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Abstract: Shared vehicle services like carsharing enable society to achieve a more favorable tradeoff between the 

societal cost and the individual benefits of physical mobility. To realize this value proposition, numerous 

carsharing types with unique constraints have emerged. A key challenge of making such offerings available, 

is the real time coordination of fleet supply tailored to short term customer demands. Researchers developed 

frameworks, algorithms, and decision support systems to address the corresponding vehicle relocation 

challenge on strategic, tactical, and operational level. However, subsequent vehicle relocation knowledge 

must be systematized to ensure that subsequent insights can be reused and further developed. Consequently, 

we develop a holistic taxonomy for vehicle relocation algorithms in carsharing, which contributes to current 

research by (1) providing consistent descriptions and analyses of vehicle relocation problems, solutions, and 

evaluation approaches, (2) identifying archetypes of algorithm instances, and (3) guiding research to work on 

subsequent research gaps.  As a result, we substantiate a resilient and validated relationship between vehicle 

relocation’s problem and solution space.

1 INTRODUCTION 

Carsharing businesses have existed for many years 

and are increasingly emerging in cities across the 

globe (Shams Esfandabadi et al., 2022). Carsharing 

services (CS) provide users with the benefits of on-

demand access to vehicles without the disadvantages 

of owning a personal car. Individuals profit from CS 

with reduced transportation costs and increased 

mobility offerings (Jochem et al., 2020), while 

society benefits from reduced traffic congestion, 

vehicle emissions and fuel consumption, improved 

road safety, and a decrease in parking space needed 

(Amatuni et al., 2020; Fan et al., 2008). While station-

based services require customers to pick-up and 

return vehicles at predefined stations, free-floating 

services operate station-independent within a 

designated service area (Ferrero et al., 2018). 

Vehicles can often be rented spontaneously and for 

one-way trips, which satisfies customer’s 

requirements on flexibility. However, this value 
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preposition also raises up challenges in the design and 

operation of such service offerings.  

Within the past decades, the research community 

tackled many research questions covering business 

models, drivers and barriers, customer behavior, and 

the design and operation of CS (Nansubuga & 

Kowalkowski, 2021). A key challenge on the way to 

an entirely smart and sustainable mobility ecosystem 

is the real-time coordination of fleets tailored to short-

term user demands (Ketter et al., 2022). For 

carsharing to contribute to this, the vehicle relocation 

problem must be solved. It describes the need to 

relocate vehicles within one-way systems to 

encounter vehicle imbalances caused by 

asynchronous demand and supply (Jorge & Correia, 

2013). Consequently, research developed 

frameworks, algorithms, and decision support 

systems to solve strategic, tactical, and operational 

decision problems associated with vehicle relocations 

(Illgen & Höck, 2019). Related questions also arise 

from the latest shared mobility systems like scooters 
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and e-bike-sharing (Boufidis et al., 2020; Caggiani et 

al., 2018; Nath & Rambha, 2019; Si et al., 2019). 

Existing literature reviews like from Brendel and 

Kolbe (2022), Ferrero et al. (2017), Golalikhani et al. 

(2021), Illgen and Höck (2019), Jorge and Correia 

(2013), and Wu and Xu (2022) structure the research 

covering the vehicle relocation problem and 

synthesize findings on a general and universal level. 

However, the success of novel CS business models 

(Remane et al., 2016) has created numerous different 

CS types with individual constraints. This also 

reflects in more fine-granulated requirements for the 

solution of the vehicle relocation problem (Brendel & 

Kolbe, 2022). However, a holistic view of reusable 

components of vehicle relocation algorithms with 

special attention on the mapping between observed 

problems and instantiated solutions is still missing. 

Consequently, our research is guided by the following 

research questions: 

RQ1. From a decision support perspective, what 

are the dimensions and characteristics of carsharing 

relocation algorithms? 

RQ2. Which archetypes of carsharing relocation 

algorithms emerge from previous empirical studies? 

RQ3. Which research gaps prevail in vehicle 

relocation research? 

To answer the first research question, we propose 

a taxonomy of vehicle relocation algorithms 

following the methodology of Kundisch et al. (2022) 

based on Nickerson et al. (2013). We perform a 

cluster analysis on our categorized empirical sample 

to address the second research question. To answer 

the third research question, we analyze, interpret, and 

discuss the results from RQ1 and RQ2 in regard of 

prevailing gaps. 

2 RESEARCH BACKGROUND 

As a response to customer requirements, nowadays, 

most carsharing systems offer flexible access to 

shared vehicles, where users do not need to specify 

when and where to pick up and return a car in advance 

(Liao & Correia, 2022). This leads to asynchronous 

trips inside the system that could cause local supply 

shortages. Consequently, providers need to organize 

vehicle relocations to maintain high service levels. 

