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Abstract: Query optimization strategies is an important aspect in database systems that have been mainly studied only
from the perspective of reducing the execution time, neglecting the analysis of their impact on energy con-
sumption. We perform an empirical evaluation for understanding the impact of end-to-end query optimization
strategies on the power consumption of database systems, from both client and server perspectives. We per-
form tests over a PostgreSQL database for two optimization strategies (i.e., indexation and data compression)
using the TPC-H benchmark, configured with 22 queries on a 1GB dataset. To measure the energy consump-
tion of both client and server, we propose Juliet, a C++ agent for monitoring and estimating Linux processes
energy consumption in Joules (J). Experimental results show that indexation is more effective than data com-
pression to reduce the energy consumed by the execution of the majority of the 22 queries tested.

1 INTRODUCTION

Database Management Systems (DBMS), specif-
ically Relational Database Management Systems
(RDBMS), are software components that could re-
quire a lot of hardware resources for a database with
a lot of information, and this possibly could lead to a
lot of power consumption at several modules on the
servers, as well as on the client side.

Currently, there exist studies approaching the
energy-efficiency of RDBMS based on prediction
models (Guo et al., 2022), by proposing guidelines
to reduce energy waste in terms of improving query
planning, processing, and execution (Stavros, 2009;
You et al., 2020), or by measuring the energy con-
sumption with tools and benchmarks (Guo et al.,
2022). In particular, query optimization strategies
is an important aspect in database systems that have
been studied only from the perspective of perfor-
mance improvements in their operations, rather than
on the energy costs of their operations. Neverthe-
less, the goal of the query optimization would move
to choosing the best trade-offs between different met-

rics in order to meet the multi-criteria quality of ser-
vice that consumers have requested. It is important
to look into the potential trade-offs between various
metrics and resources, as well as the intricate rela-
tionships between these metrics and how they affect
query processing as a whole (Guo et al., 2022).

To better understand the impact of end-to-end
query optimization strategies on the power consump-
tion of RDBMS, from both client and server perspec-
tives, we perform an empirical evaluation by consid-
ering two optimization strategies (i.e., indexation and
data compression) and their combination. We use
TPC-H benchmark1, configured with 22 queries on a
1GB dataset, to do tests over a PostgreSQL RDBMS.
To monitor the power consumption of both client and
server, we propose Juliet, a C++ agent aimed to mon-
itor and estimate the energy consumption of Linux
processes. Experimental results show that indexation
is more effective than data compression to reduce the
energy consumed by the execution of the majority of
the 22 queries of the TPC-H benchmarking. The com-

1https://www.tpc.org/tpch/default5.asp
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Table 1: Related work. Where: LSSVM = Least Square Support Vector Machine, PM = Predictive Model.

Work Measure Method DBMS Benchmark
Optimization stra-
tegy/Operations

Side

(Yang et al.,
2023)

Energy LSSVM, sensors,
PM

Oracle 11g TPC-H - Client (C)

(Karyakin and
Salem, 2017)

Background and
active power

SIMM riser and
linear power model

Shore-MT, MonetDB TPC-C, TPC-H - Server (S)

(Mahajan et al.,
2019)

Performance,
power, energy

Self-built power
measurement tool

MySQL, MongoDB,
Cassandra

YCSB Twitter
data

Index, ordered writes,
aggregations, row
caching, compaction

Client

(Koçak et al.,
2018)

Average power UPM EM100 En-
ergy Meter

IBM DB2 TPC-H Compression, material-
ized query tables, index

Client

(Lella et al.,
2023)

Energy, Mean
Energy

PSUTIL, python
package

MySQL, PostgreSQL,
MongoDB, Couchbase

Netflix Userbase,
SMS Spam coll.

