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Abstract: Traffic prediction is vital for traffic management systems and helps enhance traffic management efficiency 
over a traffic network. Recently, spatiotemporal prediction models have been proposed that extend single 
traffic node temporal prediction. They employ the spatial context of the combined nodes in the urban network 
to improve prediction. However, the key performance indicators (KPI) of these methods are still limited to 
accuracy averaged over the full traffic network. They do not yet describe local spatiotemporal behaviour that 
can affect the traffic prediction accuracy in the traffic network. In this paper, we explore three spatial KPIs: 
Global Moran’s I, Geary’s C, and Getis-Ord General G to evaluate traffic flow prediction for freeway traffic 
networks. The study is conducted by evaluating traffic flow prediction results in the PeMSD8 dataset using 
spatiotemporal prediction and calculating different KPIs. Several synthetic scenarios based on the prediction 
results are created to showcase what the standard KPI cannot distinguish. The Global Moran’s I and Geary’s 
C can identify different levels of spatial autocorrelation and the Getis-Ord General G can distinguish spatial 
clustering in prediction results. The findings aim to improve the evaluation of different traffic prediction 
methods towards a better traffic management system.

1 INTRODUCTION 

The prediction of traffic states plays a pivotal role in 
enhancing traffic management systems, with 
applications ranging from optimizing traffic signal 
control to enhancing route planning and guidance. 
Traffic predictions in traffic networks are seen as a 
challenging problem in time series predictions 
because traffic network suffers from a highly 
nonlinear dynamic nature, limited resources, 
spatiotemporal dependency, and seasonality (Korecki 
et al., 2023). Over the past few years, the field of 
traffic predictions has witnessed a surge of interest 
within the machine learning community. Recently, 
spatiotemporal prediction models such as ASTGCN 
(Guo et al., 2019) and STSGCN (Song et al., 2020) 
have gained popularity due to their ability to utilise 
large sets of temporal and spatial data in a network, 
which enhances prediction accuracy (Tascikaraoglu, 
2018). This ability is crucial in traffic prediction 

                                                                                                 
a  https://orcid.org/0000-0002-4532-1209 
b  https://orcid.org/0000-0001-5628-6974 

problems where the traffic states are influenced not 
only by historical trends over time but also by the 
spatial interactions between different locations. 
Comparatively, traditional single-node temporal 
prediction methods overlook the spatial interactions 
and dependencies that exist in traffic networks. 

Currently, much of the research in traffic 
prediction tends to focus on employing a single 
standard key performance indicator (KPI) such as 
RMSE, MAE, or MAPE due to the ease of ranking 
different techniques. Unfortunately, those KPIs are 
limited to the average prediction accuracy for the 
entire traffic network even though knowledge 
regarding the temporal and spatial contexts is known. 
This approach simplifies the evaluation of traffic 
prediction, but it may not necessarily reflect the 
requirements in actual traffic management systems 
which leads to a gap between research findings and 
their applicability in the real world. Accuracy is not 
the only KPI of a prediction method and accuracy is 
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also not a simple single quantitative metric (Dietel, 
2003).  

The lack of prediction KPI has been brought up 
for discussion in different fields such as randomness 
in databases (Fisher et al., 2009), different accuracy 
measures in classification problems (Mehdiyev et al., 
2016), evaluation of sparse spatiotemporal point 
process (Adepeju et al., 2016), and uncertainty in 
spatial forecasting (Wu et al., 2021) but not in traffic 
prediction problems. In traffic prediction problems, 
the prediction accuracy across different forecast 
horizons is sometimes considered but it is limited to 
multi-step prediction problems. Evaluating the short-
term and long-term predictions of the spatiotemporal 
prediction model provides information on the 
robustness and adaptability of the method (Li et al., 
2022) that is crucial in real-world applications but 
can’t be evaluated from the current standard KPI. 
Prediction accuracy across different forecast horizons 
can be considered as an evaluation of temporal 
aspects of the spatiotemporal prediction model but the 
evaluation of the spatial aspects of the spatiotemporal 
method is currently not researched. 

