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Abstract: Data from hyperspectral remote sensing are promising to extract and classify crop characteristics, because it 
provides accurate and continuous spectral signatures of crops. This paper focuses on data acquired by 
PRISMA, a high-resolution hyperspectral imaging satellite. Due to this large data availability, huge training 
datasets can be built to feed modern deep learning algorithms. This paper shows a spectral-temporal data 
processing based on random forest to perform feature selection, and on two-dimensional convolutional neural 
network to carry out classification of crops, exploiting variations in respective phenological phases during the 
annual life cycle. The proposed solution is described via a pilot case study, involving a field farmed with olive 
groves and vineyards in Apulia, Italy. Moreover, one-dimensional convolutional neural networks are used to 
compare classification accuracies. Early results are promising with respect to the literature. 

1 INTRODUCTION 

Agriculture represents an ideal application domain 
for the use of hyperspectral imaging technology due 
to several concurrent factors such as high biological 
complexity, wide variety of plant growth conditions, 
climatic conditions, soil types, and crops. 

Data from hyperspectral remote sensing can be 
used to extract and classify crop characteristics. 
Typically, since it is unstructured data, convolutional 
architectures can handle this application effectively 
because they work on both the spatial and spectral 
dimensions of the data (Bhosle, 2022). 

Thanks to its high spectral resolution and the 
resulting sensitivity to subtle spectral variations 
between ground objects, hyperspectral data have been 
used with excellent results to identify crop types and 
varieties in order to obtain spatial distribution maps 
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and to acquire information on the structural, 
biochemical and physiological properties of plants. 
However, it should be emphasized that hyperspectral 
data with medium to high spatial resolution, which 
are typically used for accurate crop classification, are 
unsuitable for use at regional- or country-level for this 
application purpose, precisely because of their high 
spectral and spatial dimensionalities and the resulting 
excessive computational workload required. 

Therefore, in the near future the identification of 
both dimensionality reduction strategies and 
methodologies that make use of classifiers that can 
speed up "near real-time" processing of hyperspectral 
data will be of critical importance for solving 
classification problems at regional- or country-level 
(Zhang, 2019). 
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1.1 Land Use and Land Cover 

The task known as Land Use and Land Cover (LULC) 
refers to segment, that is, to classify each pixel of a 
remote sensing image, or to identify particular objects 
or regions within the image. In literature, this task, 
and more specifically crop segmentation, is by far the 
most likely to be approached with deep learning 
techniques. Land cover mapping is considered the 
most important descriptor of terrestrial environmental 
dynamics (Herold, 2006). 

Automated methods represent the least reliable 
system, but simultaneously the easiest to scale. In 
summary, the research goal in land use and land cover 
and in crop segmentation task is to improve the 
quality of automated methods, with the aim of 
equating their reliability to that of human experts. 

Crops’ phenological phases are specific plant 
growth stages influenced by climatic conditions. 
Satellite remote sensing provides temporal series on 
vegetation development with a short revisiting period. 
It provides data source for monitoring vegetation 
phenology, considering the full spectral information 
from multispectral and hyperspectral imagery. 
Analysis of satellite images is linked to the seasonal 
variation of cultivated surfaces such as the beginning 
of the vegetative season (green-up), the peak of the 
growing season, and the end of the growing season, 
i.e. the senescence, by using spectral bands or 
vegetation indices that best describe these changes. 
The use of phenology can be employed as a classifier 
to map crops. The accuracy of classification is 
affected by both the distribution of vegetation cover 
within the pixel and the specificity of the spectral-
temporal signatures of different crops to be identified. 
The highest accuracy for recognizing different 
phenological phases is achieved by using 
combinations of bands that fall within the near-
infrared (NIR), red-edge, and shortwave infrared 
(SWIR) domains (Abubakar, 2023; Peng, 2023). 

In most studies involving the implementation of 
automated systems for mapping land use and land 
cover, supervised learning models are typically used, 
and there are basically three methods for constructing 
training datasets: manual field inspection, visual 
inspection of remote sensing images, and application 
of automated methods. Manual inspections of the area 
to be segmented are the most reliable, but also the 
most difficult and expensive method. Using an 
automated method is less reliable and cheaper, but it 
greatly limits the models' ability to learn the actual 
distribution of classes in the images, misleading the 
models to focus on the dynamics of the automated 
method used for labeling. Therefore, in some papers 

the authors use a combination of the previous two 
methods, instead in other papers labeling is done 
completely through visual inspection of the remote 
sensing images, which is still a less reliable method 
than manual inspection in the field (Victor, 2022). 