Components of a vehicle relocation algorithm should 

aim to forecast and predict where possible shortages 

occur, which vehicle should be relocated to which 

position, and who can perform the actual relocation 

(Illgen & Höck, 2019).  

As an entry point for our literature review, we 

searched for existing literature reviews and 

taxonomies that aim to structure the knowledge base 

of carsharing and carsharing relocation research. 

Nansubuga and Kowalkowski (2021) clustered 

carsharing research streams into the four categories of 

business models, drivers & barriers, customer 

behavior, and fleet & system management. Table 1 

shows our analysis on which research streams are 

covered by each of the 13 articles we identified in our 

initial search. 

The category fleet & system management includes 

research on the vehicle relocation problem and 

consequently serves as filter criteria for literature 

reviews and taxonomies that are further reviewed for 

knowledge on relocation dimensions and archetypes. 

The articles of Cepolina et al. (2014), Nansubuga and 

Kowalkowski (2021), Schmöller and Bogenberger 

(2020), and Shams Esfandabadi et al. (2022) do not 

explicitly name dimensions or archetypes, and 

consequently are excluded from further assessment. 

According to Gregor and Hevner's (2013) 

definition, the vehicle relocation problem is a 

“wicked real-world problem” that could be addressed 

by designing complex information systems (IS). To 

ensure that extant and new knowledge can be reused 

and further developed, specific research contributions 

must maintain a resilient and validated relationship 

between problem and solution space (vom Brocke et 

al., 2020). Consequently, a holistic categorization of 

vehicle relocation algorithms should address the three 

components of design knowledge, namely problem 

space, solution space, and evaluation. Table 2 shows 

our analysis of those components that are covered by 

related work and which dimensions they suggest to 

structure knowledge on vehicle relocations.  

To summarize our review of related work, we 

found three main gaps in current articles that aim to 

structure knowledge on relocation algorithms: First, a 

holistic view of problem space, solution space, and 

evaluation of research articles is missing. Ignoring the 

problem space refrains readers from evaluating the 

context and boundaries where design knowledge can 

be applied. Ignoring to specify the solution space 

limits the overall practical and theoretical 

contribution by disregarding the problem-solving 

character of design. Ignoring evaluation constrains 

the reader's ability to assess design knowledge's 

validity and objectivity. Second, suggested categories 

like methodology are too generic to get a deep 

understanding of particular algorithm design aspects. 

Third, none of the analyzed articles presents 

archetypes of algorithms that can be applied as a 

solution template for a class of problems. 
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Table 1: The literature review of conceptual work addressing carsharing. 

Article Research Domain 
Business 

Models 

Drivers & 

Barriers 

Customer 

Behavior 

Fleet & 

System 

Management 

Brendel and Kolbe (2022) Transportation    X 

Cepolina et al. (2014) Service Science  X  X 

Degirmenci and Breitner (2014) IS  X X  

Ferrero et al. (2017) Sustainability X   X 

Golalikhani et al. (2021) Transportation  X  X 

Illgen and Höck (2019) Transportation    X 

Jorge and Correia (2013) Transportation   X X 

Liao and Correia (2022) Transportation  X X  

Nansubuga and Kowalkowski (2021) Service Science X X X X 

Remane et al. (2016) IS X    

Schmöller and Bogenberger (2020) Transportation   X X 

Shams Esfandabadi et al. (2022) Sustainability X X X X 

Wu and Xu (2022) Transportation    X 

Table 2: The literature review of conceptual knowledge about the vehicle relocation problem. 

Article 
Problem 

Space 

Solution 

Space 
Evaluation Relocation Dimensions 

Brendel and 

Kolbe (2022) 
X   

Vehicle Types, Additional Services, Vehicle Booking, 

Vehicle Access, Pre-defined Spatial Information, Rental 

Time, Parking, Infrastructure, Number of Stations/Areas, 

Number of Vehicles, Number of Customers, Parking Space, 

Average Number of Rentals per Day, Organizational, 

Ownership, Maintenance, Refueling and Recharging, 

System Access, Vehicle Relocation Method, Price 

Structure, Cost Structure, Vehicle Engines, Charging 

Infrastructure, Charging, Network, Charging Duration, 

Range Limitations 

Ferrero et al. 

(2017) 
X   

Mode, Engine, Optimization Objectives, Time horizon, 

Methodologies 

Golalikhani et al. 