In this paper, we will explore several spatial 
metrics commonly used in the domain of Geospatial 
Information Systems (GIS) such as Global Moran’s I, 
Geary’s C, and Getis-Ord General G as spatial KPIs 
for traffic prediction problems. We acknowledge that 
evaluating both spatial and temporal aspects holds 
equal significance but, we will focus on the spatial 
aspects and leave the temporal aspects to future 
research. The objective of spatial KPIs is to evaluate 
the traffic flow prediction performance from the 
spatial aspects such as how spatially correlated each 
node’s prediction performance and the distribution of 
the traffic prediction errors.  

We focus our experiments on spatiotemporal 
prediction methods and assume knowledge of the 
structure of the traffic network in the form of a graph 
adjacency matrix. The experiments are based on 
traffic flow prediction results of STSGCN (Song et 
al., 2020) on the PeMSD8 dataset (Chen et al., 2001), 
which describes a freeway traffic network. STSGCN 
is a deep-learning based spatiotemporal traffic 
prediction that can capture the complex localized 
spatiotemporal correlations that exist in the traffic 
network and is similar to most recent research in 
traffic prediction. We create some synthetic scenarios 
by modifying the traffic flow prediction results to 
have different clusters, different means, and different 
standard deviations to show what can be captured by 
spatial KPIs in different scenarios. Scenarios will 
have similar standard accuracy KPIs to show that 

these scenarios are indistinguishable if evaluated by 
the standard accuracy KPI only.  

The main contributions of this study are 
highlighting the importance of traffic prediction KPIs 
such as spatial KPIs to complement the standard 
accuracy KPI for traffic prediction problems. The 
study also explores what insights can be gained from 
Global Moran’s I, Geary’s C, and Getis-Ord General 
G as spatial KPIs to evaluate traffic prediction 
methods. In this paper, we focus on freeway traffic 
networks. 

The rest of the paper is organized as follows. In 
Section 2, we briefly describe the traffic prediction 
problem. In Section 3, we explain different spatial 
KPIs such as Global Moran’s I, Geary’s C, and Getis-
Ord General G for evaluating spatial aspects of 
spatiotemporal prediction models. In Section 4, our 
experiment setups such as dataset and scenarios in the 
experiment are explained. In Section 5, experiment 
results in the form of evaluations for all scenarios 
utilizing spatial KPIs are given and analysed. The 
conclusions and future works are summarized in 
Section 6. 

2 TRAFFIC PREDICTION 
PROBLEM 

Suppose that the ݐ-th traffic flow is recorded on each 
node ݊ in the traffic network with ݊ ∈ (1, … , ܰ). The 
traffic prediction problem is to forecast the traffic 
state data in the future ܶ′ intervals given a traffic state 
series ܺ௧ି்ାଵ:௧ in the previous ܶ time intervals  and 
can be formulated as [ܺ௧ି்ାଵ:௧, … , ܺ௧] →[ܺ௧ାଵ, … , ܺ௧ା்ᇱ] , where each vector ௜ܺ ∈ Թே 
represents traffic state data for all nodes in the traffic 
network for each interval. In this paper, we focus our 
experiment on traffic flow as the traffic state to be 
predicted as illustrated in Figure 1. 

 

Figure 1: Illustration of traffic flow prediction problems. 
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3 SPATIAL PERFORMANCE 
INDICATORS 

In this paper, we explore three different metrics from 
the domain of GIS called Global Moran’s I, Geary’s 
C, and Getis-Ord General G. These metrics will 
function as spatial KPIs of traffic prediction that 
complements the standard KPI to assist stakeholders 
in making more informed decisions. The standard 
KPI evaluates traffic prediction on a global scale, so 
the aims of spatial KPIs is to evaluate traffic 
prediction methods in the spatial aspects. 

The selected spatial KPIs are simple scalar 
metrics that help evaluate the spatial association of 
each node performance in the traffic network and 
show the distribution of the prediction errors. Insights 
from spatial association unveil hidden patterns and 
interdependencies among different spatial locations 
and contribute to a better understanding of how the 
traffic prediction method is affected by spatial 
dependencies. The distribution of the prediction 
errors is important information for applications such 
as traffic signal control where the prediction 
performance of each individual node is more 
important than the average performance. 

