appear normal if we do not consider the timestamp
associated with it. Detecting contextual anomalies in real-world time series data poses a challenge because it
often requires domain knowledge and an understanding of the surrounding context. In this paper, we propose
UoCAD, an online contextual anomaly detection approach for multivariate time series data. UoCAD employs
a sliding window method to (re)train a Bi-LSTM model in an online manner. UoCAD uses the model to
predict the upcoming value for each variable/feature and calculates the model’s prediction error value for each
feature. To adapt to minor pattern changes, UoCAD employs a double-check approach without immediately
triggering an anomaly notification. Two criteria, individual and majority, are explored for anomaly detection.
The individual criterion identifies an anomaly if any feature is detected as anomalous, while the majority
criterion triggers an anomaly when more than half of the features are identified as anomalous. We evaluate
UoCAD using an air quality dataset containing a contextual anomaly. The results show UoCAD’s effectiveness
in detecting the contextual anomaly across different sliding window sizes but with varying false positives and
detection time consumption.

1 INTRODUCTION

A time series refers to a sequence of data points col-
lected and indexed in time order (Belay et al., 2023).
The Internet of Things (IoT) has become a major
source of time series data in recent times, as it has
been used in smart homes, industry, healthcare, in-
surance, and many other fields (Hayes and Capretz,
2015).

In these fields, multiple sensors deployed to mon-
itor environments produce multivariate time series,
consisting of time series from various features. Fea-
ture, here, is referred to as data coming from an indi-
vidual sensor and can be imagined as a column in a
dataset. Recently, many supervised and unsupervised
approaches have been presented to detect anomalies
in multivariate time series. However, the effective-
ness of supervised learning approaches hinges on the
availability of labels, which is a challenge in many

a https://orcid.org/0000-0001-7682-3650
b https://orcid.org/0000-0003-3374-8536
c https://orcid.org/0000-0003-2484-4366

real-world applications (Carmona et al., 2021). On
the other hand, the unsupervised learning methods do
not require labels, instead, they can find unusual pat-
terns, that can be anomalies, from the data.

According to the article (Li and Jung, 2023),
anomalies can be classified into three categories:
point, collective, and contextual anomalies. Point and
collective anomalies are simple, as they represent a
sudden or gradual increase/decrease in the underlying
values respectively. Point anomaly comprises one in-
stance that deviates from the normal pattern; whereas
the collective anomaly usually comprises several con-
secutive instances that are out of the ordinary. Con-
textual anomalies, however, are more complex. Un-
like point and collective anomalies, they are consid-
ered anomalies only when evaluated with their spe-
cific context (Belay et al., 2023). For example, an
increase in CO2 levels is considered normal during a
cooking activity inside an enclosed kitchen. However,
if it happens outside the cooking period, it is consid-
ered anomalous.

There can be different types of contextual anoma-

86
Toor, A., Lin, J., Lee, M. and Gran, E.
UoCAD: An Unsupervised Online Contextual Anomaly Detection Approach for Multivariate Time Series from Smart Homes.
DOI: 10.5220/0012692100003705
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 9th International Conference on Internet of Things, Big Data and Security (IoTBDS 2024), pages 86-96
ISBN: 978-989-758-699-6; ISSN: 2184-4976
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



lies, e.g., anomalies that deviate significantly, anoma-
lies that deviate slightly, and anomalies that do not
deviate at all (absence of an expected deviation). For
this study, we focus on the contextual anomalies that
might not deviate significantly from the normal pat-
tern, however, their unusual time of occurrence makes
them difficult to detect. Differentiating a contextual
anomaly from point and collective anomalies is chal-
lenging because a contextual anomaly often overlaps
with these other types. This means that a contextual
anomaly detector must first be capable of detecting
point and collective anomalies, and then consider the
temporal context.

In recent years, researchers have shifted their
focus from statistical and Machine Learning (ML)
based methods to Deep Neural Network (DNN) based
methods for time series anomaly detection (Carmona
et al., 2021). Among DNN-based methods, Recurrent
Neural Networks (RNNs) are considered effective for
detecting anomalies in time series data due to their
ability to capture long-term dependency and patterns.

However, many DNN-based approaches, includ-
ing (Pasini et al., 2022), (Hayes and Capretz, 2015),
and (Kosek, 2016), train their models and detect con-
textual anomalies offline. This limits the applicabil-
ity of such approaches in real-time scenarios. A slid-
ing window is an efficient method to process continu-
ous time series data and detect anomalies in real-time.
This method has been used in (Lee and Lin, 2023a),
(Lee et al., 2021), (Lee and Lin, 2023b), (Nizam et al.,
2022) and (Velasco-Gallego and Lazakis, 2022). In
the sliding window method, incoming data is orga-
nized into a matrix-like structure with a predefined
number of rows, referred to as window size, and in-
cludes available features. These windows typically
have overlapping data, allowing for a smooth transi-
tion and enabling an anomaly detection model to learn
from consecutive data points. However, there is lim-
ited research on the real-time detection of contextual
anomalies based on online model learning.

To address the above-mentioned issue, this
study proposes an Unsupervised online Contextual
Anomaly Detector (UoCAD) approach for multivari-
ate time series in the context of smart homes. UoCAD
employs an unsupervised approach based on Bidirec-
tional Long Short-Term Memory (Bi-LSTM), which
is a special type of recurrent neural network.