(2021) 
 X  Procedure, Objective, Methodology 

Illgen and Höck 

(2019) 
 X  

Reservation Policy, EV charging policy, Location planning, 

Pricing policy, Vehicle type, Fleet Size, Relocation Policy, 

Data, Model, Target, Solution Approach 

Jorge and 

Correia (2013) 
 X  Topic addressed, Modelling Approach, Type of carsharing  

Wu and Xu 

(2022) 
 X X 

Service Type, Fleet Type, Objective, Model, Solution 

Method, Evaluation 

 

 

 

3 RESEARCH APPROACH 

The taxonomy development method proposed by 

Nickerson et al. (2013) is a widely applied method in 

IS to provide structure and organize knowledge in a 

field. It was applied to generate a variety of 

taxonomies, such as recently published for peer-to-

peer sharing platforms (Chasin et al., 2018), data 

strategy development (Gür et al., 2021), data 

monetization (Sterk et al., 2022), AI integrated 

customer service (Poser et al., 2022), and 

conversation agent design (Diederich et al., 2019). 

Kundisch et al. (2022) advance the methodological 

guidance given by Nickerson et al. (2013) by focusing 

on taxonomy evaluation that is inspired by the design-

science research methodology (Hevner et al., 2004; 
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Peffers et al., 2007). We follow Kundisch et al. (2022) 

and Nickerson et al. (2013) to iteratively develop a 

taxonomy and identify archetypes based on existing 

conceptual knowledge and empirical observation. Our 

complete research approach consists of three phases (I) 

setup database, (II) develop and evaluate taxonomy, 

(III) conduct cluster analysis, and is described in the 

following sections. 

3.1 Phase 1: Setup Database 

The objective of the first phase was to build 

conceptual and empirical knowledgebases to be 

considered in the taxonomy development phase. 

Therefore, we conduct two systematic literature 

reviews following vom Brocke et al. (2009) and 

Webster and Watson (2002) (see Figure 1). 

 

 

Figure 1: The literature search process. 

The conceptual knowledge base was analyzed in 

section 2 and was also used as a source for empirical 

knowledge by performing a backward search on 

covered references. 

The review of empirical knowledge started by 

querying scientific databases with the following 

keywords, adapted to the specific syntax 

requirements of the distinct database: “(‘relocation’ 

OR ‘rebalance’ OR ‘allocation’ OR ‘reposition’ OR 

‘rebalance’) AND (‘carsharing’ OR ‘car sharing’).” 

To ensure scientific quality and up-to-date 

knowledge, only articles published in peer-reviewed 

journals and conferences after 2010 are considered. 

We filtered articles retrieved from the databases and 

the backward search based on their title addressing a 

vehicle relocation problem in carsharing. 

Publications that focus on general relocation 

problems from other research areas, other carsharing-

related topics (e.g., business models, system setup, 

empirical usage analysis), or do not have an 

operational focus on the relocation problem, are not 

considered for our knowledge base. The final 

screening of retrieved articles was done by applying 

the following two filter criteria: (I) Articles that do 

not cover the design and demonstration of a 

relocation algorithm in carsharing and apply their 

findings to a transparent reference case are excluded. 

(II) Articles, where successor work based on the same 

dataset exists, are also excluded. 

Our final empirical knowledge base covers 47 

articles and builds the foundation for the empirical-

to-conceptual cycles in taxonomy development and 

cluster analysis. 

3.2 Phase 2: Develop and Evaluate 
Taxonomy 

The goal of the second phase was to systematically 

develop and evaluate a taxonomy for vehicle 

relocation algorithms that contains holistic 

dimensions on problem space, solution space, and 

evaluation based on the method described by 

Kundisch et al. (2022). For our research, we defined 

carsharing vehicle relocation algorithms as the meta-

characteristic for the taxonomy form which all 

subsequent dimensions follow. During the 

development process, we applied seven of the eight 

objectives and all five subjective ending conditions 

(concise, robust, comprehensive, extendible, and 

explanatory) from Nickerson et al. (2013). 

We ran through five iterations until all 

publications from the research database were 

satisfactorily classified. Our first cycle was a 

conceptual-to-empirical cycle incorporating a 

synthesis of the dimensions suggested by Brendel and 

Kolbe (2022), Ferrero et al. (2017), Golalikhani et al. 

(2021), Illgen and Höck (2019), Jorge and Correia 

(2013), and Wu and Xu (2022) (see Table 2). We then 

performed three empirical-to-conceptual cycles to 

classify all items from our knowledge base 

successfully. To address the extended taxonomy 

design process suggested by Kundisch et al. (2022), 

we evaluated our taxonomy in iteration five by 

hosting a workshop with four mobility researchers 

with at least three years of experience in research or 

practice. As a result of the workshop, we refactored 

the names of our dimensions and categories to 

improve comprehensibility. We also formulated 

obvious opposites for some dimensions as the final 

conceptual to empirical cycle. After incorporating the 

suggestions, all subjective and objective ending 

conditions were met. The results of the taxonomy 

development are presented in section 4.1. 
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3.3 Phase 3: Conduct Cluster Analysis 

The aim of the third research phase was the empirical 

identification of carsharing relocation algorithm 

archetypes. For this purpose, we performed a two-

stage clustering approach to group objects as similar 

as possible in one group and as dissimilar as possible 

to the other groups (Kaufman & Rousseeuw, 1990; 

Punj & Stewart, 1983). The clustering analysis was 

performed using Python 3.8 with pandas 1.5.3, 

numpy 1.24.1, and Kmodes 0.12.2.   