3.1 Global Moran’s I 

Global Moran’s I (Moran, 1950) is a global measure 
of spatial autocorrelation that tests for the relation 
between feature values on each location and the 
spatial proximity based on covariance. The metric 
will evaluate whether the feature values are correlated 
with the same feature values across spatial distances, 
either positively or negatively. Global Moran’s I is 
calculated using the equation (1): ܫ = ቈ ݊∑ ௜ݔ) − ଶ௡௜(ݔ̅ ቉ 

ቈ∑ ∑ ௜ݔ)௜,௝ݓ − ௡௝(ݔ̅ ௝ݔ) − ௡௜(ݔ̅ ∑ ∑ ௜,௝௡௝௡௜ݓ ቉ 

(1)

where  ݊ is the number of features, ݔ௜ is the feature 
values in location ݅ ݔ̅ ,  is the average value of all 
features in the network, and ݓ௜,௝  is the element of 
spatial weights matrix (adjacency matrix of a graph 
network). The ranges of Global Moran’s I are 
between +1 and -1 with +1 indicating positive spatial 
autocorrelation, 0 indicating a random spatial pattern 
with no significant spatial autocorrelation, and -1 
indicating negative spatial autocorrelation. 

Global Moran’s I is an inferential statistic where 
the results are explained in the context of the null 

hypothesis.  The null hypothesis of Global Moran’s I 
is whether the spatial distribution of node values 
results from random spatial processes. The ݖூ-score is 
defined as: ݖூ = ܫ − E[ܫ]ඥV[ܫ]  (2)

E[ܫ] = −1/(݊ − 1) (3)V[ܫ] = E[ܫଶ] − E[ܫ]ଶ (4)

When the ݌-value (calculated from ݖூ -score) of 
Global Moran’s I (denoted as ݌ூ-value) is statistically 
significant, we can reject the null hypothesis. In this 
case, the positive ݖூ-score indicates the existence of 
positive spatial autocorrelation in the networks and 
vice versa. 

3.2 Geary’s C 

Geary’s C (Geary, 1954), similar to Global Moran’s 
I, is a global measure of spatial autocorrelation. The 
difference between Geary’s C and Global Moran’s I 
is Geary’s C describe spatial autocorrelation based on 
the squared differences between the location of 
features while Global Moran’s I is based on 
covariance. Geary’s C is defined as 

ܥ = ቈ ݊ − 1∑ ௜ݔ) − ଶ௡௜(ݔ̅ ቉ ൥∑ ∑ ௜ݔ௜,௝൫ݓ − ௝൯ଶ௡௝௡௜ݔ 2 ∑ ∑ ௜,௝௡௝௡௜ݓ ൩ (5)

where  ݊ is the number of features, ݔ௜ is the feature 
values in location ݅, and ݓ௜,௝ is the element of spatial 
weights matrix (adjacency matrix of a graph 
network). The ranges of Geary’s C value start from 0 
to a positive number with a value between 0 to 1 
indicating positive spatial autocorrelation (with a 
value approaching 0 has stronger correlation), no 
spatial autocorrelation if the value is 1, and value 
above 1 indicates negative autocorrelation. 

3.3 Getis-Ord General G 

Getis-Ord General G (Getis & Ord, 1992) is an 
inferential statistic with the null hypothesis stating 
that there is no spatial clustering of feature values. 
The Getis-Ord General G statistic of overall spatial 
clustering is given as: ܩ = ∑ ∑ ௜௡௝ୀଵݔ௜,௝ݓ ∑௝௡௜ୀଵݔ ∑ ௜௡௝ୀଵݔ ௝௡௜ୀଵݔ , ∀݆ ≠ ݅ (6)

where ݊ is the number of features, ݔ௜  is the feature 
values in location ݅, and ݓ௜,௝ is the element of spatial 
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weights matrix (adjacency matrix of a graph 
network). Assuming that the adjacency matrix cell 
value is between 0 and 1, the range of Getis-Ord 
General G will be between 0 and 1 too. The ீݖ-score 
is defined as: ீݖ = ܩ − E[ܩ]ඥV[ܩ]  (7)

