
MPED-SCRUM: An Automated Decision-Making Framework Based
Measurement for Managing Requirement Change Within the

SCRUM Process

Hela Hakim1, Asma Sellami2 and Hanêne Ben-Abdallah3
1University of Sfax, Faculty of Economics and Management of Sfax, MIR@CL Laboratory, Tunisia

2University of Sfax, Higher Institute of Computer Science and Multimedia, MIR@CL Laboratory, Tunisia
3Higher Colleges of Technology, CIS Faculty, Abu Dhabi, U.A.E.

Keywords: Agile, Prioritizing, Functional Change, Structural Change, Functional Size, Structural Size, COSMIC FSM
Method, Structural Size Measurement SSM Method, Scrum, MPED-SCRUM Framework.

Abstract: In Scrum-based projects, delivering precise assessments of requirement changes to stakeholders holds
paramount importance for effective software project management. Accurate evaluations empower
stakeholders to make informed decisions, preventing costly misunderstandings and fostering shared
expectations. The integration of Software Size measurements has significantly contributed to achieving this
goal. This paper endeavors to automatically enhance the accuracy of evaluating requirement changes and
prioritizing tasks within the Scrum process by leveraging the standardized COSMIC FSM (ISO 19761) along
with its extended Structural Size Measurement method. The proposed automated framework, named 'MPED-
SCRUM,' stems from the automation of the requirement change evaluation process based on Measuring,
Prioritizing, Evaluating and Deciding on requirement change, incorporating both functional and structural
change. MPED-SCRUM proves beneficial not only for the Administrator but also for the Scrum Master and
Product Owner in effectively managing team members (Module 1). Furthermore, the framework aids both the
Scrum Master/Product Owner and development teams in efficiently handling sprint backlogs and user stories
(Module 2). Lastly, MPED-SCRUM facilitates the measurement, prioritization, evaluation and decisions
making of requirement change requests at two granularity levels – functional and structural. This capability
empowers stakeholders to make informed decisions regarding the acceptance, deferral, or denial of a change
request (Module 3).

1 INTRODUCTION

Accurate evaluation of requirements changes is a
crucial aspect of managing software projects. Agile
methodologies, such as Scrum and Kanban, were
specifically designed to address the challenge of
managing projects with frequent changes.

The 14th Annual State of Agile Report shows that
Agile adoption has increased by 33% in response to
changing market. 60% of respondents claimed that
Agile has assisted their speed to market. Agile has
proven to be one of the methodologies capable of
solving complex issues and adapting rapidly to
business changes in the era of agility and rapid
transformation by staying close to the customers
(Abran, 2015).

Despite the use of Agile methodology, some
problems persist. In software project, the scope is

considered as one aspect that can directly affect the
budget and timing (Abran, 2015). In fact, the project
success is most often based on cost-time tradeoffs.
However, the scope seems to be one of the most
neglected domains in agile and conventional. Agile is
recognized for its rapid improvement as well as its
willingness to embrace change.

Every change needs to be carefully evaluated
because it can affect the project's time and budget.
More clearly the scope is the more tendance to the
project success.

This paper aims to study the challenges in
evaluating and decision-making on requirements
changes automatically based on change functional
and structural sizes.

Like levels in agile methodology (in scope
particularly), requirement change also have different
levels of details. Some authors make the difference
between technical change requirements and

Hakim, H., Sellami, A. and Ben-Abdallah, H.
MPED-SCRUM: An Automated Decision-Making Framework Based Measurement for Managing Requirement Change Within the SCRUM Process.
DOI: 10.5220/0012696500003687
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 571-581
ISBN: 978-989-758-696-5; ISSN: 2184-4895
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

571

functional change requirements levels (Haoues et al,
2018) (Stålhane et al., 2014), while we make the
difference between functional change and structural
change levels in our previous works (Hakim et al.,
2020). Indeed, the structural level was proposed by
(Sellami et al., 2015) to highlight the control
structures of functional requirements/changes. That
means that detailed functional requirements can be
measured through their control structures when
available.