SELECT, INSERT,
DELETE, UPDATE

Client

(Xu et al., 2015) Energy RLS, Wattsup
power, and PM

PostgreSQL TPC-H, SDSS - Server

(Rodrı́guez et al.,
2013)

Energy, power,
time

Wattsup power PostgreSQL TPC-DS - Server

(Roukh et al.,
2016)

Time, power (W) Watts Up Pro PostgreSQL TPC-H, SSB - Server

(Guo et al.,
2017)

Time, energy (J),
power (W)

WT3000, power
analyzer, and PM

Oracle 11g TPC-C, TPC-H Buffer Cache, Shared
Pool

Server

(Liu et al., 2013) Time, power PM1000, power
analyzer, and PM

PostgreSQL 9.1.8 TPC-H - Server

(Procaccianti
et al., 2016)

Time, energy Watts Up Pro PLAIN SQL, Propel,
and TinyQueries

- CREATE, READ, UP-
DATE, DELETE

Client

Our proposal Time, energy Juliet Postgres TPC-H Index, compression C & S

bination of indexation and data compression does not
outperforms the indexation.

2 RELATED WORK

To better understand the different components of
DBMS that impact on the energy consumption, it is
necessary to consider several aspects of the database
system in the evaluation process. In particular, we
consider that the hardware components (e.g., CPU,
memory, disk), the optimization strategies, and the
evaluated execution side (client or server) are key
aspects that might be taken into account during the
evaluation process. In this section, we describe re-
cent studies focused on at least one of these aspects,
whether based on prediction models for energy con-
sumption estimations (Yang et al., 2023; Karyakin
and Salem, 2017), based on empirical evaluation of
optimization strategies and operations using measure
tools or benchmarks (Mahajan et al., 2019; Koçak
et al., 2018; Lella et al., 2023), or based on energy-
efficient query optimizers (Xu et al., 2015; Rodrı́guez
et al., 2013; Roukh et al., 2016; Guo et al., 2017; Liu
et al., 2013; Procaccianti et al., 2016). Additionally,
we look at the measures considered, the method used
for evaluation, the DBMS evaluated, and the bench-
mark used on each study reviewed.

Table 1 summarizes the works reviewed in this

section. Estimation models have been successfully
used to predict energy consumption with measures
such as power and energy workloads and memory us-
age. Most of the reviewed works are in the context of
query optimizers, however, despite their critical sig-
nificance in decision support systems, there is no ev-
idence that power predictions are used as the primary
goal when optimising large join queries (Rodrı́guez
et al., 2013). Our work is more related to those using
query optimization strategies, such as indexes or com-
pression. But, these works do not perform an empiri-
cal evaluation of the end-to-end server-client applica-
tion to evaluate the impact of energy consumption of
database query optimizations. Furthermore, many of
them concentrate the energy consumption analysis on
the server side and neglect the analysis on the client
side; while the studies that perform the analysis from
the client perspective do not carry out a fine analysis
to distinguish the measurements by module.

3 STUDY DESIGN

From the the literature review, we realize that only
few studies perform empirical assessment to measure
the impact of energy consumption in applying differ-
ent database query optimization strategies (Mahajan
et al., 2019; Koçak et al., 2018); however, they do not
consider the analysis of the end-to-end execution of
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client-server applications. We are interested in evalu-
ating that aspect. Thus, the goal of this study is to in-
crease developers awareness about energy consump-
tion for relational databases, from which they can
deduce database optimization strategies guidelines in
the context of the development of client-server appli-
cations. From this goal, the following research ques-
tions are derived:
RQ1. Does the implementation of database optimiza-
tion strategies affect the energy consumption of client-
server applications?
RQ2. Does the addition of database optimization
strategies affect the energy consumption of client-
server applications?

To answer these RQ, we implemented two rela-
tional database optimization strategies (i.e., index-
ation and data compression) on TPC-H and devel-
oped client-server Java applications able to inten-
sively access data coming from the TPC-H bench-
mark. Figure 1 depicts the architectural design of
the experiments. For the server side, we use Post-
greSQL 16 database system that is open source and is
a commonly used for developers and supports indexa-
tion and compression as optimization strategies. The
TPC-H benchmark, implemented in the server, con-
sists of a suite of business oriented ad-hoc queries and
concurrent data modifications. The queries and the
data populating the database have been chosen to have
broad industry-wide relevance2. This benchmark con-
tains 22 queries in total with a dataset with different
sizes, from which we select the 1GB dataset. For
the implementation of the benchmark in PostgreSQL,
we use an implementation that offers a Python script
to create the query files and the databases and loads
the information of the databases based on the TPC-
H benchmark3. The Java client application is im-
plemented and configured to execute each of the 22
queries of the TPC-H benchmark.