[ܩ]ܧ = ∑ ∑ ݊)௜,௝௡௝ୀଵ௡௜ୀଵ݊ݓ − 1) , ∀݆ ≠ ݅ (8)

[ܩ]ܸ = [ଶܩ]ܧ − ଶ (9)[ܩ]ܧ

When the ݌-value (calculated from ீݖ -score) of 
Getis-Ord General G (denoted as ீ݌ -value) is 
statistically significant, we can reject the null 
hypothesis. In this case, positive ݖூ -score indicates 
the high values nodes in the networks is more 
spatially clustered while negative ݖூ-score indicates 
the low values nodes in the networks is more spatially 
clustered. 

4 EXPERIMENTS 

4.1 PeMSD8 Dataset 

In these experiments, traffic flow predictions are 
conducted on the PeMSD8 dataset which is a 
highway traffic dataset from California. The PeMSD8 
dataset is a subset of one of the most popular traffic 
datasets, PeMS dataset, that includes both traffic flow 
data and the graph adjacency matrix of the freeway 
networks. The PeMSD8 dataset is specifically chosen 
because it has the least number of nodes which should 
have more homogenous spatial pattern compared to 
larger traffic networks.  

The dataset are measured by the Caltrans 
Performance Measurement System (PeMS) (Chen et 
al., 2001) in real-time every 30 seconds and 
aggregated into 5-minute interval time-series data. 
The PeMSD8 dataset are measured from the traffic 
data in San Bernardino from July to August 2016, 
which contains 1979 detectors on 8 roads. Some 
redundant detectors are removed to ensure the 
minimum distance between each detector is longer 
than 3.5 miles and the resulting dataset contains 170 
detectors (Guo et al., 2019).  

The dataset contains three types of traffic states: 
(1) traffic flow (per 5 minutes), (2) traffic speed, and 
(3) occupancy, but for our experiments we only use 
the traffic flow data as shown in Figure 2. The dataset 
contains an adjacency matrix of the traffic sensor 

network, enabling graph-based traffic flow prediction 
methods that require a predefined graph in the form 
of an adjacency matrix as the spatial contexts and 
illustrated in Figure 3. The information regarding the 
PeMSD8 dataset is summarized in Table 1. 

 

Figure 2: Traffic flow sample from the PeMSD8 dataset. 

 

Figure 3: Adjacency matrix of the PeMSD8 dataset. The 
entry ݅, ݆ represents an edge from node ݅ to node ݆. 

Table 1: Summary of the PeMSD8 dataset. 

Number of Nodes 170 

Dataset Length 17,856 

Dataset Interval 5 minutes 

Time Range July 2016 – August 2016 

Data Types 
Traffic flow, traffic 

speed, occupancy, and 
adjacency matrix 
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4.2 Experiment Scenarios 

In this paper, the results of traffic flow predictions 
will be evaluated with Global Moran’s I, Geary’s C, 
and Getis-Ord General G. The experiments are based 
on the results of traffic flow predictions of the 
PeMSD8 dataset with STSGCN (Song et al., 2020) as 
the spatiotemporal predictions method and evaluated 
using RMSE on each node as shown in Figure 4. 

 

Figure 4: The results of traffic flow prediction of the 
PeMSD8 dataset with STSGCN (Song et al., 2020). The 
graph network is automatically generated based on the 
adjacency matrix and the colour on each node represents the 
RMSE of each node. 

To evaluate each spatial KPI for different case 
studies, we generate the following scenarios from the 
original results as follows: 

• Original scenario. 
• Two types of clusters (star and line clusters 

as illustrated in Figure 5) of high node 
values, low node values, and a mix of both 
high and low node values. 

• Random distribution of high-value nodes. 
• Adjust the means of the RMSE results. 
• Adjust the variance of the RMSE results. 

The aim of the spatial KPIs investigated in this 
paper is to capture the spatial association inside the 
traffic network and the distribution of the traffic 
prediction errors that can’t be evaluated with the 
current standard KPI. The scenarios that we created 
are aimed at learning what spatial KPIs can capture 
and whether the objectives of spatial KPIs could be 
fulfilled. 