An efficient requirement change management is
paramount. Such management must be based on an
in-depth requirement change evaluation process,
which in turn requires a measure-driven process
(Hakim et al, 2020). The change evaluation process is
composed of a set of activities: (i) measuring the
requested change that is expressed in the form of a
user story (US) at both functional and structural
levels, (ii) prioritizing the measured US,
(iii)evaluating the measured US, and finally (iiii)
making decisions. In our previous work (Hakim et al,
2020), we proposed an in-depth requirement change
evaluation process to support the requirements
change at two levels of granularity (functional and
structural levels). This paper aims to improve and
extends the previous work of (Hakim et al., 2020) by
proposing an automated framework named ‘MPED-
SCRUM’.

The ‘MPED-SCRUM’ automated framework can
be used for managing changes in requirements at
different levels of granularity within the Scrum
Process. In accordance with our findings (Hakim et
al., 2020), this automated framework helps in
measuring, prioritizing, and evaluating requirements
changes using functional and structural size
measurements. It also covers members’ management,
sprint change management, user stories change
management. The users of this framework could be
the product owner, the scrum master, and finally the
development teams (analyst, designers, developers,
testers). Each team member has a different role so that
the designers/developers and testers are the most
involved users to our framework.

The rest of this paper is organized as follows.
Section 2 provides an overview of software size
measurement methods and the SCRUM framework.
Section 3 discusses the related work. Section 4
provides our proposed automated framework
‘MPED-SCRUM’ used for managing requirements
changes at functional and structural levels, which is
based on the in-depth requirement change evaluation
process. Finally, Section 5 summarizes the presented
work and outlines some of its possible extensions.

2 BACKGROUND

This section describes an overview of the COSMIC
FSM method, the SSM method, the Scrum, and
finally the prioritizing techniques in the Agile
environment.

2.1 COSMIC FSM Method

The Common Software Measurement International
Consortium (COSMIC) is an international FSM
method designed to be independent of any
implementation decisions embedded in the
operational artifacts of the software to be measured.

The COSMIC sizing process for measuring the
functional requirements size of the software is
composed of three phases: the measurement strategy
phase, the mapping phase, and the measurement phase
(COSMIC v5.0. 2021). The COSMIC sizing is based
on measuring functional processes (FP). Each FP is
composed of a set of functional sub-processes that may
be either a data movement or a data manipulation.
There are four types of data movements: Entry (E),
eXit (X), Read (R), and Write (W).

• An Entry moves a data group into a FP from a
functional user.

• An eXit moves a data group out of a FP to a
functional user.

• A Write moves a data group from a FP
to persistent storage.

• A Read moves a data group from persistent
storage to a FP.

A data group is a set of attributes that describes
one object of interest. The COSMIC measurement
unit is one data movement of one data group indicated
as one CFP (COSMIC Function Point). The size of a
functional process is determined by the sum of the
data movements it includes. The functional size of a
functional process, noted by FS(FP), is given by
Equation 1 .

FS(FP)=∑FS(Entries)+∑FS(eXits)+ (1)
∑FS(Reads)+∑FS(Writes)

COSMIC defines a functional change as “any
combination of additions of data movements or of
modifications or deletions of existing data
movements” (COSMIC v5.0, 2021). The size of a
functional change presenting in a functional process
is the sum of its data movements that have been
added, deleted, and modified. The software functional
size after the change is the sum of the sizes of all the
added data movements minus the size of all the
removed data movements.

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

572

2.2 The Structural Size Measurement
SSM Method

As an extension to the COSMIC FSM method, the
Structural Size Measurement (SSM) method is a
measurement method essentiality designed to address
the challenge of more detailed measures to quantify
data manipulation in a software product. In an
analogical way to the COSMIC, the process for
measuring the SSM method is composed of three
phases: Measurement strategy phase, mapping phase,
and Measurement phase. The SSM was proposed by
(Sellami et al., 2015) for UML sequence diagrams. It
was designed by following the measurement process
recommended by (Abran, 2010).

The proposed Structural Size Measurement is
applied to the combined fragments of a sequence
diagram to measure its Structural Size (SS). The SS
also called control structural size to refer to the
structural size of both Conditional Control Structures
(CCS) and Iterative Control Structures (ICS),
described respectively through the alt, opt, and loop
constructs. The SS of a sequence diagram is defined
at a fine level of granularity (i.e., the size of the flow
graph of its control structures).

The use of SS requires the identification of two
types of data manipulations depending on the
structure type:

• CCS (alt and opt combined fragments in the
flow graph) and/or

• ICS (loop combined fragment in the flow
graph).