To make the model training online, UoCAD em-
ploys an overlapping sliding window-based approach
for processing chunks of multivariate time series data
collected from multiple variables (which we call fea-
tures hereafter). Each window of data instances is
used to retrain a new Bi-LSTM model, which then in-
dividually predicts the upcoming value for each fea-

ture. Subsequently, UoCAD calculates the model’s
prediction error (Average Absolute Relative Error,
AARE for short) for each feature, and calculates a
detection threshold for each feature using all histor-
ical prediction errors associated with that particular
feature.

To allow the model to adapt to minor pattern
changes in the time series, UoCAD adopts a double-
check approach similar to the one used in (Lee and
Lin, 2023b). Whenever the AARE value associated
with any one of the features exceeds the correspond-
ing threshold, UoCAD retrains a new model using the
most recent window of instances and re-predicts the
next value of each feature. If the resulting AARE
value for each feature falls below the corresponding
threshold, no anomaly is considered because UoCAD
assumes the occurrence of a minor pattern change. On
the other hand, if any resulting AARE value exceeds
the corresponding threshold, UoCAD further deter-
mines anomalies.

In this study, we explore two criteria: individual
criterion and majority criterion. When the individ-
ual criterion is used, if the AARE value associated
with any one of the features exceeds the correspond-
ing threshold, UoCAD considers there is an anomaly
in that feature. On the other hand, when the major-
ity criterion is used, if the AARE values associated
with more than half of the features exceed their corre-
sponding thresholds, UoCAD considers that there is
an anomaly in these features.

To evaluate the performance of UoCAD, we col-
lected an air quality dataset from a smart home. In
addition, to incorporate a contextual anomaly into the
dataset, a special activity referred to as ’unintended
cooking’ was performed. During this activity, food
was left to burn on the stove with closed ventilation.
Since the timestamp of this activity does not match
with any of the routine cooking, this is considered
a contextual anomaly. We conducted extensive ex-
periments to evaluate the detection performance and
time consumption of UoCAD when it utilizes dif-
ferent sliding window sizes. The results show that
UoCAD was able to detect this contextual anomaly
across multiple sliding window sizes, but different
sizes lead to different numbers of false positives and
various detection time consumption.

The rest of this paper is arranged as follows. Sec-
tion 2 presents relevant literature and studies. In Sec-
tion 3, background information related to LSTM and
Bi-LSTM is introduced. Section 4 delves into the de-
tails of the proposed approach. Section 5 presents the
experiment details and results. Finally, Section 6 pro-
vides conclusions and discusses future directions.

UoCAD: An Unsupervised Online Contextual Anomaly Detection Approach for Multivariate Time Series from Smart Homes

87



2 RELATED WORK

This section presents the related work that covers
unsupervised real-time contextual anomaly detection
from multivariate time series using DNN-based meth-
ods. Researchers approach the topic of contextual
anomalies differently. Some studies consider pre-
defined time-bound real events as contextual anoma-
lies, while others inject synthetic contextual anoma-
lies into the data.

(Hayes and Capretz, 2015) considers the high traf-
fic count on the freeway during the Dodgers baseball
game as a contextual anomaly. The labeled anoma-
lies are detected by using univariate and multivariate
Gaussian predictors based on the k-means clustering
method and a fixed threshold value. In another study,
cyber attacks on the smart grid are referred to as con-
textual anomalies by (Kosek, 2016). The context here
is the physical location of the sensors and the day and
time of the cyber attacks. A variation of the ANN-
based method along with a fixed threshold of 0.1 is
applied to detect contextual anomalies.

According to (Pasini et al., 2022), higher or lower
sales of train tickets due to a concert or an incident on
railway tracks are examples of contextual anomalies.
These anomalies are detected by comparing context-
normalized anomaly scores with their respective naive
anomaly scores. The results are evaluated by applying
a variety of statistical, machine learning, and LSTM-
based methods. A predefined threshold used for this
study is based on the anomaly percentage.

Due to the lack of availability of time series hav-
ing actual contextual anomalies, injecting synthetic
contextual anomalies into time series is also com-
mon. For instances, authors in (Chevrot et al., 2022),
(Carmona et al., 2021), (Golmohammadi and Zaiane,
2015) and (Dai et al., 2021) injected synthetic contex-
tual anomalies into their time series. These synthetic
anomalies do not have actual meaningfulness because
they cannot be linked to any actual event that caused
them. However, in terms of data values, these anoma-
lies behave like an unusual pattern in the data. In
(Chevrot et al., 2022) synthetic contextual anomalies
are injected in the form of the longitude, latitude, and
altitude fluctuations into the air traffic control data.
A Contextual Auto Encoder (CAE) was proposed to
detect these contextual anomalies in an offline mode
with the help of a fixed threshold of mean plus three
times standard deviation.

Another study (Carmona et al., 2021) injects syn-
thetic anomalies into benchmark datasets to mimic
contextual anomalies. They assume that any time se-
ries anomaly can be considered a contextual anomaly.
In their sliding window-based approach, each win-

dow is further divided into fixed-size context (without
anomalies) and suspect (with anomalies) windows.
Temporal Convolutional Networks are applied, and an
unspecified fixed threshold is used to detect anoma-
lies.