 

Figure 5: Illustration of different configurations of clusters 
in this experiment. Red nodes illustrate star configuration 
and yellow nodes illustrate line configuration. 

The clustering scenarios reflect the heterogeneity 
in the traffic network. In the highway traffic 
networks, the heterogeneity arises from factors like 
congestion points (for example on-ramps, off-ramps, 
and toll booths) and varied land use patterns that 
generate spatial clusters of different traffic flow 
levels. The urban traffic networks with their different 
road hierarchies and intersection dynamics will result 
in more complex and heterogeneous networks. This 
heterogenous characteristics will be reflected in the 
traffic prediction errors distribution but this 
information vanishes when the standard KPI averages 
prediction errors over the entire traffic network.  

For the clustering scenarios, 20 nodes in the traffic 
network with the highest or lowest values are 
swapped with other nodes to create clusters of nodes 
based on the type of clusters. Each clustering scenario 
will have an identical average RMSE which is 
indistinguishable if the traffic prediction is evaluated 
by the standard KPI. Different cluster scenarios and 
the number of nodes on each cluster are summarized 
in Table 2.  

Table 2: Summary of clustering scenarios. 

Scenario 
Number of Nodes per Cluster 

Cluster 1 Cluster 2 Cluster 3 
Star HH 10 10 - 
Star HL 10 10 - 
Star LL 10 10 - 
Star H 20 - - 
Star L 20 - - 

Line HHH 7 8 5 
Line HLH 7 8 5 
Line LHL 7 8 5 
Line LLL 7 8 5 
Line HH 14 6 - 
Line LL 14 6 - 

We consider two types of clusters: high node 
values cluster or hotspot and low node values cluster 
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or coldspot denoted as “H” and “L”, respectively. The 
distinction is made to evaluate the effects of both 
types of clusters and investigate what happens if both 
types of clusters exist in the traffic networks. For 
example, the “Star HH” scenario point to the graph 
network modified to include two high node value 
clusters with star configuration and the “Line HLH” 
point to the graph network modified to include two 
high node value clusters and one low node value 
cluster with line configuration.  

The scenario of high-value nodes with random 
distribution is created to simulate random outliers 
happening in the traffic network, similar to salt-and-
pepper noise in digital images. The aim of this 
scenario is to evaluate whether spatial KPIs can 
differentiate between outlier scattered across the 
network and spatially clustered hotspots or coldspots. 
The evaluation of spatial KPIs for this scenario 
should show significant differences with clustering 
scenarios which demonstrate that this scenario has no 
spatial association between each outlier nodes.  

We also investigate the effects of modifying the 
mean and standard deviation of the RMSE of each 
node. The aim of modifying the mean of the 
prediction errors is to evaluate the sensitivity of 
spatial KPIs against different levels of average 
prediction errors. The average prediction errors 
should be evaluated based on the standard KPI such 
as RMSE and shouldn’t affect spatial KPIs. For the 
standard deviation modification, the aim is to 
evaluate the sensitivity of spatial KPIs against 
different standard deviations levels. The change in 
both mean and standard deviations occurs when the 
data is normalized, and the scenario is to demonstrate 
whether such alteration affects spatial KPIs. 

5 RESULTS 

In these experiments, we will evaluate all different 
scenarios with Global Moran’s I, Geary’s C, and 
Getis-Ord General G as spatial KPIs. Table 3, Table 
4, and Table 5 show Geary’s C, Global Moran’s I, and 
Getis Ord General G of all scenarios, respectively. 
The confidence level of 90% is chosen for both 
Global Moran’s I and Getis-Ord General G so the null 
hypothesis can be rejected if the ݌ூ-value or ீ݌-value 
is under 0.1. 

The original scenario which is the results of traffic 
flow prediction of the PeMSD8 dataset with 
STSGCN (Song et al., 2020) has ܥ = 0.8260  and ܫ = 0.1690  indicating a slight positive spatial 
autocorrelation. Both ݌ூ -value and ீ݌ -value are 
under 0.1 with positive ݖூ-score and positive ீݖ-score 

indicating the positive spatial autocorrelation and 
showing the existence of hotspot. Note that the result 
is close to the value of no significant spatial 
autocorrelation of ܥ = 1 and ܫ = 0 where the graph 
network mostly has random spatial distribution with 
hotspots as shown in Figure 4. 