The first stage is to find the optimal number of 

clusters with the Ward method. The dimensions 

encoded as categorical variables serve as input for the 

distance calculation between articles in our 

taxonomy. The Hamming distance was used as a 

distance metric since it is suitable to measure 

distances between categorical variables. We 

determined the corresponding number of clusters by 

using a dendrogram and conducting the elbow rule. 

The second stage is to cluster our empirical 

database using the K-modes method, an iterative 

partitioning procedure, extending the common k-

means clustering algorithm for categorical domains 

(Huang, 1997). We also analyzed which dimensions 

have a high significance on cluster affiliation. 

Consequently, we repeated stages one and two with 

those dimensions that have the highest explanatory 

power on relocation design. After interpreting 

possible archetype centroids for four and seven 

clusters, we chose four archetypes as a local optimum 

between complexity and explanatory pow-er. The 

results are presented in section 4.2. 

4 RESULTS 

In the following, we present our taxonomy for 

carsharing relocation algorithms (RQ1) and provide 

examples for platforms to demonstrate their 

respective characteristics. We then describe the 

archetypes of algorithms we identified in the two-step 

cluster analysis (RQ2). Finally, we analyze our 

findings and suggest research gaps be closed by the 

design of forthcoming relocation algorithms (RQ3).  

4.1 Taxonomy 

The final taxonomy consists of 26 dimensions and 82 

characteristics, with the number of characteristics per 

dimension varying between 2 to 5 (see Table 3, 

Appendix). Each of the 47 relocation algorithms from 

our empirical knowledge base can be described by 

exactly one characteristic in each dimension. For 

numerical characteristics such as the number of cars 

in the system, we derived characteristic ranges from 

visually analyzing the histogram for local maxima. 

The characteristics are ordered descending according 

to their coverage in the literature base. 

4.1.1 Problem Space 

The problem space describes characteristics targeting 

the context for which the relocation algorithm was 

designed. 

System Characteristics 

The Distribution Model describes whether the 

algorithm applies to station-based systems, where 

vehicles are picked up and returned at designated 

stations, or free-floating systems, where vehicles are 

picked up and returned at public spaces inside a 

defined operating area.  

The Reference System indicates whether the 

algorithm was designed for a real-world system with 

practice-relevant problem specifications or an 

artificial system with theoretically oriented problem 

specifications. The latter is also often used when 

exploring the algorithm's sensitivity to variables like 

the number of stations, personal, vehicle, or special 

pricing models.  

The Region Size refers to the number of citizens 

living in the area to which the algorithm was adapted. 

Our categorization follows OECD (2023), where 

areas are classified as large metropolitan if they have 

a population of 1.5 million or more, metropolitan if 

their population is between 500000 and 1.5 million, 

medium-sized urban if their population is between 

200000 and 500000, and small urban if their 

population is between 50000 and 200000. 

The System Size indicates the number of cars 

within the system that serves as proof-of-work for the 

algorithm. Whenever multiple vehicle setups were 

simulated, the optimal or mean configuration was 

considered characteristic. 

Demand Profile 

The Input Data describes the character of the dataset 

that the algorithm is designed for and, consequently, 

the dataset that is required to apply the algorithm. 

Datasets covering past trips at least contain start and 

end positions and timestamps of satisfied historical 

demand. Stochastic demand models anticipate that a 

baseline demand model varies depending on 

circumstances like time within the day or population 

density around a spot. They often are represented as a 

likelihood of when and where a rental will take place 

and when and where it will end. Agent-based 

behavior covers a model of potential travel decisions 
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over a mobility mode. It simulates, for example, that 

a certain number of agents living in a residential area 

must commute to work in an industrial zone by likely 

using a concrete mode of transport. From such a 

model, concrete demand for modes like vehicles can 

be derived. Search requests extend the trip dataset by 

including unsatisfied user requests from vehicle 

booking IS. They often contain a timestamp and when 

and where a concrete vehicle was requested. 

Reservations extend the trip’s dataset with future 

bookings from the vehicle booking IS.  

The Dataset Source describes the origin of the 

dataset used to design and evaluate the relocation 

algorithm. Artificial implies that the dataset was 

generated by anticipating a certain stochastic profile. 

This is sometimes done to overcome relocation bias 

(Brendel et al., 2017) and to observe how system 

behavior performs when different demand profiles 

are applied (Boyacı et al., 2015, 2017). Historic 

observation means that data were provided from a 

carsharing operator and mirror real system behavior. 

Real-time system data describe when an interface to 

an operational system was integrated to retrieve 

system status and to book information in real-time. 