Our experiments are setup using four different
configurations at the server: i) without strategies

Java
Application

22 SQL 
queries 

implemented 
of TPC-H

CLIENT
CONFIGURATION

i) PostgreSQL database 
system without strategies

1GB of dataset from TPC-H

SERVER CONFIGURATIONS

ii) PostgreSQL database 
system with compression

iii) PostgreSQL database 
system with indexes

iv) PostgreSQL database 
system with compression

and indexes

Figure 1: Architectural design of the experiments.

2https://www.tpc.org/tpch/default5.asp
3https://github.com/Data-Science-Platform/tpch-pgsql.

(called base); ii) with compression and without in-
dexation (called compression); iii) with indexation
and without compression (called index); and iv) both
compression and indexation enabled (called index-
compression).

We create the indexes manually following the
method provided by Martins et al., who indicate ”cre-
ate indexes for the columns designated as foreign keys
and to the columns in join operations or the columns
used under the conditions of WHERE clauses” (Mar-
tins et al., 2021). Regarding the compression, we use
the functionality pg squeeze of the PostgreSQL ex-
tension4 to compress databases once they are loaded.

Table 2 shows the storage usage for each config-
uration. As expected, the configurations with com-
pression takes up less storage than other configura-
tions and indexes without compression takes the high-
est storage.

We identify as a hypothesis that the database op-
timization strategies influence the energy consumed
by client-server applications. In order to evaluate the
extent of this influence, we collect the energy con-
sumption in Joules (J) through Juliet (see Section 4),
at the client and the server. The PostgreSQL applica-
tion is analyzed during the execution of the query for
each query in each iteration and its estimated energy
consumption is returned in Joules.

On each test, server and client are executed in the
same dedicated computer. The server is an instance of
the PostgreSQL service and the client is the Java pro-
gram used to run all the queries, which is the unique
user connected to the server. The experiments were
conducted in a 8th generation Intel Core i7 proces-
sor, 12 cores, and 4 threads per core, a frequency of
3.75GHz, 16GB of RAM and 500GB of HDD, and
Linux Mint 21.1 GNU/Linux Operating System, Java
11, and PostgreSQL 16.

Algorithm 1 presents the scenario of experiments
execution, which requires as inputs: i) the list of op-
timization strategies (base, index, compression, and
index-compression); ii) the number of iteration for
managing the fluctuations values of metrics – i.e., 30
in our experiments; and iii) the list of queries to be ex-
ecuted (i.e., the 22 queries of the TPC-H benchmark).

Per each optimization strategy in the list of
strategies (lstOpt), we first delete the database if it is
already created and we then create the database in the

Table 2: Storage usage for each optimization.

No compression Compression
No index 1741 MB 1476 MB
Index 2512 MB 2246 MB

4https://github.com/cybertec-postgresql/pg squeeze
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Require: lstOpt; // base, index, compression, index-compression
numIterations = 30; // number of iterations
lstQueries; // list of queries (22 queries en total)

Ensure: collect metrics for the analysis of energy consumption of a
client-server application

1: for optimization in lstOpt do
2: delete the database if it already exists
3: create the database according to the configuration of

optimization
4: for query in lstQueries do
5: for i in numIterations do
6: restart the service of database server
7: start monitoring tools
8: execute query in the database server with the config.
9: collect metrics (execution time from client, energy

consumption from client and server)
10: stop monitoring tools
11: end for
12: end for
13: end for

Algorithm 1: Scenario of execution of the experiments.

PostgreSQL server taking into consideration the
configuration provided by the chosen optimization
strategy (line 1 and line 2, in Algorithm 1). For in-
stance, if the strategy is base, we create the database
without any strategy, whilst if the strategy is in-
dex we create the database and we then add the in-
dexes, similar to the strategies compression and index-
compression. Once the database is created (line 3),
per each query in the list of queries (lstQueries),
we run 30 executions (line 4 and line 5) in order to
manage the energy fluctuations that the energy moni-
toring tools experience. Per each iteration, we restart
the service of the database server in order to have the
same conditions for each execution (line 6), we then
start the monitoring tools (line 7) and execute the cho-
sen query in the database that was configured with
the optimization strategy (line 8). Finally, per each
iteration, we collect metrics related to execution time
from the client side and energy consumption from the
both client and server sides (line 9). This process is
repeated for all iterations, queries, and optimization
strategies.