Each data manipulation is equivalent to one CSM
(Control Structure Manipulation) unit. The sequence
structural size is computed by adding all data
manipulations identified for every flow graph.

The SSM defines a Structural change as “any
combination of additions of data manipulation or of
modifications or deletions of existing data
manipulation” (Hakim et al., 2017). The size of a
Structural change within a functional process
(including structural aspect) is the sum of its data
manipulations that have been added, deleted, and
modified. The software structural size after the
change is the sum of the sizes of all the added data
manipulations minus the size of all the removed data
manipulations.

2.3 Overview of the Scrum Process

Scrum process is a framework for a complete project
management method developed and sustained by
Scrum creators: Ken Schwaber and Jeff Sutherland

(Schwaber et al., 2004). It allows the management of
the development of complex applications. It involves
Scrum Teams and their associated roles, events,
artifacts, and rules. Each component within this
framework serves a specific purpose and is essential
to Scrum’s success and usage. Using Scrum a better
communication across the development team and the
product owner was observed. For a successful Scrum
project, the development team must learn how to
manage themselves efficiently. In addition, the
product owner must be actively involved in every
single phase of the software development (Schwaber
et al., 2004). Scrum appears to work better with teams
of 5 to 9 people, with large projects being typically
handled by several scrum teams (Schwaber et al.,
2004).

Nevertheless, some companies adapt Scrum for
large- scale projects (Dikert et al., 2016). The Scrum
process starts with a high-level definition of the
project scope (requirements). Scrum uses the product
backlog as a list of stories created by the product
owners based on the initial requirements as described
by the stakeholders and customers. The number of
stories may increase or decrease based on decisions
made throughout the software development process.
The list of stories is prioritized by the product owner
to be used as an iterative input for different sprints
(Schwaber et al., 2004). Thus, the active involvement
of the product owner is mandatory to explain,
elucidate the next iteration that should be
implemented, and evaluate/test the work done.

3 RELATED WORK

Researchers and practitioners agree that agile
development provides a rapid response methodology
to handle requirements changes (Abran, 2015). Thus,
many research studies have addressed the issues of
managing requirement changes in the Scrum process.

In Scrum, a change priority in the backlog is the
role of the Product Owner. While the product owner
selects what items are included in the product
backlog, the development team has the final say on
how the items are executed in the sprint backlog. This
implies that the items of the backlog are ordered by
priority. The issue of prioritizing and managing items
(or changes) and their automation has received an
increased interest in recent years. This section
presents the works related to both exploratory and
experimentally change management processes.

For instance, Drury-Grogan and O’Dwyer
explored the decision-making in Scrum process and
identified the factors that may influence the decisions

MPED-SCRUM: An Automated Decision-Making Framework Based Measurement for Managing Requirement Change Within the SCRUM
Process

573

made during the sprint planning and daily Scrum
meetings (Drury-Grogan et al., 2013). In practice,
Scrum teams follow sometimes a three-step process
for making-decisions during the sprint planning and
daily Scrum meetings: problem identification,
solution collection, and selection of the best
alternative. Decisions are often made in a
collaborative manner that may be influenced by three
main factors, according to (Drury-Grogan et al.,

Table 1: Summary of the exploratory and experimentally
proposals, focusing on managing changes in Scrum.

Study Focus Findings
(Commey
ne et
al.,2016)

Evaluation of teams’
productivity using
COSMIC

COSMIC is more
reliable in
estimating models
with much smaller
variances

(Alsalemi
and Yeoh,
2015)

Product backlog
change management
And requirement
traceability

Lack of
requirement change
traceability

(Sellami et
al., 2018)

Evaluation of
functional changes in
Scrum process using
COSMIC

Quantify FC request
to make appropriate
decisions

(Stålhane
et al.,
2014)

Impact of technical
changes in safety
requirements

A supporting tool
that ensures the
validity of safety

(Lloyd et
al., 2017)

Requirements change
management in
distributed agile
development

A supporting tool

(Sellami et
al., 2018)

Orchestrating
Functional Change
Decisions in scrum
Process using
COSMIC

Tools to Quantify FC
request to make
appropriate decisions

(Hakim et
al., 2020)

In-Depth
Requirements
Changes Evaluation
Process based on
functional and
Structural size
methods

Quantify RC at
functional and
structural levels to
help in making
accurate decisions

Our study An automated
framework based on
functional and
structural sizes to
manage
requirements’
changes at functional
and structural levels
within the SCRUM

Automating the
Process of
managing changes in
SCRUM using
functional and
structural measures

2013): Sprint duration, experience, and resource
availability.