1.2 Deep Learning Models 

In literature, various deep learning architectures are 
widely used in the context of land use and land cover 
tasks, as well as in agricultural crop segmentation. 
Aside from the great popularity of these types of 
tasks, the main reason for success lies in the relative 
ease of obtaining data, which enables the construction 
of sufficiently large training datasets to feed modern 
deep learning algorithms. In fact, studies that focus 
on these applications usually work with datasets 
containing 2000 to 10000 samples that, although 
small by deep learning standards, are significantly 
larger than datasets used in other precision 
agriculture-related applications. Typically, the best 
modern deep learning methods, namely convolutional 
neural networks (CNNs), recurrent neural networks 
(RNNs), and Transformers (neural networks that rely 
on the attention mechanism), provide more accurate 
results than traditional machine learning methods, 
including decision trees, support vector machines, 
random forests, and multi-layer perceptrons (Victor, 
2022). An early attempt of using modern deep 
learning techniques for land use and land cover was 
in 2017, when Kussul et al. proposed a custom 
architecture consisting of five convolutional layers 
and, using a dataset composed of 100000 pixels 
labeled through manual field inspection, found that 
convolutional neural networks working on two 
dimensional axes (2DCNNs) provided more accurate 
results than random forests, multi-layer perceptrons, 
and convolutional neural networks working on only 
one dimensional axis (1DCNNs). 

In most works using two-dimensional (2D) 
convolutional neural networks to segment crop types, 
the authors have built custom network architectures 
both in the arrangement and type of layers and in the 
number of units per layer, typically preferring 
shallower networks with fewer than 10 hidden layers. 
In contrast, only a few authors use more common and 
well-known architectures typically used in generic 
computer vision tasks, such as VGG, ResNet and 
UNet (Victor, 2022; Orlandi, 2023). Spatiotemporal 
data processing can be accomplished through two 
main classes of algorithms: the first is convolutional 
neural networks working on three dimensional axes 
(3DCNN) (Ji, 2018; Gallo, 2021), while the second is 
the use of a convolutional network working on two 
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dimensional axes (2DCNN) and cascading a recurrent 
neural network (RNN) with LSTM or GRU cells to 
process the outputs of the former (Rußwurm, 2020; 
Teimouri, 2019). However, the two previous methods 
have not been compared with each other. 

In generic computer vision tasks, Transformers 
architectures (Dosovitskiy, 2021; Orlandi, 2022), 
based on the self-attention mechanism, represent the 
state of the art on major industry benchmarks, so one 
might expect them to be so on satellite image 
classification tasks as well. However, in works 
comparing a Transformer network with other modern 
deep learning methods, the Transformer network does 
not always achieve more accurate results (Rußwurm, 
2020; Tang, 2022; Sykas, 2022). In this regard, it is 
important to point out that typically Transformers 
networks require more training data even than 
convolutional neural networks (even the ImageNet 
dataset that collects over one million labeled images 
turns out to be too small). So it is simply possible that 
the datasets used in the studies mentioned above are 
not large enough for Transformers networks to begin 
to take full advantage of their features and thus 
outperform CNNs, and LSTMs or GRUs. 

This paper shows a spectral-temporal data 
processing method based on random forest, followed 
by a two-dimensional convolutional network. A 
comparison with a mono-dimensional convolutional 
network is also provided. 

The paper is structured as follows. Section 2 
describes the materials and method: overall data 

processing workflow is described by Section 2.1, 
whereas detailed data preparation and processing are 
covered by Section 2.2. In Section 3, experimental 
results are shown. Finally, Section 4 draws 
conclusions. 

2 MATERIALS AND METHOD 

2.1 Overall Data Processing Workflow 

Figure 1 describes the overall data processing 
workflow. On the top left, the hyperspectral cube 
represents the data acquired by PRISMA satellite, 
processed by the ground segment processing chain to 
provide an L2D product, already atmospherically 
corrected and geocoded. The 3D-hyperspectral 
images are then transformed into a bidimensional 
matrix, to feed the random forest model. When used 
as a classifier, the random forest model provides 
directly the target class (olive/grapevine). In addition, 
it provides the most important features in order to 
dimensionally reduce the 3D-hyperspectral images 
throughout the spectral axis. Each pixel of the 
reduced images is then projected onto the spectral-
temporal image. Finally, the spectral-temporal image 
is considered as an input of the 2D Convolutional 
Neural Network, which in turn provides the target 
class. The next section illustrates a detailed pipeline 
via a pilot example.

 

Figure 1: Overall data processing workflow.
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2.2 Detailed Data Processing  

The dataset was generated from five hyperspectral 
images acquired by means of the payload of the 
PRISMA mission satellite (eoPortal, 2024). This 
payload consists of an electro-optical instrument, 
based on a pushbroom scanning technique, achieved 
via a high spectral resolution imaging spectrometer. 