4 JULIET: MONITOR OF
ENERGY CONSUMPTION

Juliet is a software tool for monitoring the energy con-
sumption of processes executing in a Linux-based op-
erating system. It takes advantage of the RAPL in-
terface provided by Intel processors, which reports
an estimate in microjoules of the accumulated energy
consumption in real time of the processor in various
power domains (e.g., CPU or RAM). Juliet accesses
process and CPU usage statistics located in /proc/

and performs periodic readings at regular and con-
figurable intervals to monitor the percentage of to-
tal CPU usage of the system and the percentage of
CPU usage allocated to a target process. Based on
these percentages and the total energy consumption
reported by the RAPL interface, the percentage of the
energy corresponding to the target processes is esti-
mated. Juliet is written in C++ Version 11, comprised
of four main classes: RaplLinux class that manages
the interaction with the Linux RAPL interface; CPU
class for access and compute the CPU statistics, as
well as associated functions; System class that man-
ages the processes, the system load among other func-
tionalities; and Monitor class that handles the mon-
itoring and recording of results. Juliet also searches
for all processes that match a given name and ana-
lyzes the energy consumption of all of them.

5 RESULTS

To answer the research questions (RQ), we first an-
alyzed the time of execution of the queries for the
different configurations with the purpose of assuring
that the database optimization strategies have been
well-applied on the TPC-H benchmarking. For all
of the queries and strategies the expected reduction
of the execution time was obtained, however for the
space reasons, we do not present these results in
this paper. We next perform a statistical analysis
to know in which extent the database optimization
strategies (negatively or positively) impact the energy
consumed by the execution of the 22 queries of the
TPC-H benchmarking in the client-server application.
Results of this analysis are introduced in Table 3 and
Table 4. To get these values, we are guided by a set of
steps described as follows:
Step 1: we first analyze the distribution of the en-
ergy consumption measurements (in Joules) collected
from the experiment. The analysis is made for the
client and server sides. To do that, we calculate the
average values of the energy consumption collected
from the 30 iterations executed per each query and
per each strategy (see columns 3 and 7 of Table 3 and
Table 4). We then calculate the relative standard de-
viation of the energy consumption of the previous 30
iterations (see columns 4 and 8). These relative stan-
dard deviations show that the fluctuation of values are
small (i.e., less than 1) so the average values can be
used as representative values for the 30 iterations.
Step 2: we next analyze if there is any significant
difference of the energy consumption measurements
between the execution of the 22 queries by apply-
ing a database optimization strategy, i.e., index, com-
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Table 3: The distribution of the energy consumed by the queries Q01 to Q11. Where: B = Base, Index = Index, C =
Compression, IC = Index and Compression, AEC = average of energy consumption (EC in Joule unit), RSEC = relative
standard deviation of EC, DEC = difference of EC vs Base, W= Wilcoxon values vs Base.

Client Server
AEC RSEC %DEC W, p-value AEC RDEC %DEC W, p-value

Q01

B 25.28 0.12 – – 320.26 0.03 – –
I 22.34 0.10 11.63 200, = 0.0001 139.65 0.07 56.39 0, < 2.2e-16
C 24.04 0.07 – 344, = 0.1194 318.36 0.01 – 454, = 0.959
IC 22.74 0.08 10.04 213, = 0.0003 135.74 0.05 57.61 0, < 2.2e-16

Q02

B 19.71 0.22 – – 1.84 0.45 – –
I 16.45 0.11 16.48 242, = 0.0018 7.62 0.10 -313.5 900, < 2.2e-16
C 18.39 0.12 – 423, = 0.6973 8.38 0.11 -355 900, < 2.2e-16
IC 18.17 0.1 – 437, = 0.8545 7.49 0.11 -306.5 900, < 2.2e-16

Q03

B 22.09 0.14 – – 60.22 0.07 – –
I 19.50 0.09 11.74 232, = 0.001 57.52 0.04 4.48 251, = 0.0029
C 19.80 0.11 10.4 269, = 0.007 53.62 0.04 10.96 18, = 2.7e-14
IC 18.57 0.08 15.95 132, = 6.2e-07 54.48 0.05 9.52 70, = 4.8e-10