(Wei et al., 2023) and (Yu et al., 2020) claim to
detect contextual anomalies, but they do not actually
explain the context; instead, they make assumptions
that the anomalies present in the data are contextual.
On the other hand, (Hela et al., 2018) and (Calikus
et al., 2022) use different techniques to infer contex-
tual anomalies. The former applies causal discov-
ery techniques to specify the contextual anomalies,
whereas the latter calculates context by computing
importance scores. Both of these techniques explain
the context without actually knowing the context.

Detecting anomalies in real-time and online man-
ner is crucial for anomaly detectors to be applicable in
any real-world environment. Some sliding windows-
based approaches, such as (Carmona et al., 2021),
(Nizam et al., 2022), and (Velasco-Gallego and Laza-
kis, 2022), detect the anomalies in real-time. How-
ever, they either do not handle contextual anomalies,
or they require prior anomaly information to process
anomalous and non-anomalous data separately.

A recent study (Lee and Lin, 2023b) detects
anomalies from multivariate time series using a
divide-and-conquer strategy. The proposed method
called RoLA operates in an online manner and incor-
porates the sliding window approach to process con-
tinuous time series data. RoLA incorporates parallel
processing by dividing multivariate time series into
multiple univariate time series, and separately input
each of them to an LSTM-based anomaly detector.
Subsequently, the results are aggregated using the ma-
jority rule to detect anomalies. However, RoLA fo-
cuses on detecting point and collective anomalies.

In (Raihan and Ahmed, 2023), the authors use Bi-
LSTM to learn the time-related dependencies from
wind power time series and utilize an autoencoder to
set the threshold for anomaly detection. Their pro-
posed method performs well when compared with
simple LSTM; however, their approach is not de-
signed to detect contextual anomalies. In another
study (Bhoomika et al., 2023), three variations of
LSTM, namely Bi-LSTM, Convolutional LSTM, and
Stacked LSTM, are compared for detecting point
anomalies from pressure sensor time series data. Al-
though Bi-LSTM outperforms the other models, this
approach neither considers the context of the anomaly
nor performs online model learning.

(Matar et al., 2023) utilizes the Bi-LSTM model to
detect anomalies from a seawater time series dataset
by combining the Bi-LSTM model with a multi-

IoTBDS 2024 - 9th International Conference on Internet of Things, Big Data and Security

88



head attention-based mechanism. The time series
used in this study did not originally have anomalies;
hence they injected synthetic anomalies at pre-defined
timestamps. In their approach, they employed a slid-
ing window-based approach to detect anomalies in
real-time and also provided a comparison of differ-
ent sliding window sizes. However, like other studies,
contextual anomalies are not addressed in this study
as well.

3 LSTM AND BI-LSTM

LSTM is considered an improvement over traditional
RNNs to overcome the issue of vanishing gradients,
which occurs when the model’s weights become ex-
tremely small (Raihan and Ahmed, 2023). LSTM
addresses this problem by incorporating specialized
gates that control the retention and removal of infor-
mation within the memory. As shown in Figure 1, an
LSTM memory cell consists of a forget gate, an input
gate, and an output gate.

Figure 1: The structure of an LSTM memory cell.

The forget gate is responsible for deciding which
information from the previous time step should be for-
gotten or retained in the cell’s memory. To make the
decision, the forget gate uses an activation function,
such as sigmoid, which takes both the cell’s old and
new states as input. The input gate decide which new
input data is worth saving in the memory. It utilizes
another activation function, along with weights and
biases, to compute the worthiness of the input data.
The output gate is responsible for determining the
next hidden state of the cell. Here, current states are
processed through another activation function. The
results of the activation function are passed on to the
forget gate of the next cell, which then becomes the
current cell, where the whole process is repeated.

Bi-LSTM is a variation of LSTM (Raihan and
Ahmed, 2023). Figure 2 depicts the architecture of
a Bi-LSTM model. In LSTM, the flow of data and
information is in the forward direction. However,

Bi-LSTM combines two LSTM models, which al-
low data and information to flow in both forward and
backward directions. The forward LSTM processes
the original sequences of data in a forward manner,
while the backward LSTM handles the sequences in a
reversed order. In sequential time series data, under-
standing the context of the data is crucial. Learning
data in both directions helps uncover hidden contex-
tual information within the data (Raihan and Ahmed,
2023). This is why we chose Bi-LSTM for develop-
ing our anomaly detection approach in this paper.

Figure 2: Illustration of how a Bi-LSTM model processes
data in two directions.

4 METHODOLOGY

This section explains the methodology for UoCAD. It
includes an illustration of the overall architecture and
workflow in Figure 3. As depicted in the figure, multi-
variate time series data comes from sensors deployed
within a smart home. UoCAD works in an online
manner to detect contextual anomalies using a slid-
ing window method. Figure 4 shows a small snippet
of the dataset with annotated sliding windows. Be-
fore further explaining the sliding window, we clar-
ify that the term ’instance’ refers to a collection of
data values taken from all of the sensors at a specific
timestamp. In addition, we use the term ’feature’ to
represent each variable of the multivariate time series.

If we assume that there are a total of ten instances,
and the window size is five, with every window jump-
ing exactly one instance, there will be a total of six
windows, as shown in Figure 4. Each window con-
tains four overlapping instances from the previous
window and one new instance. Since UoCAD re-
quires a certain number of instances to form a win-
dow, the processing starts when the required amount
of instances has been accumulated.