However, the final decisions are usually made
based on judgment according to the team members’
experiences. Although experts’ judgment is much
closer to reality, it is often considered as subjective
(Abran, 2015). It is less transparent compared to any
other techniques and depends mainly on the experts’
skills. Consequently, it is important to use an
objective change evaluation process that is based on
the standardized COSMIC FSM method and its
extension SSM method. Measurement results should
be accurate, and cover the functional and structural
levels sizes.

In addition, there are many studies that addressed
the issues of managing requirements changes
automatically not only in Scrum process but also in
other areas of development (such as distributed agile)
and its exploitation beyond its traditional use. For
instance, in agility many types of problems have been
identified. In (Lloyd et al., 2017), the authors
addressed the problem of requirements changes
during the software development in distributed agile
development. They proposed a supporting tool to help
managing requirements changes in distributed agile
development. On the other hand, (Stålhane et al.,
2014) proposed to analyze the impact of technical
change requests. They focused on the safety
requirements. Regarding the use of functionality
measures in agile project, (Commeyne et al, 2016)
proved that the use of ISO standards to measure the
size of agile projects is mandatory. This study
demonstrated the reliability of COSMIC in estimating
the size, and therefore the effort required to
accomplish the defined requirements. (Sellami et al.,
2018) proposed a COSMIC-based tool for evaluating
functional changes within the Scrum process. This
tool assists the decision-makers to decide whether to
accept, deny or defer a given functional change
request. To provide with an accurate evaluation of
changes, we proposed an in- depth Requirements
Change Evaluation Process Using Functional and
Structural Size Measures in the Context of Agile
Software Development (Hakim et al., 2020). This
process takes into account the different levels of
requirements/ changes that impact the success of their
management and the whole project. It means that,
when changes are evaluated at different levels of
details (functional and structural levels), appropriate
decisions can be made by stakeholders.

The findings proposed by (Commeyne et
al.,2016), (Alsalemi and Yeoh, 2015), (Sellami et al.,
2018), and (Hakim et al., 2020)) are exploratory
researches, while the findings proposed by (Lloyd et

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

574

al., 2017), (Stålhane et al., 2014), (Sellami et al.,
2018), and our study) are experimental researches
(See Table 1).

From Table 1, we noticed that some studies
focused on functional changes (cf., (Lloyd, 2017)),
while other studies focused on technical changes (cf.,
(Stålhane et al., 2014). However, changes in these
works have been always considered as new
requirements. In addition, none of the previous
studies used a requirements changes evaluation
process. This is due to the lack of detailed
measurements and poorly defined scope (or
requirements change requests). However, it is
important to evaluate requirements’ changes at two
levels of details and provide useful and accurate
information for the right audience (e.g., the product
owner or the development team). This will certainly
help during the software maintenance as well as for
new software development. In practice, usually,
Scrum teams do not allow changes in the middle of
iteration (sprint), since developers may already have
preceded the implementation. In fact, practitioners
consider that changes during an ongoing sprint may
introduce defects. However, other authors (Sellami et
al., 2018) believe that some changes must be
authorized during an ongoing sprint. For example, a
change request that proposes the deletion of a user
story selected in the current sprint must be authorized.
Since it is useless to implement a user story that will
be deleted in the next sprint. Nevertheless, changes
introduced during an ongoing sprint need
prioritization. Indeed (Sellami et al., 2018) extended
their work and proposes tools to support the change
management using the COSMIC method at functional
level. In this paper, we believe that an automated
framework to support requirement change
requirements at functional and structural levels
respectively based on COSMIC and SSM
measurement methods within the Scrum process will
be a very interesting challenge.

4 AUTOMATED FRAMEWORK
FOR MANAGING
REQUIREMENTS CHANGES

To manage requirements changes at both functional
and structural levels we propose an automated
framework ‘MPED-SCRUM’ which is simple and
efficient. This framework can be used to manage
members profiles, manage sprints (Add, modify),
manage user stories (add, delete, modify), evaluate
changes through an in-depth requirement change

evaluation process based on functional and structural
size measurement methods.