Q04

B 18.95 0.09 – – 6.15 0.24 – –
I 16.62 0.10 12.31 109, = 1.1e-05 3 0.19 51.23 2, = 1.6e-14
C 16.34 0.10 13.76 96, = 2.6e-06 4.25 0.29 30.91 125, = 5.01e-05
IC 16.44 0.08 13.23 76, = 2.3e-07 2.76 0.22 55.06 2, = 1.6e-14

Q05

B 18.78 0.13 - - 21.43 0.06 – –
I 18.32 0.11 – 387, = 0.3581 26.50 0.07 -23.68 892, = 1.13e-15
C 18.12 0.12 – 387, = 0.3581 18.18 0.1 15.13 53, = 3.57e-11
IC 19.14 0.11 486, = 0.6022 25.04 0.08 -16.84 860, = 3.63e-12

Q06

B 19.58 0.09 – – 35.49 0.05 – –
I 18.94 0.11 – 342, = 0.1124 34.72 0.06 – 347, = 0.1304
C 18.30 0.08 6.51 268, = 0.0066 33.62 0.06 5.28 222, = 0.0006
IC 18.66 0.11 4.72 308, = 0.0358 36.14 0.06 – 533, = 0.2244

Q07

B 18.24 0.14 – – 28.87 0.07 – –
I 18.47 0.10 – 494, = 0.5229 33.82 0.07 -17.12 854, = 1.08e-11
C 18.64 0.10 – 538, = 0.1973 30.58 0.07 -5.88 646, = 0.0034
IC 17.91 0.14 – 412, = 0.5819 33.22 0.08 -15.02 844, = 5.8e-11

Q08

B 18.32 0.12 – – 30.89 0.05 – –
I 17.78 0.09 – 381, = 0.3136 39.43 0.04 -27.66 900, < 2.2e-16
C 18.58 0.11 – 478, = 0.6865 29.42 0.05 4.73 245, = 0.0021
IC 18.81 0.11 – 498, = 0.4853 38.19 0.04 -23.63 900, < 2.2e-16

Q09

B 18.98 0.13 – – 60.02 0.03 – –
I 16.26 0.11 14.35 169, = 1.52e-05 9.23 0.10 84.62 0, < 2.2e-16
C 19.40 0.09 – 506, = 0.4147 56.66 0.03 5.6 72, = 6.3e-10
IC 16.61 0.12 12.46 215, = 0.00038 4.29 0.18 92.85 0, < 2.2e-16

Q10

B 19.45 0.08 – – 57.76 0.03 – –
I 18.95 0.12 – 409, = 0.552 23.28 0.06 59.69 0, < 2.2e-16
C 19.48 0.1 – 457, = 0.924 56.05 0.03 2.95 205, = 0.0002
IC 18.50 0.1 4.86 309, = 0.03713 52.86 0.03 8.48 20, = 4.59e-14

Q11

B 17.47 0.06 – – 4.55 0.16 – –
I 15.38 0.10 11.99 131, = 5.63e-07 1.98 0.31 56.51 1, < 2.2e-16
C 16.74 0.09 – 321, = 0.0853 4.82 0.14 – 509, = 0.2673
IC 14.79 0.11 15.36 74, = 8.32e-10 1.36 0.4 70.19 0, < 2.2e-16

pression, index-compression strategies, versus by not
using any optimization strategy, i.e., base strategy.
To do that, we use the Wilcoxon statistical test (see
columns 6 and 10). As we observe, not for all the
cases a significant difference is reported. For instance,
for query 1 (Q01), a significant difference of the en-
ergy consumed by the client and server was found for
the index strategy versus the base (see row 4), how-
ever for the same query, the difference of energy con-
sumption between the compression strategy and the

base for the client is not significant (see row 5).
Step 3: only for the cases in which a significance
difference was obtained in the previous step, we
calculate the percentage in which extent the en-
ergy consumption measurements were increased
or decreased (see columns 5 and 9). To do that,
we consider that the average values of the energy
consumed by the base represent the 100% and we
calculate which is the percentage that represent
the average values of energy consumed by the
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Table 4: The distribution of the energy consumed by the queries Q12 to Q22. Where: B = Base, Index = Index, C =
Compression, IC = Index and Compression, AEC = average of energy consumption (EC in Joule unit), RSEC = relative
standard deviation of EC, DEC = difference of EC vs Base, W= Wilcoxon values vs Base.