Whenever a new window of instances is available,
UoCAD goes through an online preprocessing step
where data values of each feature within the window

UoCAD: An Unsupervised Online Contextual Anomaly Detection Approach for Multivariate Time Series from Smart Homes

89



Figure 3: Overall architecture and workflow of UoCAD.

Figure 4: Snippet of data with annotated sliding windows.

are normalized to a consistent level using MinMax as
shown in Equation 1, which is a common scaling tech-
nique.

x́ =
x−min(x)

max(x)−min(x)
(1)

Here, x is the original value, and x́ is the normalized
value that is scaled to fall within the [0, 1] range. Min-
Max transforms the original values into their equiva-
lent alternatives within the given range but the dis-
tances between values are kept intact. Preprocessing
the data is an important step before feeding it into the
model because well-structured and clean data yields

better results.
This prepares the window for the next step.
As shown in Figure 3, each window is used to train

and retrain a new Bi-LSTM model; however, model
retraining depends on the current model’s prediction
effectiveness. Inspired by the design of RoLA in (Lee
and Lin, 2023b), UoCAD measures the prediction ef-
fectiveness of the current Bi-LSTM model by calcu-
lating an Average Absolute Relative Error (AARE)
value for each feature using Equation 2.

AAREM =
1
N

N

∑
i=1

|yi − ŷi

yi
| (2)

where M denotes each individual feature, yi repre-
sents the actual value of feature M at timestamp y, ŷi
represents the predicted value of feature M at times-
tamp y, and N is the sliding window size.

In addition, UoCAD does not use a fixed detec-
tion threshold like many previous studies. Instead, it
calculates a dynamic threshold for each feature using
Equation 3.

T hdM = µAAREM +3 ·σAAREM (3)
where µAAREM is the mean of all historical AARE val-
ues associated with feature M, and σAAREM is the cor-
responding standard deviation.

Once the AARE value and threshold are derived
for each feature, UoCAD decides 1) whether re-
training a new Bi-LSTM model is necessary, and
2) whether there is an anomaly or not. To allow
the model to adapt to minor pattern changes in the
time series, UoCAD adopts a double-check approach.
Whenever the AARE value associated with any one
of the features exceeds the corresponding threshold,
UoCAD retrains a new model using the most recent
window, re-predicts the next value of each feature,
and recalculates the corresponding AARE value and
threshold for each feature. If the resulting AARE val-
ues of all the features fall below the corresponding
thresholds, no anomaly is considered as UoCAD con-
siders the deviation to be just a minor pattern change.
However, if any resulting AARE value exceeds the
corresponding threshold, UoCAD further determines
anomalies.

In this paper, we explore two criteria, individ-
ual criterion, and majority criterion, for determining
anomalies. With the individual criterion, if UoCAD
detects that the AARE value associated with any fea-
ture exceeds the corresponding threshold, UoCAD
considers there is an anomaly on that feature at the
moment and notifies the user.

On the other hand, with the majority criterion, if
UoCAD detects that the AARE values associated with
more than half of the features exceeding their corre-
sponding thresholds, UoCAD considers that there is

IoTBDS 2024 - 9th International Conference on Internet of Things, Big Data and Security

90



anomaly on these features at the moment and notifies
the user.

5 EXPERIMENTS AND RESULTS

This section describes a detailed description of the
experiments conducted to evaluate UoCAD, includ-
ing details about the used dataset and the contextual
anomalies within it.

5.1 Dataset Description

To evaluate the performance of UoCAD, we deployed
an air quality sensor device called the AirThings View
Plus (AirThings, 2024) inside a smart home and uti-
lized the device to collect indoor air quality data.
The devices monitor nine different features: tempera-
ture, particle matter (PM) 10, PM 2.5, volatile organic
compounds (VOC), humidity, carbon dioxide (CO2),
pressure, noise, and light.

To capture the data, both the AirThings View
Plus (AirThings, 2024) and AirThings Hub were
placed inside the kitchen of the smart home. The
AirThings View Plus is connected to a power source
through a USB-C cable and communicates with the
AirThings Hub using SmartLink wireless technology.
The AirThings Hub uses WiFi to transmit live data to
the AirThings cloud. The AirThings cloud provides
access to the data through their dashboard, which not
only offers real-time visualization of the data but also
allows us to download the data. This enables con-
tinuous access to data values from the nine above-
mentioned features. Sensor data readings were taken
at regular intervals of 2.5 minutes. The dataset used
in this study was collected from November 2, 2023,
00:01:54 to November 3, 2023, 23:59:24, consisting
of a total of 1151 instances. Figure 5 shows the visu-
alization of the dataset and highlights the anomalous
region in red. A more detailed introduction to this re-
gion will be provided shortly.

Table 1: Summary of the AirThings dataset.

Feature Min. Max. Avg. Std. Dev.
Temp 18.79 27.89 22.0 1.97

Humidity 44.62 95.76 58.53 9.51
Pressure 968.0 981.0 974.5 4.32

CO2 635 2518 1757.5 434.54
VOC 46 721 188.30 121.65
Light 0 74 21.39 25.01
PM10 1 659 97.95 100.81
PM2.5 1 852 101.19 106.32
Sound 37 94 50.80 12.13

Table 1 shows a summary of the dataset, including

the minimum, maximum, average value, and standard
deviation for each feature. In addition, the dataset
includes timestamps and anomaly labels. All sen-
sor values are represented as real numbers, while the
timestamps are in DateTime format. The anomaly la-
bels are binary, with ’1’ denoting a normal instance
and ’0’ denoting an abnormal instance.