The Time Span characterizes the number of days 

the algorithm's effectiveness was observed. It also 

represents the size of the problem class, where the 

handling of computational complexity was 

successfully demonstrated.  

Constraints 

The Vehicle Fleet describes whether the algorithm 

considers fleets with homogenous or heterogeneous 

vehicles. While vehicles in homogenous fleets are 

expected to have similar characteristics, vehicles in 

heterogeneous fleets differ from each other and thus 

are more tailored to different customer requirements. 

The Vehicle Engines means whether the 

algorithm addresses specific engine types like 

combustion or electric engines and their special 

requirements. Whenever no engine type was 

specified, we considered the fleet to be powered by 

combustion engines. Vehicles with electric engines 

have special requirements because of range limits and 

time-consuming recharging. 

The Catchment Area expresses the algorithm's 

expectation of customers to walk to the next available 

vehicle. Customer demand at a certain position will 

be considered satisfied when a free vehicle is 

available closer to the catchment area shaped by the 

willingness to walk. Whenever the algorithm is 

designed to work with walking times, we converted 

them to walking distance following Montufar et al. 

(2007). 

The Acceptance Degeneration describes the 

algorithm's expectation of how the strength of the 

catchment area fluctuates with rising distance. Binary 

means that all potential customers inside the 

catchment area will accept to take the vehicle at the 

centrum of the area. Distances between vehicles and 

customers are often measured by air distance or 

walking distance. Gravitational means that the 

strength of the catchment area fluctuates with 

increasing distance or is influenced by determinants 

like whether the walk is in line with the destination. 

4.1.2 Solution Space 

The solutions space describes characteristics 

targeting the representation and design knowledge of 

the relocation algorithm. 

Relocation Considerations 

Parking Spaces imply whether the algorithm design 

considers available parking space for vehicles at 

service stations or on public roads. 

Staff Availability means whether the algorithm 

design considers a limited availability of agents to 

perform relocations or whether it is always expected 

that relocations can be performed.  

Staff Relocation describes how the algorithm 

design integrates the relocation requirement of the 

agents performing the vehicle relocations. By car 

means that a second agent follows the relocating 

agent by car and picks them up after the relocation. 

Foldable bicycles and e-scooter can be transported in 

the vehicle's trunk to relocate and thus be used to 

return after the relocation. Public transport and 

walking mean that agents must use public transport or 

walk to return. 

Maintenance implies that the algorithm design 

considers the requirement of vehicles to be 

maintained. It combines operational tasks like 

cleaning, tire changes, or routine maintenance with 

relocation jobs.  

Refueling/Recharging means that the algorithm 

design integrates the fulfillment of charging or 

fueling requirements. This is especially relevant for 

electric vehicles because the vehicle will be 

unavailable for a certain period. The dimension also 

specifies whether the process is completed by the 

operator or the customer, e.g., at the end of a rental.  

Competition shows whether the relocation 

algorithm makes a decision isolated from the status of 

other transportation modes or whether it considers the 

availability of rivalry (e.g., other carsharing systems) 

or substitutional modes (e.g., public transport or 

micro-mobility sharing). 
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Relocation Algorithm 

Data Enrichment implies to which extent the algorithm 

enriches the dataset provided from the problem 

context. No enrichment means that the dataset is not 

extended by any feature having a causal relationship 

with the occurrence of demand. Temporal features 

mean timestamps enriched with context information 

within a weekend or a holiday. Spatiotemporal features 

cover the mapping of positions and timestamps with 

context information like the weather or the opening 

time of grocery shops nearby.  

Demand Forecast describes how the algorithm 

determines user demand at a certain time and 

position. The deterministic approach means that the 

demand is known in advance and does not need to be 

forecasted. Basic stochastics implies that demand is 

modeled with baseline techniques like deriving 

historical requests. Advances stochastics describe the 

determination of demand with more sophisticated 

approaches like machine learning. 

The Determination Approach shows how the 

algorithm determines which car needs to be relocated 

to which position. Mathematical solvers (e.g., 

CPLEX, MMILP) propose a relocation due to an 

optimization procedure. They are also often used to 

check the sensitivity of input parameters (e.g., fleet 

size, pricing, and several generated demand models). 

Rule-based algorithms apply a concrete procedure 

that implements rules on how to select a vehicle (e.g., 

by oversupply score) and how to select a position to 

relocate to (e.g., by undersupply score).  

Relocation Method implies how the algorithm 

considers relocations to be realized. Operator-based 

means that agents of the carsharing provider execute 

relocations. User-based describes mostly the 

employment of crowd workers (e.g., Brendel et al. 

(2022)) or actual customers who receive incentives to 

change the drop-off location of their trip (e.g., 

Wagner et al. (2015)). 