Figure 1 presents our proposed automated
framework ‘MPED-SCRUM’ at a high level of
abstraction. MPED- SCRUM can be used by an
Admin, Product Owner, Scrum Master, and the
development teams (including analyst, designer,
developers, and testers).

Figure 1: The proposed automated framework.

This framework is composed of five parts that are
categorized into three modules as follows.

Module1: Members Management
1. Admin Authentication
2. Members Authentication Module2: Sprint

/User stories change Management
3. Sprint Management
4. User stories Management Module3:

Requirement Change Evaluation
5. Measuring, Prioritizing; Evaluating, and

Deciding on requirement change

4.1 Module1: Members Management

Once the roles of each member are defined,
authentication and authorization are required for a
minimum level of security, while dealing with access
to any sensitive data. The lack of security typically
results in conflict issues, often legal claims between
the stakeholders and product owner, and ultimately, a
dissatisfied customer. The UML use case diagram
defines the behavior, conditions, and constraints the
first module (see Figure 2).

Figure 2: Members management (Register) use cases.

MPED-SCRUM: An Automated Decision-Making Framework Based Measurement for Managing Requirement Change Within the SCRUM
Process

575

The users of this module are:
 Admin: is the person who connects through the

MPED-SCRUM account.
 Scrum Master/product Owner: is a person

having a limited access to the application
components.

 Development Teams: is a group of persons
composed of analysts, developers and testers
having a very limited access to the application
components.

Note that all the participants (Scrum
Master/product Owner and the development team)
are a generation of the member actor.

Authentication is the process of validating the
identity of a registered user attempting to get access
to the application. Besides, MPED-SCRUM tool
offers the following functionality: the user who
registers directly from the home page, he is expected
to be an Admin. After authentication, the Admin can
manage information about each team member
(developers, analysts, designers, Project
Managers/Product Owner, Testers, etc.) in the
member component.

• Admin Authentication
From the home page, user can register by filling the
Register form (See Figure 3).

Figure 3: Admin Registration form.

The user will be redirected to the Admin profile (See
Figure 4).

Figure 4: Admin Profile view.

Once the user ‘Admin’ is authenticated, he has the
right to access to all the application components.

Authorization here is about deciding whether this user
is permitted to perform a given action on a specific
resource.

• Member Authentication
Recall that a project member may be a Scrum
Master/Product Owner or a development teams
(analyst, designer, developers, and testers).
Member’s authentication starting by sending a
registration form via email. To achieve this goal, we
used MailTrap to test the emails that admin want to
send it to the others members. The member just needs
to enter the member email and click “Send
Registration Link” button (See Figure 5 and Figure
6).

Figure 5: The member email.

Figure 6: The send Registration link.

Figure 7: The Member registration Form.

Once the Member clicks the Register button, a
registration form will be opened (Figure 8).

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

576

Figure 8: The Member Profile View.

Thereafter, the user will be registered as a team
member (analyst, designer, developer, testers), and
the Admin can change his role later to Scrum Master
/Product Owner or another role (See Figures 7 and 8).

After the member’s registration, the admin will
get the team members list, and he/she can manage
his/her members easily (See Figure 9).

Figure 9: The members list example.

4.2 Module 2: Sprint /User Stories
Change Management

In this second module, we focus on implementing the
sprint management (Add/Modify the sprint backlog)
and the user story management (Add the user stories
at functional and structural levels, add/modify/delete
users stories, and create the sprint backlog)

Figure 10 presents the use cases of this module
and its corresponding actors.

Figure 10: Sprint/users stories change management use
cases Diagram.

• Sprint/ User Stories Change
Management

Recall that the “user story format” of this work is
based on a detailed textual description deduced from
our previous work (Hakim et al., 2020).

The detailed textual description of a user story
highlights both the functional and structural aspects
of a feature.

The functional aspect of a feature is presented in
Figure 11.

Regarding the User stories format, an additional
form fields are required. Figure 11 presents the global
format of the US.

Figure 11: The global format of the US.

To add some parts to this form dynamically, we
used Angular 7 FormArray API, such as creating
nested forms. Figure 12 presents the structure of the
data model form.

Figure 12: The structure of the data model form.

4.3 Module 3: Requirement Change
Evaluation

In this third module, we focus on the main part of our
automated framework in which we implement the
Requirement Change Evaluation process. This process
is based on implementing the Measurement,
Prioritizing and Evaluation and Deciding on RC within
scrum (That is why it's called the MPED-SCRUM).