Figure 5: Visualization of the AirThings dataset.

To make the data well-structured and consistent,
some processing was performed on the data. For some
of the sensor values, there was a two-second lag in
sending the data to the cloud. For example, if sen-
sor values for temperature, humidity, CO2, and light
are sent to the cloud at 13:00:00, then the values for
PM2.5, PM10, VOC, and sound are sent to the cloud
at 13:00:02. The reason for this difference is prob-
ably related to the management of data communica-
tion, i.e., sending all of the data to the cloud at the
same time might take more bandwidth and causes de-
lay. Nevertheless, this discrepancy was removed by
setting the timestamp of the said instance to 13:00:01
and merging all nine sensor values to form a single in-
stance. This does not affect the time interval between
two consecutive sensor readings, which remains the
same at 2.5 minutes.

5.2 Contextual Anomaly

Recall that the focus of UoCAD is to detect contex-
tual anomalies. To understand and identify contex-
tual anomalies, it is important to know the activities
and events occurring in the vicinity of the sensors.

UoCAD: An Unsupervised Online Contextual Anomaly Detection Approach for Multivariate Time Series from Smart Homes

91



In the case of a smart home, if we do not have in-
formation about the actions taking place in the room
and the events causing fluctuations in sensor values,
it is challenging to infer contextual anomalies. Be-
cause of this, as stated earlier, many studies consider
introducing synthetic contexts into their datasets due
to the unavailability of the actual contexts. However,
the dataset used in this study was collected with the
context in mind. Therefore, the labeled contextual
anomaly in this dataset corresponds to a real event that
happened in the room.

In our dataset, there is one labeled contextual
anomaly, spanning 28 instances, as highlighted in
Figure 5. The focus of this dataset is cooking activ-
ity, which has a considerable impact on sensor values.
Several repetitive spikes shown in Figure 5 represent
the cooking activities. Cooking occurs 2-3 times a
day for breakfast, lunch, and dinner, and except for
weekends, the time of cooking is similar across the
days.

The AirThings View Plus device was placed
within a one-meter distance from the stove to record
all cooking activities. Cooking causes an increase in
temperature, PM2.5, PM10, and VOC, and a decrease
in CO2. The contextual anomaly comes from an ’un-
intended cooking’ activity. The scenario is as if some-
one left a pot with food on the stove and forgot to
turn off the stove. To create this contextual anomaly,
some vegetables were put in a pot with some water
and placed on a turned-on stove for one hour. After
the water evaporated, the vegetables started to burn,
which generated a lot of smoke. This caused fluctu-
ations in humidity, PM2.5, PM10, CO2, VOC, and
sound, the last of which was due to the triggering of
the smoke alarm.

5.3 Experimental Setup

All the experiments conducted for this study were per-
formed using Google Colab, which provides 12 GB
of RAM, 107 GB of disk space, and support of Cloud
TPU v5e. The code implementation was carried out
using the end-to-end machine learning library Ten-
sorFlow (Abadi et al., 2016) and neural network li-
brary Keras (Chollet et al., 2015). Both libraries are
Python-based and facilitate a wide range of machine
learning and deep learning tasks.

Table 2 lists the parameter settings of the Bi-
LSTM model used in UoCAD. The model employs
two LSTM layers: One is a forward, and the other is a
backward layer. Both layers utilize a total of 32 neu-
rons. The model is run for up to 50 epochs for each
sliding window that requires retraining. Early stop-
ping is used to avoid wasting unnecessary time when

the model does not learn new knowledge. The com-
monly used activation function, LeakyReLU, and the
loss function, Mean Absolute Error, are used along
with a learning rate of 0.01 and a dropout rate of 0.2.
The validation split within the model is set to 0.25,
and the batch size is set to 16.

Table 2: Bi-LSTM hyperparameters for UoCAD.

Hidden Layers 2 (forward and backward)
Number of Neurons 32
Number of Epochs 50 (with early stopping)

Learning Rate 0.01
Dropout Rate 0.2

Activation Function LeakyReLU
Loss Function Mean Absolute Error

Validation Split 0.25
Batch Size 16

To evaluate how different sliding window settings
affect the performance of UoCAD, we considered the
following eight different window sizes: 6, 12, 24, 48,
73, 96, 120, and 144. These window sizes were se-
lected based on data intervals in time series, namely
2.5 minutes. The window sizes of 6, 12, 24, 48, 72,
96, 120, 144 correspond to 15, 30, 60, 120, 180, 240,
300, 360 minutes, respectively. Taking into account
both the individual criterion and the majority crite-
rion, there are 16 (=2*8) combinations in total. In the
rest of the paper, ’Individual-6’ refers to UoCAD uti-
lizing the individual criterion and a window size of
6, ’Individual-12’ refers to UoCAD utilizing the in-
dividual criterion and a window size of 12, and so
on. Similarly, ’Majority-6’ refers to UoCAD utiliz-
ing the majority criterion and the window size of 6,
’Majority-12’ refers to UoCAD utilizing the majority
criterion and the window size of 12, and so on. When
each of these combinations were evaluated, they all
had the same hyperparameter setting, as shown in Ta-
ble 2.