Relocation Time displays when the algorithm 

considers relocations to be performed. Continuously 

means that there is no constraint. Business hours 

mean that relocations are only performed within a 

typical working day (e.g., 9 a.m.–5 p.m.), while 

overnight means that they are only performed within 

the night (e.g., 9 p.m.–5 a.m.). 

4.1.3 Evaluation 

The evaluation describes characteristics that provide 

evidence of how the vehicle relocation algorithm 

solves the related problem space. 

Target Function 

Sustainability Metrics describes that the authors 

measured the validity of their design in terms of 

sustainability effects. Considered measures are 

relocation emissions, where the additional emissions 

caused by the performance of relocations and agent 

travel emissions caused by the requirement of agents 

to get to and back from the vehicle to relocate. 

Profitability Metrics imply that the authors 

measured the validity of their design in terms of 

profitability aspects. Revenue is generated by the 

number of completed rentals derived from rental time 

and/or distance traveled. Relocation cost describes 

the cost of performing relocations derived from 

customer incentives (user-based relocations) or staff 

costs (operator-based relocations). For its calculation, 

authors often use an average estimate of costs caused 

by a single relocation. Earnings are often also 

represented as a simplified version by reducing 

revenues with relocation costs. Vehicle idle time 

indicates the accumulated parking time of vehicles 

that are not in use. 

Availability Metrics show whether the authors 

exploited the validity of their design in terms of 

customer acceptance. The acceptance ratio describes 

the amount of user requests that could be satisfied 

with vehicle supply divided by the sum of satisfied 

and unsatisfied user requests.  

Performance Measurement displays how the 

authors determined the measures when applying their 

algorithm design in terms of sustainability, 

profitability, and/or availability. The simulation 

covers agent-based, event-based, or time-based 

simulations of system behavior when the relocation 

algorithm is applied to a digital twin of a reference 

system. The performance is often benchmarked 

against a simulation, where no or basic relocation 

algorithms have been applied. Calculated optimum 

describes when the performance measures are 

determined by solving a mathematical representation 

of the system. Field study states that the algorithm 

was applied and evaluated in a real-world setting. The 

performance is often benchmarked against former 

system data, where no or basic relocation algorithms 

were applied. 

4.2 Archetypes 

The four clusters contain 15 (archetype 1), 14 

(archetype 2), 10 (archetype 3), and 8 (archetype 4) 

relocation algorithms from empirical work. 

Algorithms from archetypes 1 and 2 focus on solving 

scheduling challenges where demand is known in 

advance, while algorithms from archetypes 3 and 4 
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also incorporate the challenge of demand forecasts. In 

the following, we describe the clusters, highlight their 

distinctive characteristics, and provide examples. 

4.2.1 Archetype 1: Station-Based Relocation 
Algorithm Adapted to Electric Vehicles 

The goal of relocation algorithms categorized as 

archetype 1 is to research how station-based 

relocation scheduling algorithms can be adapted to 

systems with specific operational requirements, like 

maintenance and charging of electronically powered 

vehicles (e.g., Ait-Ouahmed et al. (2018), Bruglieri et 

al. (2018), Gambella et al. (2018), Huang et al. 

(2020), Vasconcelos et al. (2017), and Wang et al. 

(2019)). Also, special requirements for staff 

rebalancing are considered in this context (e.g., 

Boyacı et al. (2017) and Santos and de Almeida 

Correia (2019)). Most of the researchers in this cluster 

developed and evaluated their algorithm design based 

on an artificial system with generated data for one 

single day of operation. The algorithms are mostly 

modeled as mathematical equations that resolve 

deterministic demand profiles. Solution optimality is 

often evaluated with simulations investigating the 

target functions of earnings and acceptance ratio. 

4.2.2 Archetype 2: Station-Based Relocation 
Algorithm to Schedule Relocations and 
Investigate System Sensitivity 

Relocation algorithms categorized as archetype 2 aim 

to determine how relocations in station-based systems 

should be scheduled in general (e.g., Di Febbraro et 

al. (2012), Jorge et al. (2014)) and how sensitive the 

relocation performance is to parameters like system 

size (e.g., Nourinejad and Roorda (2014)), number of 

rebalancing staff (e.g., Zakaria et al. (2014, 2018)), 

demand profiles (e.g., Lu et al. (2017)), or pricing 

(e.g., Pantuso (2022)). Algorithms considering the 

impact of rivalry are also part of this archetype (e.g., 

Martin et al. (2021), Yang et al. (2022)). Most 

researchers developed their algorithms on flexible 

and artificial systems with generated demand datasets 

covering one day of system operation. Demand is 

furthermore expected as stochastic probability 

dependent on related factors (e.g., demand is 

considered as a function of price). As for archetype 1, 

the algorithms are mostly modeled as mathematical 

equations that resolve deterministic demand profiles.  