Table 3: Summary of Geary’s C of all scenarios. 

Scenario Geary’s C  
Original 0.8260  

Star HH 0.6928  

Star HL 0.6311  

Star LL 0.8347  

Star H 0.6710  

Star L 0.6460  

Line HHH 0.6183  

Line HLH 0.5045  

Line LHL 0.5469  

Line LLL 0.6469  

Line HH 0.5983  

Line LL 0.5799  

Random 0.9276  

+0.1 mean 0.8260  

-0.1 mean 0.8260  

+0.1 stdev 0.8260  

-0.1 stdev 0.8260  

Table 4: Summary of Global Moran’s I of all scenarios. 

Scenario 
Global Moran's I 

I ݌ூ-value ݖூ-score 
Original 0.1690 0.0086 2.6286 
Star HH 0.3522 0.0000 5.3797 
Star HL 0.3989 0.0000 6.0811 
Star LL 0.1801 0.0052 2.7943 
Star H 0.3376 0.0000 5.1605 
Star L 0.3568 0.0000 5.4500 

Line HHH 0.3818 0.0000 5.8253 
Line HLH 0.4915 0.0000 7.4726 
Line LHL 0.4458 0.0000 6.7858 
Line LLL 0.3447 0.0000 5.2672 
Line HH 0.4205 0.0000 6.4058 
Line LL 0.4117 0.0000 6.2742 
Random 0.0692 0.2590 1.1287 

+0.1 mean 0.1690 0.0086 2.6286 
-0.1 mean 0.1690 0.0086 2.6286 
+0.1 stdev 0.1690 0.0086 2.6286 
-0.1 stdev 0.1690 0.0086 2.6286 

In the random scenario, we shuffle the value of all 
nodes randomly and as expected, the results show that ܥ is close to one and ܫ is close to zero indicating a 
random spatial pattern with no significant spatial 
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autocorrelation. Both ݌ூ  and ீ݌  of the random 
scenario are above 0.1 so the null hypothesis can’t be 
rejected, indicating a spatial distribution that comes 
from random spatial processes. These results show 
the capability of spatial KPIs to differentiate between 
random distribution of outliers with spatially 
clustered hotspots or coldspots. 

Table 5: Summary of Getis-Ord General G of all scenarios. 

Scenario 
Getis-Ord General G 

G ீ݌-value ீݖ-score 
Original 0.0205 0.0273 1.9220 
Star HH 0.0250 0.0000 7.9946 
Star HL 0.0219 0.0001 3.8260 
Star LL 0.0183 0.1483 -1.0438 
Star H 0.0235 0.0000 6.0218 
Star L 0.0200 0.1003 1.2797 

Line HHH 0.0194 0.3239 0.4567 
Line HLH 0.0213 0.0015 2.9586 
Line LHL 0.0214 0.0007 3.1764 
Line LLL 0.0222 0.0000 4.2612 
Line HH 0.0199 0.1201 1.1745 
Line LL 0.0219 0.0001 3.8683 
Random 0.0198 0.1573 1.0056 

+0.1 mean 0.0200 0.0297 1.8845 
-0.1 mean 0.0200 0.0247 1.9655 
+0.1 stdev 0.0207 0.0250 1.9601 
-0.1 stdev 0.0203 0.0301 1.8795 

Table 3 shows the results of the evaluation using 
Geary’s C for all scenarios. All clustering scenarios 
except Star LL show lower ܥ  compared to the 
original scenario indicating the increases in spatial 
autocorrelation because of the clustering. Line 
clusters in general have lower ܥ  compared to star 
clusters which indicates higher sensitivity of Geary’s 
C towards line clusters. In both cluster categories, the 
lowest ܥ  is in the mixed value clusters (Line HLH 
and Star HL). In the mixed value clusters, we swap in 
a total of 20 nodes from both highest node values and 
lowest node values to create clusters of high node 
values and low node values so the total of squared 

difference ൫ݔ௜ − ௝൯ଶݔ
 will be higher compared to 

other scenarios resulting in lower ܥ. In both cluster 
categories, larger but fewer clusters have lower ܥ 
suggesting higher spatial autocorrelation compared to 
smaller but more clusters. 