5.4 Performance Metrics

Key performance metrics used to evaluate the model
results are Precision, Recall, and F1-score. Precision
and recall are calculated using the formulas given in
Equations 4 and 5, respectively. Precision is the ra-
tio between true positives and all predicted positives,
and it indicates the proportion of correctly identified
anomalies by the model. Recall is the ratio of true
positives to all actual positives. A higher recall means
that the model is better at identifying all positive in-
stances. F1-score, as given in Equation 6, is a metric
that combines both precision and recall to provide a
single measure of the performance of a model.

IoTBDS 2024 - 9th International Conference on Internet of Things, Big Data and Security

92



Precision =
TruePositives

TruePositives+FalsePositives
(4)

Recall =
TruePositives

TruePositives+FalseNegatives
(5)

F1-score = 2 · Precision ·Recall
Precision+Recall

(6)

To calculate these metrics, we combine the ap-
proaches used by (Lee et al., 2021) and (Ren et al.,
2019). To be more specific, if an anomaly that oc-
curs from time point a to time point e can be detected
within the time period from time point a− c to time
point e+ c, where c is a small number of time points,
we say the anomaly is successfully detected, as the
anomaly notification will alert the user and prompt
the necessary response. This period is called a valid
detection period. According to (Ren et al., 2019), it is
suggested to set c to 7 for minutely intervals and 3 for
hourly intervals. In our case, with the time interval of
2.5 minutes, we set c equal to 7. For example, if an
anomaly starts at time point 30 and ends at time point
60, then the valid detection period will start at time
point 23 and end at time point 67.

In addition, we evaluated the time consumption
of UoCAD in determining the anomalousness of each
instance in two situations: one when a new model re-
training is required and another when a new model
retraining is not required.

5.5 Results and Discussion

In this section, we provide the results of the experi-
ments performed for this study. Tables 3 presents the
detection results of UoCAD across different window
size settings and the two different criteria (i.e., the 16
above-mentioned combinations).

When UoCAD adopted the individual criterion,
combinations of Individual-12 and Individual-24 led
to the best F1-score of 1.0. On the other hand, with
the majority criterion, Majority-48 led to the best F1-
score of 1.0. Four features repeatedly contributed to
the anomaly detection across all the window sizes,
i.e., Temp, Humidity, CO2, and VOC. From a sim-
plistic point of view, it makes sense because these
features are known to be affected by cooking/burning
activities.

Figure 6 further presents the anomaly detection re-
sults of UoCAD. The region highlighted in red repre-
sents the contextual anomaly and the 16 line charts at
the bottom represent the detected anomalies by Uo-
CAD with the 16 different combinations. Individual-
12, Individual-24, and Majority-48 are considered
best since these are the only combinations that not

only enabled UoCAD to detect the anomalous region
but also reported no false positives. However, if we
look closely at their detected anomalies, we can see
that UoCAD with Individual-12 detected anomalies
at the very start of the anomalous region. This means
that this decision was made based on the previous 12
instances which were not anomalous.

However, with Individual-24, UoCAD reported
two occurrences of anomalies, both at the start and
end of the anomalous region. We consider Individual-
24 to be a better setting because the sensor values start
to rise around the middle of the anomalous region,
which means that anomalies reported by Individual-
12 might be coincidental. On the other hand, with
Individual-24, UoCAD detected anomalies at the end
of the anomalous region, which means this decision
was made based on the previous 24 anomalous in-
stances.

Individual-144, Majority-12, Majority-24, and
Majority-144 were the cases that led to the worst re-
sults, as they could not detect any anomalous instance.
That is why their F1-scores are all zero. Hence, we
can consider 120 as the maximum window size that
can detect some of the anomalous instances.

Table 4 shows time performance of UoCAD under
different sliding window sizes. Since the training and
prediction times for both the individual criterion and
the majority criterion are almost the same, we do not
present their time analysis separately. Time analysis
is conducted in this paper because, for any real-time
anomaly detection approach, quickly processing and
identifying anomalies in the current sliding window
is very important. The approach should be ready to
receive and process the next sliding window within
the given time, which is 2.5 minutes in our case.

In Table 4, the ’Detection Time with Training
(seconds)’ column shows the time required by Uo-
CAD to train a new model, calculate AAREs and
thresholds, predict the next instance, and anomaly in-
ference. On the other hand, the ’Detection Time with-
out Training (seconds)’ column shows the time re-
quired by UoCAD to calculate AAREs and thresh-
olds, predict the next instance, and anomaly infer-
ences. The ’Retrain count’ column, as the name sug-
gests, represents the total number of model retraining
during the processing of all the sliding windows of
the dataset. The last column refers to the number of
instances processed by UoCAD before the first model
retraining is performed.

When UoCAD utilizes the window size of 24, it
spends the shortest time, i.e., 7.98 seconds, to deter-
mine whether or not the upcoming instance is anoma-
lous when model retraining is required. Furthermore,
the index of the first retrain is 670 when UoCAD uti-

UoCAD: An Unsupervised Online Contextual Anomaly Detection Approach for Multivariate Time Series from Smart Homes

93



Figure 6: Anomaly detection results of UoCAD in different scenarios.

lizes this window size, which means that UoCAD did
not make any false positive before the anomalous re-
gion.