Client Server
AEC RSEC %DEC W, p-value AEC RSEC %DEC W, p-value

Q12

B 19.22 0.1 – – 56.08 0.03 – –
I 18.07 0.12 6.0 309, =0.0371 17.63 0.08 68.56 0, <2.2e-16
C 19.44 0.1 – 481, =0.6543 53.33 0.04 4.9 149, =2.9e-06
IC 15.18 0.15 21.04 88, =5.2e-09 11.74 0.1 79.06 0, <2.2e-16

Q13

B 19.12 0.09 – – 49.71 0.04 – –
I 19.02 0.12 – 435, =0.8315 48.05 0.04 3.33 248, =0.0025
C 18.75 0.1 – 395, =0.4232 48.63 0.04 – 328, =0.0723
IC 17.94 0.11 6.17 284, =0.0136 48.38 0.05 2.67 306, =0.0332

Q14

B 18.99 0.12 - - 35.42 0.06 – –
I 17.14 0.12 9.75 255, =0.0035 7.30 0.27 79.37 0, <2.2e-16
C 18.44 0.09 – 379, =0.2996 32.34 0.07 8.71 149, =2.9e-06
IC 16.74 0.09 11.89 198, =0.00012 7.32 0.22 79.33 0, <2.2e-16

Q15

B 26.16 0.21 – – 98.10 0.16 – –
I 18.6 0.11 28.91 127, =3.8e-07 46.70 0.07 52.4 0, <2.2e-16
C 19.80 0.10 24.31 185, =5.1e-05 73.51 0.03 25.07 46, =1.1e-11
IC 18.19 0.10 30.48 103, =3.1e-08 47.26 0.06 51.83 0, <2.2e-16

Q16

B 25.01 0.06 – – 24.76 0.06 – –
I 16.7 0.09 33.24 0, <2.2e-16 17.14 0.12 30.78 0, <2.2e-16
C 17.02 0.1 31.94 0, <2.2e-16 18.5 0.08 25.28 1, <2.2e-16
IC 15.38 0.09 38.53 0, <2.2e-16 17.9 0.05 27.71 0, <2.2e-16

Q17

B 43.78 0.08 – – 393.82 0.03 – –
I 22.74 0.09 48.06 0, <2.2e-16 241.73 0.01 38.62 0, <2.2e-16
C 23.76 0.08 45.73 0, <2.2e-16 265.73 0.02 32.53 0, <2.2e-16
IC 23.39 0.10 46.56 0, <2.2e-16 238.51 0.02 39.44 0, <2.2e-16

Q18

B 38.64 0.21 – – 334.93 0.09 – –
I 23.57 0.08 39.0 75, =9.5e-10 263.12 0.02 21.44 0, <2.2e-16
C 23.13 0.08 40.14 61, =1.3e-10 277.66 0.01 17.1 95, =1.2e-08
IC 22.89 0.08 40.77 56, =5.8e-11 275.38 0.01 17.78 49, =1.8e-11

Q19

B 19.45 0.10 – – 54.97 0.03 – –
I 15.84 0.08 18.54 43, =6.3e-12 0.68 0.41 98.76 0, <2.2e-16
C 19.64 0.11 – 476, =0.7082 53.76 0.04 2.20 265, =0.0058
IC 15.80 0.09 18.74 41, =4.4e-12 0.6 0.43 98.91 0, <2.2e-16

Q20

B 20.02 0.10 – – 65.6 0.07 – –
I 20.55 0.10 – 519, =0.3136 60.43 0.03 7.88 99, =1.94e-08
C 20.82 0.07 -4.04 583, =0.0496 63.94 0.07 – 340, =0.1058
IC 20.67 0.11 – 522, =0.2928 61.46 0.04 6.3 172, =1.9e-05