Table 4 shows the results of the evaluation using 
Global Moran’s I for all scenarios. All clustering 
scenarios are showing larger ܫ  than the original 
scenario indicating positive spatial autocorrelation 
from the clustering. With a sufficiently large number 
of nodes, we can test the statistical significance of the 

Global Moran’s I. Out of all scenarios, the ݌ூ-value 
that is not significant is only on the random scenario 
which indicates the rejection of the null hypothesis 
with all scenarios having positive ݖூ-score that shows 
positive spatial autocorrelation. Similar to Geary’s C, 
line clusters show higher ܫ and ݖூ-score compared to 
star clusters indicating better sensitivity for line 
clusters. The mixed clusters for both clustering 
categories also have the largest ܫ  and ݖூ -score 
because of higher covariance (ݔ௜ − ௝ݔ)(ݔ̅ − (ݔ̅ . 
Larger but fewer clusters also have higher ܫ 
indicating higher spatial autocorrelation compared to 
smaller but more clusters. 

In general, both Global Moran’s I and Geary’s C 
show similar trends for all scenarios as both KPIs 
measure global measures of spatial autocorrelation. 
The level of spatial autocorrelation helps gauge how 
much the spatial context influences the prediction 
errors. Strong spatial autocorrelation suggests that 
incorporating more spatial information into the 
prediction model could be beneficial and vice versa. 
Based on equation (1) and equation (5), the difference 
between the two is Global Moran’s I use covariance (ݔ௜ − ௝ݔ)(ݔ̅ − (ݔ̅  while Geary’s C use squared 

differences ൫ݔ௜ − ௝൯ଶݔ
. The choice between Global 

Moran’s I and Geary’s C are dependent on the 
purpose of the KPI. Global Moran’s I have values 
ranges between -1 and 1 which makes it more 
interpretable and intuitive for both positive spatial 
autocorrelation and negative spatial autocorrelation. 
Squared differences in Geary’s C make the KPI more 
sensitive to spatial outliers and better suited for 
detecting dispersion or negative spatial 
autocorrelation. 

Table 5 shows the results of the evaluation using 
Getis-Ord General G for all scenarios. For the Getis-
Ord General G, we will focus the results by 
evaluating the ீ݌-value and ீݖ-score as the G value’s 
difference between all scenarios are very close and 
linear with the ீ݌-value and ீݖ-score.  

In the star cluster scenarios, scenarios that include 
hotspots such as Star HH, Star HL, and Star H show 
an extremely low ீ݌ -value with a higher ீݖ -score 
compared to the original scenario. This result 
indicates that the Getis-Ord General G is sensitive to 
star clusters. Star HH have a higher ீݖ -value 
compared to Star H showing that the Getis-Ord 
General G is more sensitive to more clusters with 
fewer nodes compared to least clusters with more 
nodes. The results for both Star LL and Star L are 
interesting as both scenarios have ீ݌ -value larger 
than 0.1 and the null hypothesis can’t be rejected. The 
original scenario results show the existence of a 
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hotspot as shown in Figure 4, so we suspect that the 
coldspots created in these scenarios cancel each other 
out with the existing hotspots resulting in larger ீ݌-
value and lower ீݖ-score.  

In the line cluster scenarios, scenarios that include 
coldspot have tendencies to have lower ீ݌-value and 
higher ீݖ -score which is the opposite of the star 
cluster scenarios. Two hotspot scenarios, Line HH 
and Line HHH, have ீ݌-value larger than 0.1 and the 
null hypothesis can’t be rejected. These findings 
suggest that the generated line cluster has the opposite 
effects of the star cluster and the Getis-Ord General 
G usage for detecting clusters is limited to the star 
cluster. The existence of a line cluster might 
overshadow the Getis-Ord General G's ability to 
detect star clusters, similar to how the hotspot and 
coldspot in star clusters cancel each other out. 