With the window size of 12, UoCAD took the least
amount of time to process all windows (i.e., 5.9 min-
utes); however, both the average detection time and
the number of true negatives are worse than those
achieved with the window size of 24.

The best retrain count is seen with the window
size of 144, i.e., 6, but UoCAD was unable to detect
any anomalous instance in this case. Similarly, the
window size of 6 led to the best detection time; how-
ever, it resulted in the highest retrain count, which was
caused by multiple anomalies suggested by UoCAD.

Lastly, the window sizes of 6 and 12 led to higher
average anomaly detection time (which includes the
time for model retraining) as compared to other win-
dow sizes which have a larger number of instances

per window to process. One possible reason for this is
that the training time is largely dependent on the num-
ber of epochs executed during each retrain. Since the
early stopping option is used, the epoch count varies
based on model learning. On average, the model was
run for 22-25 epochs for the window sizes 6 and 12,
as compared to other widow sizes which took 15-18
epochs.

6 CONCLUSIONS AND FUTURE
WORK

In this study, we have proposed UoCAD for detect-
ing contextual anomalies in smart-home time series in
an online manner, based on Bi-LSTM and a sliding-
window approach. The key strength of UoCAD lies

IoTBDS 2024 - 9th International Conference on Internet of Things, Big Data and Security

94



Table 3: Detection performance of UoCAD in different scenarios.

Combination Precision Recall F1-score Detected Features
Individual-6 0.84 1.0 0.91 CO2, Temp, Humidity, VOC

Individual-12 1.0 1.0 1.0 CO2, Temp, Pressure
Individual-24 1.0 1.0 1.0 Temp, Humidity, VOC
Individual-48 0.86 1.0 0.92 Temp, Humidity, CO2, VOC
Individual-72 0.86 1.0 0.92 Temp, Humidity, CO2, VOC, PM2.5, PM10
Individual-96 0.75 1.0 0.86 Temp, Humidity, CO2, VOC
Individual-120 0.66 1.0 0.80 Humidity CO2, VOC
Individual-144 0 0 0 Temp, Humidity, CO2

Majority-6 0.84 1.0 0.91 CO2, Temp, Humidity, VOC
Majority-12 0 0 0 CO2, Temp, Pressure
Majority-24 0 0 0 Temp, Humidity, VOC
Majority-48 1.0 1.0 1.0 Temp, Humidity, CO2, VOC
Majority-72 0.86 1.0 0.92 Temp, Humidity, CO2, VOC, PM2.5, PM10
Majority-96 0.75 1.0 0.86 Temp, Humidity, CO2, VOC
Majority-120 0.66 1.0 0.80 Humidity CO2, VOC
Majority-144 0 0 0 Temp, Humidity, CO2

Table 4: Time performance of UoCAD for both the individual and majority criteria.

Combinations Windows
Processed

Detection Time with
Training (seconds)

Detection Time without
Training (seconds)

Retrain
Count

Total Time
(minutes)

Index of
First

Retrain

Average Std. Dev. Average Std. Dev.

6 1147 8.35 0.95 0.20 0.12 43 12.2 12

12 1141 9.30 2.05 0.20 0.10 10 5.94 654

24 1129 7.98 0.95 0.22 0.14 23 8.2 670
48 1105 8.91 0.95 0.28 0.13 19 7.74 34

72 1081 10.58 1.46 0.42 0.46 21 8.30 207

96 1057 11.98 1.59 0.47 0.63 42 12.9 179

120 1033 11.53 1.06 0.61 0.70 24 10.24 117

144 1009 14.02 1.58 0.60 0.50 6 7.01 15

in its ability to predict the upcoming values for each
feature and calculate the corresponding prediction er-
ror values and detection thresholds, allowing for ei-
ther adapting to minor pattern changes or identify-
ing anomalies. Furthermore, we have explored two
distinct criteria, the individual and majority criteria,
for anomaly detection. The individual criterion flags
an anomaly if any feature is identified as anomalous,
while the majority criterion triggers an anomaly when
more than half of the features exhibit anomalous be-
havior.

The evaluation of UoCAD was performed us-
ing an air quality sensor dataset collected from a
smart home. A total of 16 combination scenarios
were used to assess the detection performance of Uo-
CAD. UoCAD performed best with the Individual-12,
Individual-24, and Majority-48 combinations because
they led to high Precision, Recall, and F1-score with
zero false positives. We also highlighted important
features that contributed to contextual anomaly detec-

tion. In addition, we assessed the time performance
of UoCAD. The results suggest Individual-24 outper-
forms all the other scenarios.

In the future, we will extend our proposed
methodology to make it more generalized for differ-
ent types of anomalies, including point anomalies and
sequence anomalies. Furthermore, we would like to
enhance the performance of UoCAD by further adopt-
ing the concept of incremental learning so that the
model will not be retrained from scratch.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., et al. (2016). Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467.

AirThings (2024). View plus - smart indoor air quality mon-
itor.

UoCAD: An Unsupervised Online Contextual Anomaly Detection Approach for Multivariate Time Series from Smart Homes

95



Belay, M. A., Blakseth, S. S., Rasheed, A., and Salvo Rossi,
P. (2023). Unsupervised anomaly detection for iot-
based multivariate time series: Existing solutions, per-
formance analysis and future directions. Sensors,
23(5):2844.