Q21

B 20.00 0.11 – – 61.87 0.03 – –
I 20.01 0.11 – 447, =0.9707 61.91 0.03 – 443, =0.924
C 19.86 0.10 – 433, =0.8087 60.32 0.02 2.51 259, =0.004
IC 20.77 0.09 – 527, =0.2601 61.67 0.04 – 407, =0.532

Q22

B 119.39 0.06 – – 4427.2 0.07 – –
I 16.22 0.07 86.41 0, <2.2e-16 1.41 0.19 99.97 0, <2.2e-16
C 118.93 0.06 – 389, =0.7938 4387.18 0.07 – 376, =0.6402
IC 16.26 0.05 86.38 0, < 2.2e-16 1.2 0.19 99.97 0, < 2.2e-16

other strategies. As observed, the majority of these
percentages show that a decreasing of the energy
consumed by the execution of the queries is produced
when a strategy is applied. However, for five queries
(see Q02, Q05, Q07, Q08 and Q20), an increasing of
the energy consumption is reported when a strategy
is applied. Analysing these queries we did not find
any particularity that can justify this effect, so more
studies are needed in order to explain this phenomena.

RQ1: Does the Implementation of Database Op-
timization Strategies Affect the Energy Consump-
tion of Client-Server Applications?

From Table 3 and Table 4, we observe that the
strategies index and compression are able to have an
impact of the execution of the queries. These impacts
are more evident for the server side than for the client
side for the majority of the cases.
The Index Strategy: we observe that for the majority
of queries the index strategy is able to impact the en-
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ergy consumption of the execution of queries: for four
queries (Q02, Q05, Q07 and Q08) the energy con-
sumption is increased, for two queries no significance
difference was determined (Q06 and Q21), and for the
other 16 queries the energy consumption is decreased
by applying the index strategy. Regarding the latest
16 queries, the index strategy can reduce: i) for the
client, at least 6% equivalent to 1.15 J (Q12) and up
to 86.41% equivalent to 103.17 J (Q22); ii) for the
server, at least 3.33% equivalent to 1.66 J (Q13) and
up to 99.97% equivalent to 4425.79 J (Q22).
The Compression Strategy: we observe that for the
majority of queries the compression strategy is able
to impact the energy consumption of the execution of
queries: for three queries (Q02, Q07 and Q20) the
energy consumption is increased, for four queries no
significance difference was determined (Q01, Q11,
Q13, and Q22), and for the other 15 queries the en-
ergy consumption is decreased by applying the com-
pression strategy. Regarding the latest 15 queries,
the compression strategy can reduce: i) for the client,
at least 6.51% equivalent to 1.28 J (Q06) and up to
45.73 % equivalent to 20.02 J (Q17); ii) for the server,
at least 2.2% equivalent to 1.21 J (Q19) and up to
32.53% equivalent to 128.09 J (Q17).

From previous results, we note that the positive
impact is more important by applying the index
strategy than applying the compression strategy for
the majority of the queries.

In response to RQ1. Seeing the results, the reduction
of the energy consumption for the index strategy was
between [1.15, 103.17] J for the client side, whilst for
the compression was [1.28, 20.02] J. For the server
side, the index strategy was able to reduce between
[1.66, 4425.79] J, whilst the compression reduced
between [1.21, 128.08] J. Therefore, we can conclude
that the index strategy is more effective than the com-
pression strategy in reducing the energy consumed by
the execution of SQL queries for relational databases
such as the PostgreSQL database system. The reason
for this may be due to the mechanism PostgreSQL
uses for compression that avoids data repetitions to
save space and adds references to the original data
having to use them later to recover the original data.

RQ2: Does the Addition of Database Optimiza-
tion Strategies Affect the Energy Consumption of
Client-Server Applications?

The interaction of database optimization strategies
is evaluated by applying both strategies (i.e., index
and compression) at the same time. The statistical
evaluation for this interaction is also reported in Ta-
ble 3 and Table 4.