MPED-SCRUM: An Automated Decision-Making Framework Based Measurement for Managing Requirement Change Within the SCRUM
Process

577

Figure 13 presents the different use cases of this
module. Here, the actor is the development team
(analysts, designers, developers, and testers).

Figure 13: Requirement Change Evaluation Use Case
Diagram.

4.3.1 Measuring Users Stories

Figure 14 presents a screenshot on measuring users
stories (with refinement formats) at functional level
and structural level

Figure 14: User Story Add Form and resultList.

4.3.2 Prioritizing Users Stories

Automating the user story size at different levels of
granularity (functional and structural levels) is a
critical task of the evaluation part. Thus, using
MPED-SCRUM, the users story size can be generated
when a requirement change occurs. An automated
prioritization process can allow members to easily
manage, monitor, and update priorities as user stories

are completed, modified, deleted, or new users stories
are added (i.e., when requirements changes are
requested and can be expressed in the form of user
stories at functional and structural levels).Algorithm
1 presents how to prioritize the requirements changes
using both the COSMIC functional and structural size
measurement methods. Each Functional change is
evaluated using the COSMIC FSM method, while
each Structural change is evaluated using SSM
method.

Four basic values (Priority, Importance, CFP, and
CSM) are used for running ‘prioritizing user stories’
algorithm, and therefore implementing the decision-
making.

Aim: Prioritizing user stories taking into account the
following inputs: P(US), I(US), FS(US),and SS(US)
Inputs

P(US): The Priority of a User Story (US).
 I(US): The Importance of a US.
 FS(US): The Functional Size of a US.
 SS(US): The Structural Size of a US.

Outputs:
User stories are organized by taking into account
their priorities, importance, and their functional and
structural sizes (Hakim et al, 2020).

If P(USi) != P(USj) then
Select the more prior user story
(US);

Else if P(USi) == P(USj) & I(USi) !=
I(USj) then Select the most
important (Essential) US ;

Else if P(USi) == P(USj) & I(USi) ==
I(USj) & FS(USi) != FS(USj) then

Select the user story with minimum
functional size;

Else if P(USi) == P(USj) & I(USi) ==
I(USj) & FS(USi) == FS(USj) & SS(USi)
!= SS(USj) then

Select the user story with minimum
Structural size;

Else
Select the user story that requires
less demand on resources (time or
budget);

End
Algorithm 1: Prioritizing user stories.

4.3.3 Evaluating the Requirement Change

The evaluation process focuses on how to evaluate
the status of a requirement change request. Table 4, 5,
and 6 present the FC, the SC, and RC (both of FC and

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

578

SC) requests evaluations, respectively. This
evaluation helps therefore in making appropriate
decisions about whether to accept, defer, or deny a
change request. Algorithm 2 presented below is the
proposed algorithm to make such decision.

Table 2: Evaluating a FC request when USc status =
undone/done (Hakim et al, 2020).

Low Moderate High

FS(FC)=1CFP 2CFP≤FS(FC)≤FS(USun
done/USdone)

FS(FC)>FS(USundone
/USdone)

Table 3: Evaluating a SC request when USc status =
undone/done. (Hakim et al, 2020).

Low Moderate High
SS(SC)=1CSM 2CSM≤SS(SC)≤SS(US

undone/USdone)
SS(SC)> SS(USundone
/USdone)

Table 4: Evaluating RC (FC and SC) request when USc
status = undone/done (Hakim et al, 2020).

Low Moderate High
SS(SC)=1CS
M
&&
FS(FC)=1 CFP

2CFP<FS(FC)<FS(USu
ndone/done)&&
2CSM≤SS(SC)≤SS(US
undone/USdone)

FS(FC)>FS(USundone/
done) &&
SS(SC)>SS(USundone/

ne)

4.3.4 Deciding on the Requirement Change

The assessment of software size at different level of
granularity serves not only for effort/cost estimations
but also for decision-making, such as budgetary and
portfolio decisions (Abran, 2010). In this section, we
present in algor ithm 2 below a set of actions for
decision-makers (e.g., product owner/ scrum master,
development team) to aid in making decisions
regarding a Functional Change (FC) request
respectively a Structural Change (SC). It is essential
to note that an FC respectively an SC may affect an
ongoing sprint or one that has already been
implemented. The decisions are as follows:

• Accept the FC request and SC request,
signifying the implementation of the RC in the
current sprint.