Bhoomika, A., Chitta, S. N. S., Laxmisetti, K., and Sirisha,
B. (2023). Time series forecasting and point anomaly
detection of sensor signals using lstm neural network
architectures. In 2023 10th International Conference
on Computing for Sustainable Global Development
(INDIACom), pages 1257–1262.

Calikus, E., Nowaczyk, S., Bouguelia, M.-R., and Dikmen,
O. (2022). Wisdom of the contexts: active ensemble
learning for contextual anomaly detection. Data Min-
ing and Knowledge Discovery, 36(6):2410–2458.

Carmona, C. U., Aubet, F.-X., Flunkert, V., and Gasthaus, J.
(2021). Neural contextual anomaly detection for time
series. arXiv preprint arXiv:2107.07702.

Chevrot, A., Vernotte, A., and Legeard, B. (2022). Cae:
Contextual auto-encoder for multivariate time-series
anomaly detection in air transportation. Computers &
Security, 116:102652.

Chollet, F. et al. (2015). Keras: deep learning library for
theano and tensorflow. 2015.

Dai, W., Liu, X., Heller, A., and Nielsen, P. S. (2021). Smart
meter data anomaly detection using variational recur-
rent autoencoders with attention. In International
Conference on Intelligent Technologies and Applica-
tions, pages 311–324. Springer.

Golmohammadi, K. and Zaiane, O. R. (2015). Time se-
ries contextual anomaly detection for detecting mar-
ket manipulation in stock market. In 2015 IEEE in-
ternational conference on data science and advanced
analytics (DSAA), pages 1–10. IEEE.

Hayes, M. A. and Capretz, M. A. (2015). Contextual
anomaly detection framework for big sensor data.
Journal of Big Data, 2(1):1–22.

Hela, S., Amel, B., and Badran, R. (2018). Early anomaly
detection in smart home: A causal association rule-
based approach. Artificial intelligence in medicine,
91:57–71.

Kosek, A. M. (2016). Contextual anomaly detection for
cyber-physical security in smart grids based on an ar-
tificial neural network model. In 2016 Joint Workshop
on Cyber-Physical Security and Resilience in Smart
Grids (CPSR-SG), pages 1–6. IEEE.

Lee, M.-C. and Lin, J.-C. (2023a). Repad2: Real-time,
lightweight, and adaptive anomaly detection for open-
ended time series. arXiv preprint arXiv:2303.00409.

Lee, M.-C. and Lin, J.-C. (2023b). Rola: A real-time online
lightweight anomaly detection system for multivariate
time series. arXiv preprint arXiv:2305.16509.

Lee, M.-C., Lin, J.-C., and Gran, E. G. (2021). Salad:
Self-adaptive lightweight anomaly detection for real-
time recurrent time series. In 2021 IEEE 45th An-
nual Computers, Software, and Applications Confer-
ence (COMPSAC), pages 344–349. IEEE.

Li, G. and Jung, J. J. (2023). Deep learning for anomaly de-
tection in multivariate time series: Approaches, appli-

cations, and challenges. Information Fusion, 91:93–
102.

Matar, M., Xia, T., Huguenard, K., Huston, D., and Wshah,
S. (2023). Multi-head attention based bi-lstm for
anomaly detection in multivariate time-series of wsn.
In 2023 IEEE 5th International Conference on Artifi-
cial Intelligence Circuits and Systems (AICAS), pages
1–5.

Nizam, H., Zafar, S., Lv, Z., Wang, F., and Hu, X. (2022).
Real-time deep anomaly detection framework for mul-
tivariate time-series data in industrial iot. IEEE Sen-
sors Journal, 22(23):22836–22849.

Pasini, K., Khouadjia, M., Samé, A., Trépanier, M., and
Oukhellou, L. (2022). Contextual anomaly detection
on time series: A case study of metro ridership analy-
sis. Neural Computing and Applications, pages 1–25.

Raihan, A. S. and Ahmed, I. (2023). A bi-lstm au-
toencoder framework for anomaly detection–a case
study of a wind power dataset. arXiv preprint
arXiv:2303.09703.

Ren, H., Xu, B., Wang, Y., Yi, C., Huang, C., Kou, X., Xing,
T., Yang, M., Tong, J., and Zhang, Q. (2019). Time-
series anomaly detection service at microsoft. In Pro-
ceedings of the 25th ACM SIGKDD international con-
ference on knowledge discovery & data mining, pages
3009–3017.

Velasco-Gallego, C. and Lazakis, I. (2022). Radis: A real-
time anomaly detection intelligent system for fault di-
agnosis of marine machinery. Expert Systems with Ap-
plications, 204:117634.

Wei, Y., Jang-Jaccard, J., Xu, W., Sabrina, F., Camtepe,
S., and Boulic, M. (2023). Lstm-autoencoder-based
anomaly detection for indoor air quality time-series
data. IEEE Sensors Journal, 23(4):3787–3800.

Yu, X., Lu, H., Yang, X., Chen, Y., Song, H., Li, J., and Shi,
W. (2020). An adaptive method based on contextual
anomaly detection in internet of things through wire-
less sensor networks. International Journal of Dis-
tributed Sensor Networks, 16(5):1550147720920478.

IoTBDS 2024 - 9th International Conference on Internet of Things, Big Data and Security

96