The spectrometer works in the range of the 
electromagnetic spectrum 0.4-2.5µm, covering both 
the visible and near-infrared band (VNIR 0.4-1.0µm) 
and the mid-infrared band (SWIR 0.9-2.5µm), 
supplemented with a medium-resolution 
panchromatic camera working in the spectral range 
0.4-0.7µm (Candela, 2016).  

The number of spectral channels is 66 for the 
VNIR band and 173 for the SWIR band. However, in 
this research only 63 channels were considered for the 
VNIR band, due to the non-availability of 3 channels, 
and 167 channels for the SWIR band, due to the non-
availability of 3 channels and the partial overlap of 
the two spectral bands. Table 1 shows some 
geometric characteristics of the images used in the 
study, at 2D processing level: Acquisition Time 
(Time), Average Solar Zenith (ASZ) Angle in 0-90 
deg., Average Observing (AO) Angle in 0-90 deg., 
Average Relative Azimuth (ARA) Angle in 0-90 
deg., and Size (pixel). 

Table 1: Geometric characteristics of the PRISMA products 
used. 

Time 
ASZ 

Angle 
AO 

Angle 
ARA 
Angle 

Size 

23/04/2022 
09:51:35 

22.17° 1.42° 29.75° 
1191 × 
1205 px 

20/06/2022 
09:51:33 

15.41° 1.62° 21.21° 
1190 × 
1212 px 

19/07/2022 
09:51:51 

17.03° 1.22° 20.49° 
1185 × 
1235 px 

31/10/2022 
09:45:13 

40.89° 10.97° 44.23° 
1191 × 
1258 px 

05/12/2022 
09:48:34 

45.88° 6.11° 43.63° 
1188 × 
1214 px 

Figure 2 represents a sample PRISMA image 
acquired on 05/12/2022, considering the red, green 
and blue (RGB) channels at the wavelengths of 
664.8941nm, 559.02026nm, and 489.79486nm, 
respectively. The image, characterized by a swath 
coverage of 30Km and a Ground Sampling Distance 
(GSD) of 30m, was orthorectified by the ground 
segment processing chain (L2D product). 

The study area is located in Apulia, southeast 
Italy, and is mainly characterized by agricultural land 
planted with olive groves and vineyards. The area of 

interest was selected based on the geographic 
coordinates of a shapefile containing the ground truth, 
i.e., the geometries of the olive and grapevine 
growing areas. 

 
Figure 2: A PRISMA image in RGB channels acquired on 
05/12/2022. 

Figure 3 shows a sample area of interest, where 
pixels that include olive and vine crops have been 
highlighted with different colors. The area of interest 
has a total size of about 162ha, out of which about 
123ha is planted with olive groves and about 39ha is 
planted with vineyards. 

 

Figure 3: Area of interest for olive and vine crops. 

Figure 4 shows the average pixel spectral 
signatures of the olive grove (in green) and vineyard 
(in red) cultivated areas for the image acquired on 
05/12/2022. Specifically, the graph shows the 
spectral reflectance values at the surface, compared to 
the central wavelengths of the spectral channels 
included into the VNIR and SWIR bands. 
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Figure 4: Average spectral signatures related to olive grove 
and vineyard areas for image acquired on 05/12/2022. 

In this work, a pixel-wise classification approach 
was used, i.e. the model input is a single pixel. The 
model output is represented by the crop class located 
in the corresponding input pixel, i.e., olive or 
grapevine. In order to take advantage of information 
contained in the temporal dimension, mainly related 
to the different variations in the spectral signature of 
plants during their respective annual phenological 
cycle, the pixels of the collected five images were 
stacked according to the nearest neighbor approach, 
by taking as reference the pixel positions of the first 
image (master) in time order. However, due to the 
differences in acquisition geometries, it was observed 
that the positions of the stacked pixels could have 
distances comparable to the ground sampling 
distance, resulting in only partial overlapping of the 
pixel areas involved, and correspondingly of the pixel 
spectral signatures. Therefore, the reflectance value 
of any single pixel was replaced by the average 
reflectance value of its Moore neighborhood. As a 
result, the overlapping areas of the wider stacked 
pixels can fully include original areas of the single 
pixels, also making the distribution of reflectance 
values more regular. 

In order to reduce the chance of having pixels with 
spectral reflectances resulting from the contribution 
of both plant species or roads between fields, pixels 
located near the perimeters of crop field geometries 
were removed. In addition, to improve the balance of 
the dataset, pixels from two small areas located in the 
southwestern part of the cultivated field were 
removed, because characterized by a different 
planting orientation. Similarly, pixels from a larger 
area planted with olive groves including also 
uncultivated areas were removed. 