In contrast to archetype 1, solution optimality is 

often evaluated through mathematical optimizations 

determining profitability parameters. 

 

4.2.3 Archetype 3: Station-Based Relocation 
Algorithm with Demand Forecast 

The objective of relocation algorithms categorized as 

archetype 3 is to extend relocation scheduling 

algorithms with strategies to forecast customer 

demand at pickup stations (e.g., Alfian et al. (2017), 

Wang et al. (2020, 2021), Zhao et al. (2022)). The 

algorithms are mostly designed along real-world 

reference systems in large metropolitan areas, where 

trip data from historical observations are available. In 

contrast to archetypes 1 and 2, constraints like 

parking spaces, staff availability and relocations, 

refueling requirements, or maintenance are 

disregarded. Besides operator-based relocations, 

some algorithms also consider user-based relocations 

(e.g., Lei Wang et al. (2019)) or relocations with 

autonomous vehicles (e.g., Brendel et al. (2017)). The 

demand forecasts are built on top of enriched input 

data and are mostly per-formed with machine 

learning. Solution optimality is often evaluated with 

simulations investigating the target functions of 

earnings and acceptance ratio. 

4.2.4 Archetype 4: Free-Floating Relocation 
Algorithm with Demand Forecast 

The objective of relocation algorithms categorizes as 

archetype 4 is to solve the rebalancing problem in 

free-floating systems. Special attention lays on 

demand forecasts (e.g., Brendel et al. (2018), 

Herrmann et al. (2014), and Weikl and Bogenberger 

(2015)) and the implementation of user-based 

rebalancing methods (e.g., Brendel et al. (2020, 

2022), Lippoldt et al. (2019), Schulte and Voß (2015), 

Wagner et al. (2015)). The algorithms are mostly 

designed along real-world reference systems, where 

trip data from historical observations are available. In 

contrast to the other archetypes, the concept of binary 

catchment areas and customer willingness to walk are 

partly considered. As for archetype 3, constraints like 

parking spaces, staff availability and relocations, 

refueling requirements, or maintenance are often 

disregarded. Demand forecasts are implemented 

without data enrichment and based on basic 

stochastics like average historical demand at a certain 

position and timespan. In simulations or real-world 

field studies, the algorithms are mostly evaluated in 

long-term cases (> 90 days). Target functions have an 

emphasis on relocation cost and acceptance ratio. 
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4.3 Analysis of Research Gaps 

First, we interpreted the empirical coverage of 

characteristics in our taxonomy (see Table 3) to 

derive general research gaps. Second, we analyzed 

the individual empirical coverage of each archetype 

to derive archetype-specific research gaps. 

In general, we can confirm two key findings by 

Brendel and Kolbe (2022). Their first finding was that 

some characteristics are especially underrepresented 

in research and often not considered or specified, such 

as parking space limitations, staff availability and 

relocations, maintenance, and recharging. Their 

second finding was that fleets are often seen as 

homogenous, although multiple vehicle types and 

customer requirements for fleet diversity exist.  

Our analysis furthermore reveals that research 

lacks contributions on free-floating systems, which 

are becoming increasingly popular and also share 

characteristics with other free-floating modes like 

bike and scooter sharing. Design knowledge from 

archetypes 1, 2, and 3 should be applied and, if 

necessary, adapted or extended to also work in the 

context of free-floating systems. To this end, the 

potential of enriching demand datasets with other 

features should be leveraged. This also includes 

finding features that allow modeling real 

unconstrained user demand instead of only relying on 

historical observations or statistic assumptions. 

Additionally, the relevance of the shape and nature of 

catchment areas and their influence on demand 

forecasts and relocation strategies should be further 

investigated and incorporated into algorithm designs. 

Another general gap is that carsharing systems are 

often isolated from rivalry and substitutional mobility 

modes. Consequently, research should investigate the 

impact of interdependency on operations considering 

the existence of overlapping service offerings. 

Finally, our analysis shows that the research 

community needs guidance in evaluating algorithms 

based on their impact on sustainability. 

More data from real-world scenarios should be 

incorporated for research that shares the goal with 

archetype 1. For example, the charging behavior and 

range of electric vehicles highly depend on 

temperature, which has consequences on system 

operation. Furthermore, the effect of adaption 

strategies should be observed over longer time ranges 

than one day since long-term sustainability of 

operation actions is one requirement for solution 

relevance. Analog to these gaps, research extending 

archetype 2 should incorporate more real-world data, 

especially to prove the long-term empirical validity of 

assumptions for the sensitivity of several parameters 

on customer demand. Furthermore, research should 

also pay special attention to avoid unintended 

consequences caused by the adaption of technologies 

like autonomous driving like an increase of empty 

trips. Our analysis also shows that research that 

considers the coexistence of user and operator-based 

relocations was rarely done. The main research gap 

for articles to complete archetype 3 is to investigate 

how operations under uncertain demand can be kept 

robust under consideration of internal requirements 

(e.g., staff scheduling) and constraints (e.g., 

recharging). Following our general finding that 

research should emphasize free-floating systems, our 

analysis also reveals some specific research gaps for 

archetype 4. Especially how to adopt relocation 

algorithms to operational constraints is not fully 

investigated for the availability of parking spaces, 

relocation of staff, and maintenance. Lastly, research 

on data enrichment in high spatiotemporal resolution 

should be an entry point for tailored relocation 

algorithms. 