• Deny the FC request and SC request, an action
taken only if the RC proposes a new software,
necessitating a restart of development from the
beginning.

• Defer the FC request and SC request to the next
sprint, implying acceptance of the RC and its
implementation in the subsequent sprint rather
than the current one.

Aim: Deciding on a FC and SC in an ongoing
sprint Require: FS(FC), SS(SC),
FS(USundone), SS(USundone),
FS(USc), and
SS(USc).
BEGIN
If FS(FC)>FS(USundone)

&&SS(SC)>SS(USundone)then
Defer the FC to the next sprint;
Defer the SS to the next sprint;
Delete (USc)i from the ongoing
sprint; Add (USc)f to the next sprint;

Else if FS(FC)
<FS(USundone)&&SS(SC) <
SS(USundone) then
If FS(FC)>FS(USc)i && SS(SC)>SS(USc)i
then

Defer the FC to the next sprint;
Defer the SC to the next sprint;
Delete (USc)i from the current sprint;
Add (USc)f to the next sprint;

Else if FS(FC)<FS(USc)&& SS(SC)<SS(USc)
then
If FS(USc)f>FS(USc)i && SS(USc)f>SS(USc)i
then
If Remainingtime(USc)f
<requiredtime&&teamprogress= early then

Accept the FC;
Accept the SC;
Delete(USc)i from the current sprint;
Add(USc)f to the current sprint;

 Else
Defer the FC;
Defer the SC; Delete (USc)i
Add (USc)f to the next sprint;

Else if FS(USc)f<FS(USc)i &&SS(USc)f<SS(USc)i
then

Accept the FC; Accept the SC;
Delete(USc)i from the current sprint; Add
(USc)f to the current sprint;
Else if FS(FC) == 1 CFP &&SS(SC) == 1 CSM
then

Accept the FC;
Accept the SC;
Delete (USc)i from the current sprint;
Add (USc)f to the current sprint;

End
Algorithm 2: Deciding on a RC.

Algorithm 2: Deciding on a RC based FC and SC in an
ongoing sprint.

5 CONCLUSION

In this study, we investigated the problem of
automatically managing and evaluating changes

MPED-SCRUM: An Automated Decision-Making Framework Based Measurement for Managing Requirement Change Within the SCRUM
Process

579

within the SCRUM process. The automated MPED-
SCRUM framework includes three modules based on
the in-depth change evaluation process that support
the requirement change evaluation at functional and
structural levels. The change evaluation process is
based on measuring the size of requirements changes
requests that are expressed in the form of user stories
at both functional and structural levels. The
knowledge of the change size helps in prioritizing and
evaluating changes, and finally making the right
decision about accept, deny or delete such changes. It
can be used by Scrum master, development teams to
meet clients’ changes requests at different levels of
details. For further works, we deploy this framework
particularly the second module as an API to be
integrated into the most famous automated
Framework like JIRA or any other developed
solutions for software organizations. Futures works
will be focused in using the artificial intelligence as
the Smartest automated tool for Decision Makers.

REFERENCES

Abran, A. (2010). Software Metrics and Software Metro-
logy. IEEE Computer Society.

Abran, A. (2015). Software Project Estimation: The Fun-
damentals for Providing High Quality Information to
Decision Makers. Wiley-IEEE Computer Society Pr,
1st edition.

Abdalhamid, S. and Mishra, A., 2017. Adopting of agile
methods in software development organizations:
systematic mapping. TEM Journal, 6(4), p.817

Alsalemi, A. M. and Yeoh, E. T. (2015). A survey on
product backlog change management and require- ment
traceability in agile (Scrum). In the 9th Malay- sian
Software Engineering Conference (MySEC), pages
189–194.

Ambler, S. W. (2014). User Stories: An Agile Introduction.
Bano, M., Imtiaz, S., Ikram, N., Niazi, M., and Usman,
M. (2012).

Causes of requirement change - a systematic literature
review. In EASE 2012.

Berardi E., Buglione L., S. L. S. C. T. S. (2011). Guideline
for the use of cosmic fsm to manage agile projects, v1.0.