In general, the Getis-Ord General G allow us to 
identify the existence of hotspots and coldspots of the 
prediction errors in the network. The KPI also show 
whether the distribution of the traffic prediction errors 
is spatially clustered. The insights help in pinpointing 
specific areas where the prediction method performs 
exceptionally well or poorly and will be valuable for 
targeted improvements or interventions. It should be 
highlighted that the existence of hotspots and 
coldspots will cancel each other out. The existence of 
both star clusters and line clusters also has the same 
effects and must be acknowledged. 

Other than the clustering scenarios, we also create 
scenarios where the mean of the node values is 
modified by adding and subtracting 10% from the 
node values without changing the standard deviation. 
In other scenarios, we also modify the standard 
deviation by ±10% without changing the mean. The 
results from both scenarios show no change in both 
Geary’s C and Global Moran’s I that indicate no 
change in spatial autocorrelation by modifying the 
mean and standard deviation. These results indicate 
that spatial KPIs are insensitive to different levels of 
mean and standard deviation of the prediction errors. 
The spatial KPIs are affected only by the spatial 
autocorrelation even if traffic prediction methods 
with significance prediction error differences are 
compared. As for Getis-Ord General G, the value 
slightly changes with a higher mean or lower standard 
deviation increasing the ீ݌-value which indicates a 
lower confidence level of the cluster existences. 

6 CONCLUSIONS 

In this paper, we address the lack of traffic prediction 
KPI outside the standard average accuracy KPI, 

especially for traffic prediction problems. Three 
spatial metrics commonly used in the GIS domain: 
Global Moran’s I, Geary’s C, and Getis-Ord General 
G are proposed to evaluate the performance of traffic 
flow predictions on the PeMSD8 dataset, a freeway 
traffic dataset, using STSGCN (Song et al., 2020). 
We focus on the spatiotemporal methods and assume 
the knowledge of the structure of the traffic network 
in the form of a graph adjacency matrix. Several 
synthetic scenarios are created from the original 
results to show insights that can be captured from 
each spatial KPI. 

Our experiments show that spatial KPIs provide 
valuable insights that can’t be captured from the 
standard KPI such as MAE, RMSE, and MAPE. It 
allows stakeholders to learn not only the average 
performance but also how they are spatially related. 
Geary’s C and Global Moran’s I effectively identify 
spatial autocorrelation induced by clustering 
scenarios. Both methods show higher sensitivity 
towards line clusters compared to star clusters. The 
results also suggest that larger but fewer clusters have 
higher spatial autocorrelation compared to smaller 
but more clusters.  

The knowledge of the spatial autocorrelation in 
the traffic network provides information on how the 
spatial context affects the prediction performance. 
Higher spatial autocorrelation suggests utilizing more 
spatial contexts in traffic prediction will be helpful 
and help stakeholders choose the appropriate 
prediction technique. The selection between Global 
Moran’s I and Geary’s C hinges on the intended 
purpose of the KPI. Global Moran’s I offer 
intuitiveness for both spatial and negative spatial 
autocorrelation while Geary’s C exhibits heightened 
sensitivity to spatial outliers that is useful for 
detecting dispersion patterns.  

Getis-Ord General G can help identify the 
existence of clustering in the network, especially star 
clusters. Our findings indicate that Getis-Ord General 
G can identify the existence of hotspots and coldspots 
of the prediction errors in the traffic network. This 
information helps stakeholders locate areas in the 
traffic network with good or bad prediction errors for 
targeted improvements. It should be noted that the 
existence of hotspots and coldspots in the network 
will cancel each other out. A similar effect is also 
observed in the presence of both star clusters and line 
clusters. 

Future work can investigate traffic prediction of 
other traffic states such as speed and travel time. 
Experiments in this paper have been limited to 
freeway traffic settings, so the validation of the 
proposed KPIs in the arterial or urban traffic network 
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settings is essential to extend the usage of spatial KPIs 
to a wider range of applications. Furthermore, 
exploring other temporal KPIs and spatial KPIs is 
also important to gain more insights in traffic 
prediction evaluation. At last, the integration of 
spatial KPIs with temporal KPIs is a critical step 
towards a better evaluation of traffic prediction 
models. 
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