The Index-Compression Strategy: we observe that
for the majority of queries the index-compression
strategy is able to impact the energy consumption
of the execution of queries: for four queries (Q02,
Q05, Q07 and Q08) the energy consumption is in-
creased and we observe that these queries are the
same reported for the index strategy, so it could in-
dicate that the index strategy influence more the in-
teraction index-compression than the strategy com-
pression. Moreover, for one query no significance
difference was determined (Q21), the Q21 also re-
ported a not significance value for index, however
Q06 that was also reported for the index becomes hav-
ing a significant difference for the interaction index-
compression for the client. For the other 17 queries
the energy consumption is decreased by applying the
index-compression strategy. Regarding the last 17
queries, the index-compression strategy can reduce:
i) for the client, at least 4.72% equivalent to 0.92 J
(Q06) and up to 86.38 % equivalent to 103.13 J (Q22);
ii) for the server, at least 2.67% equivalent to 1.33 J
(Q13) and up to 99.97% equivalent to 4426 J (Q22).

From these experiments, we observe that the
results of index-compression are influenced for
both strategies. However as the index strategy is
more effective than the compression in reducing
energy consumption as was reported in RQ1, we
note that there is a tendency that the strategy index-
compression is more influenced by the index strategy.

In response to RQ2. Seeing the results, the reduction
of the energy consumption for the index-compression
strategy was between [0.92, 86.38] J for the client
side, whilst for the server side was between [1.33,
4426] J. These values are very similar to the val-
ues obtained for the index strategy. Therefore, we
can conclude that the interaction index-compression
is more influenced by the the index strategy than the
compression strategy. The reason could be that the
fact of the index strategy outperforms the compression
strategy in reducing the energy consumption for the
majority of the cases as was reported in RQ1. More-
over, the reduction of energy consumption is not so
different by applying just the strategy index, hence
we can recommend that use only the strategy index,
and not the combination of the strategies index and
compression, to reduce the energy consumption of
relational databases. It can save effort in applying
database optimization strategies for reducing energy
consumption of relational databases such as the Post-
greSQL database system.
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6 THREATS TO VALIDITY

Internal Validity. For collecting energy consumption
measurements, we used Juliet, a tool created for our
experiment. It could introduce bias, so the building of
Juliet, which was inspired by similar tools, was inde-
pendent of the experiment in order to avoid any bias.
Construct Validity. For the design of the experiment,
we use the same computer for running the client and
server, it limits our experiment to a monolithic sce-
nario. This threat is partially reduced by Juliet being
able to collect the energy consumed by isolated pro-
cesses, i.e., the processes for the client and server. We
plan to run experiments in a real distributed scenario.
On the other hand, the fluctuation of energy measure-
ments can affect the results and conclusions of the ex-
periment. To reduce this threat, we run 30 times per
each database strategy optimization and query, then
we calculate the average values of them. Moreover,
the database server can be altered by the execution of
previous queries affecting the results and conclusions
of the experiment. To reduce this threat, we restart the
server in order to collect energy by considering equal
conditions. A similar decision is taken for the con-
dition of the database itself each time that a strategy
should be implemented, i.e., the database is deleted
and recreated with the selected strategy to avoid any
alterations in results and conclusions.
External Validity. As our experiment was performed
on a specific benchmarking limited to 22 specific
queries, our results cannot be generalized. This threat
is partially reduced by using the TPC-H benchmark-
ing that is well known in this kind of experiment.

7 CONCLUSION

To better understand the impact of end-to-end query
optimization strategies (i.e., indexation, data com-
pression, and their combination) on the power con-
sumption of RDBMS, from both client and server per-
spectives, we execute tests, using TPC-H benchmark,
configured with 22 queries on a 1GB dataset on Post-
greSQL RDBMS. To do so, we propose a monitoring
tool, called Juliet, able to monitor and estimate the
energy and power consumption of processes execut-
ing in Linux-based systems. From the experimental
results, we conclude that indexation is more effective
than data compression to reduce the energy consumed
by the execution of the majority of the 22 queries.
However, more experiments are needed to accurately
evaluate the impact on energy consumption and ob-
tain stronger conclusions.

We are working on improving the scenario of the

experiments to reflect more real-world deployments
(e.g., run client and server in different machines), on
classifying the queries according their complexity, re-
sponses time and size, and on considering consump-
tion on other resources, such as CPU, I/O usage, and
memory. We also plan to apply the same empirical
evaluation over other RDBMS and NoSQL datasets.
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