5 DISCUSSION 

In the following, we discuss the theoretical and 

practical implications of our developed taxonomy and 

identified archetypes, followed by a description of the 

limitations of this study and an overview of 

opportunities for future research. 

Our taxonomy contributes twofold to theory. 

First, it structures properties of vehicle relocation 

algorithms along fine granular dimensions and thus 

gives guidance on how to describe such an algorithm. 

This especially contributes to the conservation and 

reusability of design knowledge for future research 

since it increases transparency, accessibility, and 

comparability of academic work. Putting a high 

emphasis on describing all aspects of problem space, 

solution space, and evaluation ensures the relevance 

and validity of novel phenomena. This could 

accelerate the research progress in the domains of 

sustainability, transportation, operations research, 

and (green) IS. Second, our derived research gaps 

direct the research community to relevant and 

unsolved research problems. Especially focusing on 

sustainability is a serious matter which should always 

be considered for evaluation aspects. 

Our taxonomy contributes to practice by guiding 

design knowledge generated by research to address 

concrete problem instances. This knowledge can be 

leveraged by practitioners leading to the solution of 

vehicle relocation challenges, gaining competitive 

advantages, and increasing the service value 
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proposition, especially in contrast to private car 

ownership. We also want to encourage operators to 

exchange more real-world data with research to 

unleash the full practice potential of the academic 

discourse. 

Regarding the limitations of this study, Nickerson 

et al. (2013) note that taxonomies can never be truly 

perfect and complete, but this does not preclude their 

utility. However, the practicality will become clearer 

as researchers and practitioners begin to use the 

taxonomy. One major limitation of our taxonomy is 

that it was built on an empirical knowledge base and 

does not incorporate design knowledge from practice. 

This, for example, leaves a blind spot for regulatory 

aspects influencing system operation and for the 

opportunities generated from profiling individual 

customer behavior. 

6 CONCLUSIONS 

In this study, we set out to develop a taxonomy of 

vehicle relocation algorithms (RQ1) and identify their 

archetypes (RQ2) and prevailing research gaps 

(RQ3). Based on a conceptual and empirical 

knowledge base, we derived a taxonomy with 26 

dimensions mapped to problem space, solution space, 

and evaluation. Afterward, we identified four 

archetypes of relocation algorithms with different 

aims. Our analysis shows the interdependence 

between specific problem, solution, and evaluation 

instances in this context. Lastly, we identified and 

presented research gaps to guide subsequent research 

in IS, sustainability, transportation, and operations 

research. 
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APPENDIX  

Table 3: The Taxonomy for Carsharing Relocation Algorithms and Empirical Coverage of Characteristics. 

  Dimension Characteristics 

P
ro

b
le

m
 S

p
a

ce
 

S
ys

te
m

 C
h

a
ra

ct
er

is
ti

cs
 

Distribution Model 
Station-Based 

79% 

Free-Floating 

21% 

Reference System 
Real World System 

57% 

Artificial or Flexible System 

43% 

Region Size 
Large Metropolitan 

45% 

Metropolitan 

30% 

Small Urban 

17% 

Medium Size Urban 

9% 

System Size [Cars] 
Midsize System (< 1000) 

43% 

Small System (< 100) 

26% 

Not specified 

19% 

Large System (> 1000) 

13% 

D
em

a
n

d
 P

ro
fi

le
 

Input Data 
Trips 

57% 

Stochastic Demand 

21% 

Agent-Based Behavior 

9% 

Search Requests 

9% 

Reservations 

4% 

Dataset Source 
Generated / Artificial 

47% 

Historic Observation 

40% 

Real-time System Data 

13% 

Time Span 
1 Day 

45% 

2 - 90 Days 

26% 

> 90 Days 

21% 

Not specified 

9% 

C
o

n
st

ra
in

ts
 

Vehicle Fleet 
Homogenous 

96% 

Heterogenous 

4% 

Vehicle Engines 
Combustion 

55% 

Electric 

40% 

Both 

4% 

Catchment Area 
Not considered 

77% 

500 meters 

19% 

750 meters 

2% 

1000 meters 

2% 

Acceptance Degeneration 
Not considered 

77% 

Binary 
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62% 
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38% 
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60% 
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2% 
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Earnings 
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Simulation 
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