Figure 5 highlights the positions of the pixels 
considered in the dataset (green dots), compared to 
the entire original area of interest (orange geometric 
area). The resulting whole dataset consists of 1042 
stacks made up of five pixels each. Specifically, 721 
samples are related to olive grove areas and 321 

samples are related to vineyard areas. In addition, 
spectral reflectance values in the 230 channels of the 
PRISMA bands are associated with each pixel. 

 

Figure 5: Set of pixels (green dots) considered in the 
dataset. 

3 EXPERIMENTAL RESULTS 

The agricultural land-use classification (olive groves 
vs vineyards) methodology designed in this work 
consists of two basic steps: the first step selects the 
PRISMA spectral channels that are more significant 
to discriminate between the crop species, while the 
second step aims to carry out the actual classification. 

Spectral channels selection was achieved through 
the Random Forest algorithm by classification. The 
dataset was modelled by merging all the pixels of the 
five available images (5210 overall samples) and 
considering the spectral dimension for the selection 
of relevant features. The fitting of the Random Forest 
model was performed by a 5-fold cross-validation. 
Table 2 shows the overall accuracy of the model over 
the five validation sets, in terms of 95% confidence 
interval of the mean value. 

Table 2: Cross-validation for Random Forest classification. 

Single folds: 

0.879078 

0.832053 

0.815739 

0.924184 

0.887715 

Overall accuracy: 

0.87 ± 0.04 
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When providing the ranking of features’ 
importance, the Random Forest algorithm computes 
the importance score for each feature, then it scales 
the results so that the sum of all importances is equal 
to one. In order to reduce the dimensionality of the 
dataset along the spectral axis, a number of spectral 
channels were selected such that the sum of relative 
importances was equal to 0.95. The resulting dataset 
kept 141 spectral channels from the starting 230. 
Table 3 contains the top five spectral channels in 
order of importance and shows that the spectral band 
between 1018nm and 1047nm is critical for 
discriminating between olive groves and vineyards, 
with a cumulative importance of more than 14% of 
the overall importance. 

Table 3: Relative importance of the top five spectral 
channels. 

Rank Band (N.) 
Central 

Wavelength(nm) 
Importance 

(%) 

1 71 1047.675 4.02 

2 69 1029.344 3.87 

3 68 1018.5357 3.36 

4 70 1037.9878 2.93 

5 40 733.9552 2.83 

The dataset used for the actual final classification 
was modeled in an original way, that is, by 
representing the individual samples as single-channel 
spectro-temporal images. Figure 6 shows the new 
representation of the average spectral signatures of 
the two crops, which also highlights the temporal 
dimension (height size) of the pixels to be classified.  

 

Figure 6: Spectro-temporal model of pixels average spectral 
signatures. 

The agricultural land use classification was 
performed through a deep learning architecture based 
on convolutional neural networks in two dimensions 
(2D-CNN), in which convolutions are implemented 
along spectral and temporal dimensions instead of 
conventional spatial dimensions (Debella-Gilo, 
2021). The main hyperparameters of the deep 
learning architecture were tuned by means of a 5-fold 
grid search cross-validation, however considering a 
small set for the hyperparameters’ values. Table 4 
shows the overall accuracy of the 2D-CNN-based 

classification model on the five validation sets and the 
95% confidence interval of the mean value. 

Table 4: Cross-validation for 2D-CNN classification. 

Single folds: 

0.909091 

0.961723 

0.908654 

0.927885 

0.913462 

Overall accuracy: 

0.92 ± 0.02 

In order to assess the effectiveness of the 2D-CNN 
over the 1D-CNN, Figure 7 shows the variability of 
accuracy in the grid search process, for both 2D- and 
1D-CNNs, using the same hyperparameters’ grid. 
Note that 1D-CNN is applied only on the spectral 
dimension. In particular, the figure clearly shows that 
the 2D-CNN achieves a more stable and better 
accuracy, thanks to temporal information. It is worth 
noting that the experiment is carried out with only 
five temporal slices. 

 

Figure 7: Variability of accuracy in the grid search process, 
for each type of CNN. 

4 CONCLUSIONS 

In this paper, deep learning has been used with the 
PRISMA satellite hyperspectral data, for the purpose 
of semantic segmentation of crops. A detailed data 
pipeline and a classification approach based on both 
spectro-temporal data modeling and two-dimensional 
convolutional neural networks are discussed and 
compared with an approach based on one-
dimensional convolutional neural network. 
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The adopted approach, which provides promising 
results, can be considered as a first step to further 
investigate the same satellite data sets over a longer 
period, with the final aim of monitoring the 
phenological variations. Moreover, the integration 
with other satellite data can be experimented in order 
to improve the overall accuracy. 
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