Schwaber, K. (2004). Agile Project Management with
Scrum (Developer Best Practices). Microsoft Press; 1
edition.

Cohn, M. (2004). User Stories Applied: For Agile Software
Development. Addison-Wesley Professional.

Commeyne, C., Abran, A., and Djouab, R. (2016). Effort
Estimation with Story Points and COSMIC Function
Points: An Industry Case Study.

COSMIC (2017). The COSMIC Functional Size Measure-
ment Method, Version 4.0.2, Measurement Manual.

COSMIC (2020). The COSMIC Functional Size Measure-
ment Method, Version 5.0,Announcement of Version

5.0 of the COSMIC Measurement Manual – March 31,
2020

Drury-Grogan, M., O’Dwyer, O.: An investigation of the
decision-making processin agile teams. Int. J. Inf.
Technol. Decis. Mak. 12(6), 1097–1120 (2013)

Desharnais, J. M., Kocaturk, B., and Abran, A. (2011).
Using the cosmic method to evaluate the quality of the
documentation of agile user stories. In 2011Joint
Conference of the 21st International Workshop on
Software Measurement and the 6th International
Conference on Software Process and Product
Measurement, pages269–272.

Dikert, K., Paasivaara, M., and Lassenius, C. (2016).
Challenges and success factors for large-scale agile
transformations. Journal of Systems and Software,
119(C):87–108.

Fairley,R.E.(2009).Managing andLeadingSoftwarePro-
jects.Wiley-IEEE Computer SocietyPr.

Furtado, F., Zisman, A.: Trace++ (2016): a traceability
approach to support transitioningto agile software
engineering. In: The 24th International Requirements
Engineering Conference (RE), pp. 66–75.

Gilb, T. (2018). Why agile product development systemati-
cally fails, and what to do about it!

Haoues, M., Sellami, A., and Ben-Abdallah, H. (2017).
Functional change impact analysis in use cases: An
approach based on COSMIC functional size measu-
rement. Science of Computer Programming, Special
IssueonAdvancesinSoftwareMeasurement,135:88–
104.

Hakim, H,.Sellami, A., and Ben-Abdallah, H. (2020). An
in- Depth Requirements Change Evaluation Process
using Functional and Structural Size Measures in the
Context of Agile Software Development. In ICSOFT
(pp. 361-375).

Hamed, A.M.M and Abushama, H.Popular Agile
Approaches in Software Development: Review and
Analysis. Computing Electrical and Electronics
Engineering (ICCEEE), 2013 International Conference
on (2013), pp. 160-166.

Download the official Scrum GuideLloyd, D., Moawad, R.,
and Kadry, M. (2017). A supporting tool for
requirements change management in dis- tribute agile
development. Future Computing and Informatics
Journal,2(1):1–9.

Schwaber, K. (2004). Agile Project Management with
Scrum (Developer Best Practices). Microsoft Press;
1edition.

Sellami, A., Hakim, H., Abran, A., and Ben-Abdallah, H.
(2015). A measurement method for sizing the structure
of UML sequence diagrams. Information & Software
Technology, 59:222–232.

Sellami, A., Haoues, M., Borchani, N., & Bouassida, N.
(2018, July). Guiding the Functional Change Decisions
in Agile Project: An Empirical Evaluation. In
International Conference on Software Technologies
(pp. 327-348). Springer, Cham.

Sellami, A., Haoues, M., Borchani, N., & Bouassida, N.
Orchestrating Functional Change Decisions in Scrum

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

580

Process using COSMIC FSM Method. ICSOFT 2018:
516-527

Sellami, A., Haoues, M., Borchani, N., & Bouassida,
N.Towards an Assessment Tool for Controlling
Functional Changes in Scrum Process. IWSM-
Mensura 2018: 34-47

Shalinka Jayatilleke, Richard Lai, A systematic review of
requirements change management , Information and
Software Technology 93 (2018) 163–185

Stålhane, T.,Hanssen,G.K.,Myklebust,T.,andHaugset,B.
(2014). Agile change impact analysis of safety cri- tical
software. In Bondavalli, A., Ceccarelli, A., and
Ortmeier,F.,editors,ComputerSafety,Reliability,and
Security, pages444–454.Verwijs, C. (2016)

MPED-SCRUM: An Automated Decision-Making Framework Based Measurement for Managing Requirement Change Within the SCRUM
Process

581

